Skip to main content

Abstract

Conventional PCR is a powerful technique that allows exponential amplification of DNA sequences. A PCR reaction needs a pair of primers that are complementary to the sequence of interest. Primers are extended by the DNA polymerase . The copies produced after the extension, so called amplicons, are re-amplified with the same primers leading thus to an exponential amplification of the DNA molecules. After amplification, gel electrophoresis is used to analyse the amplified PCR products and this makes conventional PCR time consuming; since the reaction must finish before proceeding with the post-PCR analysis. Real Time PCR overcome this problem, because of its ability to measure the PCR amplicons at early states of the reaction as they are accumulate in a “Real Time Detection” mode thus measuring the amount of PCR product where the reaction is still in the exponential phase (QPCR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Heid, CA, Stevens, J, Livak, KJ, Williams, PM. 1996. Real time quantitative PCR . Genome Res., 10, 986–94.

    Article  Google Scholar 

  2. Nolan, T, Hands, RE, Bustin, SA. 2006. Quantification of mRNA using real-time RT-PCR. Nat. Protoc., 1, 1559–82.

    Article  CAS  PubMed  Google Scholar 

  3. Mhlanga, MM, Malmberg, L. 2001. Methods, 25(4), 463–71.

    Article  CAS  PubMed  Google Scholar 

  4. Chandler, DP, Wagnon, CA, Bolton, H Jr. 1998 Reverse transcriptase (RT) inhibition of PCR at low concentrations of template and its implications for quantitative RT-PCR. Appl. Environ. Microbiol., 64(2), 669–77.

    CAS  PubMed  Google Scholar 

  5. de Silva, D, Wittwer, CT. 2000. Monitoring hybridization during polymerase chain reaction. J. Chromatog. Biomed. Sci Appl., 741(1), 3–13.

    Article  Google Scholar 

  6. de Kok, JB, Hendriks, JC, van Solinge, WW, Willems, HL, Mensink, EJ, Swinkels, DW. 1998. Use of real-time quantitative PCR to compare DNA isolation methods. Clin. Chem., 44(10), 2201–04.

    PubMed  Google Scholar 

  7. Boulay, JL, Reuter, J, Ritschard, R, Terracciano, L, Herrmann, R, Rochlitz, C. 1999. Gene dosage by quantitative real-time PCR . Biotechniques, 27(2), 228–30.

    CAS  PubMed  Google Scholar 

  8. Ferré, F. 1992. Quantitative or semi-quantitative PCR : Reality versus Myth. PCR Methods Appl. 2, 1–9.

    PubMed  Google Scholar 

  9. Higuchi, R, Fockler, C, Dollinger, G, Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology, 11, 1026–30.

    Article  CAS  PubMed  Google Scholar 

  10. Jung, R, Soondrum, K, Neumaier, M. 2000. Quantitative PCR. Clin. Chem. Lab. Med., 38(9), 833–36.

    Article  CAS  PubMed  Google Scholar 

  11. Kainz P. 2000. The PCR plateau phase – towards an understanding of its limitations. Biochim. Biophys. Acta., 1494(1–2), 23–27.

    CAS  PubMed  Google Scholar 

  12. Mannhalter, C, Koizar, D, Mitterbauer, G. 2000. Evaluation of RNA isolation methods and reference genes for RT-PCR analyses of rare target RNA. Clin. Chem. Lab. Med., 38, 171–77.

    Article  CAS  PubMed  Google Scholar 

  13. Morrison, TB, Weis, JJ, Wittwer, CT. 1998. Quantification of low-copy transcripts by continuous SYBR® Green I monitoring during amplification. Biotechniques, 24(6), 954–58.

    CAS  PubMed  Google Scholar 

  14. Souazé, F, Ntodou-Thomé, A, Tran, CY, Rostene, W, Forgez, P. 1996. Quantitative RT-PCR: Limits and accuracy. Biotechniques, 21, 280–85.

    PubMed  Google Scholar 

  15. Wittwer, CT, Garling, DJ. 1991. Rapid cycle DNA amplification: time and temperature optimization. Biotechniques, 10(1), 76–83.

    CAS  PubMed  Google Scholar 

  16. Hartshorn, C, Anshelevich, A, Wangh, LJ. 2005. Rapid, single-tube method for quantitative preparation and analysis of RNA and DNA in samples as small as one cell. BMC Biotechnol., 5(1), 2.

