Skip to main content

The Desensitisation as A3 Adenosine Receptor Regulation: Physiopathological Implications

  • Chapter
  • First Online:
A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics

Abstract

A3 adenosine receptors are subjected to fast desensitisation, internalisation and down regulation after agonist exposure. As almost all G-protein coupled receptors, these regulatory mechanisms are mediated by receptor phosphorylation in a process that results in the recruitment of arrestins. Receptor phosphorylation is a flexible and dynamic process in which the receptors are regulated in a unique manner depending on the cell type in which the receptors are expressed. This rapid regulatory mechanism has an important pathophysiological role: in fact the impairment of receptor responses obtained following agonist exposure may be therapeutically equivalent to antagonist occupancy and suggest the use of agonists in different pathological conditions in which the activity of A3 receptors should be regulated, such as neurodegenerative and cancer diseases. In this scenario, phosphorylation offers a mechanism of regulating the signalling outcome of G-protein coupled receptors that can be tailored to meet specific physiological role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP, Burnstock G (1998) Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78(2):113–145

    Article  PubMed  CAS  Google Scholar 

  • Abbracchio MP, Camurri A, Ceruti S, Cattabeni F, Falzano L, Giammarioli AM, Jacobson KA, Trincavelli L, Martini C, Malorni W, Fiorentini C (2001) The A3 adenosine receptor induces cytoskeleton rearrangement in human astrocytoma cells via a specific action on Rho proteins. Ann N Y Acad Sci 939:63–73

    Article  PubMed  CAS  Google Scholar 

  • Akkari R, Burbiel JC, Hockemeyer J, Müller CE (2006) Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. Curr Topics Med Chem 6(13):1375–1399

    CAS  Google Scholar 

  • Ally RA, Ives KL, Traube E, Eltounsi I, Chen PW, Cahill PJ, Battey JF, Hellmich MR, Kroog GS (2003) Agonist- and protein kinase C-induced phosphorylation have similar functional consequences for gastrin-releasing peptide receptor signaling via Gq. Mol Pharmacol 64(4):890–904

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Romagnoli R, Fruttarolo F, Merighi S, Varani K, Gessi S, Borea PA (2005) Pyrazolo[4, 3-e]1, 2, 4-triazolo[1, 5-c]pyrimidine ligands, new tools to characterize A3 adenosine receptors in human tumor cell lines. Curr Med Chem 12(11):1319–1329

    Article  PubMed  CAS  Google Scholar 

  • Benovic JL, Pike LJ, Cerione RA, Staniszewski C, Yoshimasa T, Codina J, Caron MG, Lefkowitz RJ (1985) Phosphorylation of the mammalian beta-adrenergic receptor by cyclic AMP-dependent protein kinase. Regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein. J Biol Chem 260(11):7094–7101

    PubMed  CAS  Google Scholar 

  • Bonvini P, Hwang SG, El-Gamil M, Robbins P, Kim JS, Trepel J, Neckers L (2000) Nuclear beta-catenin displays GSK-3beta- and APC-independent proteasome sensitivity in melanoma cells. Biochim Biophys Acta 1495(3):308–318

    Article  PubMed  CAS  Google Scholar 

  • Brambilla R, Cattabeni F, Ceruti S, Barbieri D, Franceschi C, Kim YC, Jacobson KA, Klotz K-N, Lohse MJ, Abbracchio MP (2000) Activation of the A3 adenosine receptor affects cell cycle progression and cell growth. Naunyn Schmiedebergs Arch Pharmacol 361(3):225–234

    Article  PubMed  CAS  Google Scholar 

  • Castro M, Dicker F, Vilardaga JP, Krasel C, Bernhardt M, Lohse MJ (2002) Dual regulation of the parathyroid hormone (PTH)/PTH-related peptide receptor signaling by protein kinase C and beta-arrestins. Endocrinology 143(10):3854–3865

    Article  PubMed  CAS  Google Scholar 

  • Chuang TT, LeVine H 3rd, De Blasi A (1995) Phosphorylation and activation of beta-adrenergic receptor kinase by protein kinase C. J Biol Chem 270(31):18660–18665