    Article  PubMed  Google Scholar 

  17. Costafreda, MI, Bosch, A, Pinto, RM. 2006. Development, evaluation, and standardization of a real-time TaqMan Reverse Transcription-PCR assay for quantification of Hepatitis A virus in clinical and shellfish samples. Appl. Environ. Microbiol. 72(6), 3846–55.

    Article  CAS  PubMed  Google Scholar 

  18. Abd-Elsalam, KA. 2003. Bioinformatic tools and guideline for PCR primer design. Afr. J. Biotechnol. 2(5), 91–5.

    CAS  Google Scholar 

  19. Freeman, WM, Walker, SJ, Vrana, KE. 1999. Quantitative RT-PCR: pitfalls and potential. BioTechniques. 26, 112–25.

    CAS  PubMed  Google Scholar 

  20. Giulietti, A, Overbergh, L, Valckx, D, Decallonne, B, Bouillon, R, Mathieu, C. 2001. An overview of real-time quantitative PCR, applications to quantify cytokine gene expression. Methods. 25, 386–401.

    Article  CAS  PubMed  Google Scholar 

  21. Ginzinger, DG. 2002. Gene quantification using real-time quantitative PCR , An emerging technology hits the mainstream. Exp Hematol., 30, 503–12.

    Article  CAS  PubMed  Google Scholar 

  22. Hartshorn, C, Anshelevich, A, Wangh, LJ. 2005. Rapid, single-tube method for quantitative preparation and analysis of RNA and DNA in samples as small as one cell. BMC Biotechnol., 5, 1–13.

    Article  Google Scholar 

  23. Heid, CA, Stevens, J., Livak, KJ, Williams, PM. 1996. Real time quantitative PCR. Genome Res., 986–94.

    Google Scholar 

  24. Mackay, IM, Arden, KE, Nitsche, A. 2002. Real-time PCR in virology. Nucleic Acids Res., 30, 1292–305.

    Article  CAS  PubMed  Google Scholar 

  25. Mhlanga, MM, Malmberg, L. 2001. Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods, 25(4), 463–71.

    Article  CAS  PubMed  Google Scholar 

  26. Pattyn, F, Speleman, F, De Paepe, A, Vandesompele, J. 2003. RTPrimerDB, the Real-Time PCR primer and probe database. Nucleic Acids Res., 31, 122–3.

    Article  CAS  PubMed  Google Scholar 

  27. Higuchi, R, Fockler, C, Dollinger, G, Watson, R. 1993. Kinetic PCR analysis, real-time monitoring of DNA amplification reactions. Biotechnology, 11, 1026–30.

    Article  CAS  PubMed  Google Scholar 

  28. Tichopad, A, Dzidic, A, Pfaff, MW. 2002. Improving quantitative real-time RT-PCR reproducibility by boosting primer-linked amplification efficiency. Biotechnol. Lett., 24, 2053–56.

    Article  CAS  Google Scholar 

  29. Niesters, HG. 2002. Clinical virology in real time. J. Clin. Virol., 25 (3), 3–12.

    Article  Google Scholar 

  30. Niesters, HG. 2004. Molecular and diagnostic clinical virology in real time. Clin. Microbiol. Infect., 10, 5–11.

    Article  CAS  PubMed  Google Scholar 

  31. Whitcombe, D, Theaker, J, Guy, SP, Brown, T, Little, S. 1999. Detection of PCR products using selfprobing amplicons and fluorescence. Nat. Biotechnol., 17, 804–07.

    Article  CAS  PubMed  Google Scholar 

  32. Wittwer, CT, et al. 1997. The LightcyclerTM a microvolume multisample fluorimeter with rapid temperature control. Biotechniques, 22, 176–81.

    CAS  PubMed  Google Scholar 

  33. Wittwer, CT, Herrmann, MG, Moss, AA, Rasmussen, RP. 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 22, 130.

    CAS  PubMed  Google Scholar 

  34. Holland, PM, Abramson, RD, Watson, R, Gelfand, DH. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase . Proc. Natl. Acad. Sci. USA, 88, 7276–80.

    Article  CAS  PubMed  Google Scholar 

  35. Tyagi, S, Kramer, FR. 1996. Molecular beacons-probes that fluoresce upon hybridization. Nat. Biotechnol., 14, 303–08.