    Article  PubMed  CAS  Google Scholar 

  • Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32(2):325–338

    Article  PubMed  CAS  Google Scholar 

  • Clark RB, Kunkel MW, Friedman J, Goka TJ, Johnson JA (1988) Activation of cAMP-dependent protein kinase is required for heterologous desensitization of adenylyl cyclase in S49 wild-type lymphoma cells. Proc Natl Acad Sci U S A 85(5):1442–1446

    Article  PubMed  CAS  Google Scholar 

  • Cunningham ML, Waldo GL, Hollinger S, Hepler JR, Harden TK (2001) Protein kinase C phosphorylates RGS2 and modulates its capacity for negative regulation of Galpha 11 signaling. J Biol Chem 276(8):5438–5444

    Article  PubMed  CAS  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  PubMed  CAS  Google Scholar 

  • Fan G, Shumay E, Malbon CC, Wang H (2001) c-Src tyrosine kinase binds the beta 2-adrenergic receptor via phospho-Tyr-350, phosphorylates G-protein-linked receptor kinase 2, and mediates agonist-induced receptor desensitization. J Biol Chem 276(16):13240–13247

    Article  PubMed  CAS  Google Scholar 

  • Ferguson G, Watterson KR, Palmer TM (2000) Subtype-specific kinetics of inhibitory adenosine receptor internalization are determined by sensitivity to phosphorylation by G protein coupled receptor kinases. Mol Pharmacol 57(3):546–552

    PubMed  CAS  Google Scholar 

  • Ferguson G, Watterson KR, Palmer TM (2002) Subtype-specific regulation of receptor internalization and recycling by the carboxyl-terminal domains of the human A1 and rat A3 adenosine receptors: consequences for agonist-stimulated translocation of arrestin3. Biochemistry 41(50):14748–14761

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53(1):1–24

    PubMed  CAS  Google Scholar 

  • Fishman P, Bar-Yehuda S (2003) Pharmacology and therapeutic applications of A3 receptor subtype. Curr Topics Med Chem 3(4):463–469

    Article  CAS  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–52

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W (2000) Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):364–374

    Article  PubMed  CAS  Google Scholar 

  • Freedman NJ, Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51:319–351

    PubMed  CAS  Google Scholar 

  • Gessi S, Cattabriga E, Avitabile A, Gafà R, Lanza G, Cavazzini L, Bianchi N, Gambari R, Feo C, Liboni A, Gullini S, Leung E, Mac-Lennan S, Borea PA (2004) Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res 10(17):5895–5901

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117(1):123–140

    Article  PubMed  CAS  Google Scholar 

  • Gurevich VV, Gurevich EV, Cleghorn WM (2008) Arrestins as multi-functional signaling adaptors. Handb Exp Pharmacol 186:15–37

    Article  PubMed  CAS  Google Scholar 

  • Hanyaloglu AC, von Zastrow M (2008) Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 48:537–568

    Article  PubMed  CAS  Google Scholar 

  • Hardy AR, Conley PB, Luo J, Benovic JL, Poole AW, Mundell SJ (2005) P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105(9):3552–3560

    Article  PubMed  CAS  Google Scholar 

  • Hausdorff WP, Caron MG, Lefkowitz RJ (1990) Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J 4(11):2881–2889

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Hoffmannm C, Cattabeni F, Abbracchio MP (1999) Adenosine-induced cell death: evidence for receptor-mediated signalling. Apoptosis 4(3):197–211

    Article  PubMed  CAS  Google Scholar 

  • Karoor V, Wang L, Wang HY, Malbon CC (1998) Insulin stimulates sequestration of beta-adrenergic receptors and enhanced association of beta-adrenergic receptors with Grb2 via tyrosine 350. J Biol Chem 273(49):33035–33041

    Article  PubMed  CAS  Google Scholar 

  • Kelly E, Bailey CP, Henderson G (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153 Suppl 1:S379–388

    Google Scholar 

  • Klaasse EC, Ijzerman AP, de Grip WJ, Beukers MW (2008) Internalization and desensitization of adenosine receptors. Purinergic Signal 4(1):21–37

    Article  PubMed  CAS  Google Scholar 

  • Krasel C, Dammeier S, Winstel R, Brockmann J, Mischak H, Lohse MJ (2001) Phosphorylation of GRK2 by protein kinase C abolishes its inhibition by calmodulin. J Biol Chem 276(3):1911–1915

    Article  PubMed  CAS  Google Scholar 

  • Krupnick JG, Benovic JL (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289–319

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ (1998) G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem 273(30):18677–18680

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25(8):413–422

    Article  PubMed  CAS  Google Scholar 

  • Liang BT, Jacobson KA (1998) A physiological role of the adenosine A3 receptor: sustained cardioprotection. Proc Natl Acad Sci U S A 95(12):6995–6999

    Article  PubMed  CAS  Google Scholar 

  • Lohse MJ (1993) Molecular mechanisms of membrane receptor desensitization. Biochim Biophys Acta 1179(2):171–188

    Article  PubMed  CAS  Google Scholar 

  • Lorenz K, Lohse MJ, Quitterer U (2003) Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 426(6966):574–579

    Article  PubMed  CAS  Google Scholar 

  • Madi L, Bar-Yehuda S, Barer F, Ardon E, Ochaion A, Fishman P (2003) A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumour growth inhibition. J Biol Chem 278(43):42121–42130

    Article  PubMed  CAS  Google Scholar 

  • Marchese A, Paing MM, Temple BR, Trejo J (2008) G protein-coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol Toxicol 48:601–629

    Article  PubMed  CAS  Google Scholar 

  • Maudsley S, Martin B, Luttrell LM (2005) The origins of diversity and specificity in g protein-coupled receptor signalling. J Pharmacol Exp Ther 314(2):485–494

    Article  PubMed  CAS  Google Scholar 

  • Mitchell CH, Peterson-Yantorno K, Carré DA, McGlinn AM, Coca-Prados M, Stone RA, Civan MM (1999) A3 adenosine receptors regulate Cl-channels of nonpigmented ciliary epithelial cells. Am J Physiol 276(3 Pt 1):C659–666

    PubMed  CAS  Google Scholar 

  • Morin PJ (1999) Beta-catenin signaling and cancer. BioEssays 21(12):1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Olah ME, Stiles GL (2000) The role of receptor structure in determining adenosine receptor activity. Pharmacol Ther 85(2):55–75

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Benovic JL, Stiles GL (1996) Molecular basis for subtype-specific desensitization of inhibitory adenosine receptors. Analysis of a chimeric A1–A3 adenosine receptor. J Biol Chem 271(25):15272–15278

    Google Scholar 

  • Palmer TM, Benovic JL, Stiles GL (1995) Agonist-dependent phosphorylation and desensitization of the rat A3 adenosine receptor. Evidence for a G-protein-coupled receptor kinase-mediated mechanism. J Biol Chem 270(49):29607–29613

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Harris CA, Coote J, Stiles GL (1997) Induction of multiple effects on adenylyl cyclase regulation by chronic activation of the human A3 adenosine receptor. Mol Pharmacol 52(4):632–640

    PubMed  CAS  Google Scholar 

  • Palmer TM, Stiles GL (2000) Identification of threonine residues controlling the agonist-dependent phosphorylation and desensitization of the rat A3 adenosine receptor. Mol Pharmacol 57(3):539–545

    PubMed  CAS  Google Scholar 

  • Paxton WG, Marrero MB, Klein JD, Delafontaine P, Berk BC, Bernstein KE (1994) The angiotensin II AT1 receptor is tyrosine and serine phosphorylated and can serve as a substrate for the src family of tyrosine kinases. Biochem Biophys Res Commun 200(1):260–267

    Article  PubMed  CAS  Google Scholar 

  • Penn RB, Pascual RM, Kim YM, Mundell SJ, Krymskaya VP, Panettieri RA Jr, Benovic JL (2001) Arrestin specificity for G protein-coupled receptors in human airway smooth muscle. J Biol Chem 276(35):32648–3256

    Article  PubMed  CAS  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3(9):639–650

    Article  PubMed  CAS  Google Scholar 

  • Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  PubMed  CAS  Google Scholar 

  • Premont RT, Gainetdinov RR (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534

    Article  PubMed  CAS  Google Scholar 

  • Premont RT, Inglese J, Lefkowitz RJ (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 9(2):175–182

    PubMed  CAS  Google Scholar 

  • Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268(23):16887–16890

    PubMed  CAS  Google Scholar 

  • Ramkumar V, Stiles GL (1994) In: Sibley DR, Houslay MD (eds) Regulation of cellular signal transduction pathways by desensitization and amplification. John Wiley & Sons, New York, pp 217–232

    Google Scholar 

  • Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17(4):159–165

    Article  PubMed  CAS  Google Scholar 

  • Ribas C, Penela P, Murga C, Salcedo A, García-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor F Jr (2007) The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768(4):913–922

    Article  PubMed  CAS  Google Scholar 

  • Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, Rosenberg SA (1996) A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183(3):1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Santini F, Penn RB, Gagnon AW, Benovic JL, Keen JH (2000) Selective recruitment of arrestin-3 to clathrin-coated pits upon stimulation of G protein-coupled receptors. J Cell Sci 113(13):2463–2470

    PubMed  CAS  Google Scholar 

  • Stadel JM, Nambi P, Shorr RG, Sawyer DF, Caron MG, Lefkowitz RJ (1983) Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor. Proc Natl Acad Sci U S A 80(11):3173–3177

    Article  PubMed  CAS  Google Scholar 

  • Tobin AB, Butcher AJ, Kong KC (2008) Location, location, location...site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 29(8):413–420

    Google Scholar 

  • Tobin AB (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 153(Suppl 1):S167–S176

    Google Scholar 

  • Trincavelli ML, Tuscano D, Cecchetti P, Falleni A, Benzi L, Klotz K-N, Gremigni V, Cattabeni F, Lucacchini A, Martini C (2000) Agonist-induced internalization and recycling of the human A3 adenosine receptors: role in receptor desensitization and resensitization. J Neurochem 75(4):1493–1501

    Article  PubMed  CAS  Google Scholar 

  • Trincavelli ML, Tuscano D, Marroni M, Falleni A, Gremigni V, Ceruti S, Abbracchio MP, Jacobson KA, Cattabeni F, Martini C (2002a) A3 adenosine receptors in human astrocytoma cells: agonistmediated desensitization, internalization, and down-regulation. Mol Pharmacol 62(6):1373–1384

    Article  PubMed  CAS  Google Scholar 

  • Trincavelli ML, Tuscano D, Marroni M, Klotz K-N, Lucacchini A, Martini C (2002b) Involvement of mitogen protein kinase cascade in agonist-mediated human A3 adenosine receptor regulation. Biochim Biophys Acta 1591(1–3):55–62

    PubMed  CAS  Google Scholar 

  • Von Lubitz DK, Lin RC, Boyd M, Bischofberger N, Jacobson KA (1999) Chronic administration of adenosine A3 receptor agonist and cerebral ischemia: neuronal and glial effects. Eur J Pharmacol 367(2–3):157–63

    Article  Google Scholar 

  • Von Lubitz DK, Lin RC, Popik P, Carter MF, Jacobson KA (1994) Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 263(1–2):59–67

    Google Scholar 

  • Yaar R, Jones MR, Chen JF, Ravid K (2005) Animal models for the study of adenosine receptor function. J Cell Physiol 202(1):9–20

    Article  PubMed  CAS  Google Scholar 

  • Yamano K, Inoue M, Masaki S, Saki M, Ichimura M, Satoh M (2005) Human A3R leads to intracellular Ca2+ mobilization but is insufficient to activate the signaling pathway via phosphoinositide 3-kinase gamma in mice. Biochem Pharmacol 70(10):1487–1496

    Article  PubMed  CAS  Google Scholar 

  • Young HW, Molina JG, Dimina D, Zhong H, Jacobson M, Chan LN, Chan TS, Lee JJ, Blackburn MR (2004) A3 adenosine receptor signaling contributes to airway inflammation and mucus production in adenosine deaminase-deficient mice. J Immunol 173(2):1380–1389

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Martini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Trincavelli, M.L., Ciampi, O., Martini, C. (2010). The Desensitisation as A3 Adenosine Receptor Regulation: Physiopathological Implications. In: Borea, P. (eds) A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3144-0_5

Download citation

Publish with us

Policies and ethics