    Article  CAS  PubMed  Google Scholar 

  36. Newton, CR, et al. 1989. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res., 17, 2503–16.

    Article  CAS  PubMed  Google Scholar 

  37. Kiss, I, German, P, Sami, L, Antal, M, Farkas, T, Kardos, G, Kecskemeti, S, Dan, Á, Belak, S. 2006. Application of Real-Time RT-PCR utilising Lux (Light upon extension) Fluorogenic Primer for the rapid detection of avian influenza viruses. Acta. Veterinaria Hungarica, 54(4), 525–33.

    Article  CAS  PubMed  Google Scholar 

  38. Täpp, I, Malmberg, L, Rennel, E, Wik, M, Syvänen, AC. 2000. Homogeneous scoring of single-nucleotide polymorphisms, comparison of the 5¢-Nuclease TaqMan assay and molecular beacon probes. BioTechniques, 28 , 732–8.

    PubMed  Google Scholar 

  39. Zhou, L, Wang, L, Palais, R, Pryor, R, Wittwer, CT. 2005. High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin. Chem., 51 (10), 1770–7.

    Article  CAS  PubMed  Google Scholar 

  40. Palais RA., Liew MA., Wittwer CT. 2005. Quantitative heteroduplex analysis for single nucleotide polymorphism genotyping. Anal. Biochem., 346(1) 167–75.

    Article  CAS  PubMed  Google Scholar 

  41. Lyon, E. 2001. Mutation detection using fluorescent hybridization probes and melting curve analysis.Expert Rev. Mol. Diagn., 1(1), 92–101.

    Article  CAS  PubMed  Google Scholar 

  42. Bustin, SA, Nolan, T. 2004. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech., 15(3), 155–66.

    PubMed  Google Scholar 

  43. Wong, ML, Medrano, JF. 2005. Real-time PCR for mRNA quantitation. Biotechniques, 39(1), 75–85.

    Article  CAS  PubMed  Google Scholar 

  44. Reynisson, E, Josefsen, MH, Krause, M, Hoorfar, J. 2006. Evaluation of probe chemistries and platforms to improve the detection limit of real-time PCR . J. Microbiol. Methods, 66(2), 206–16.

    Article  CAS  PubMed  Google Scholar 

  45. Mackay, IM. 2004. Real-time PCR in the microbiology laboratory. Clin. Microbiol. Infect., 10(3), 190–212.

    Article  CAS  PubMed  Google Scholar 

  46. Yuan, JS, Reed, A, Chen, F, Stewart, CN. 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics, 7, 85.

    Article  PubMed  Google Scholar 

  47. Ririe, KM, Rasmussen, RP, Wittwer, CT. 1997. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem., 245(2), 154–60.

    Article  CAS  PubMed  Google Scholar 

  48. Vet, JA, Marras, SA. 2005. Design and optimization of molecular beacon real-time polymerase chain reaction assays. Methods Mol. Biol., 288, 273–90.

    CAS  PubMed  Google Scholar 

  49. Vet, JA, Van der Rijt, BJ, Blom, HJ. 2002. Molecular beacons, colorful analysis of nucleic acids. Expert Rev. Mol. Diagn., 2 (1), 77–86.

    Article  CAS  PubMed  Google Scholar 

  50. Abravaya, K, Huff, J, Marshall R., et al. 2003. Molecular beacons as diagnostic tools, technology and applications. Clin. Chem. Lab. Med., 41 (4), 468–74.

    Article  CAS  PubMed  Google Scholar 

  51. Tan, W, Wang, K, Drake, TJ. 2004. Molecular beacons. Curr. Opin. Chem. Biol., 8(5), 547–53.

    Article  CAS  PubMed  Google Scholar 

  52. Kubista, M, Andrade, JM, Bengtsson, M, Forootan, A, Jonak, J, Lind, K, Sindelka, R, Sjoback, R, Sjogreen, B, Strombom, L, Stahlberg, A, Zoric, N. 2006. The real-time polymerase chain reaction. Mol. Aspects. Med., 27(2–3), 95–125.

    Article  CAS  PubMed  Google Scholar 

  53. Notomi, T, Okayama, H, Masubuchi, H, Yonekawa, T, Watanabe, K, Amino, N, Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 28, 63.

    Article  Google Scholar 

  54. Norihiro, T, Yasuyoshi, M, Hidetoshi, K, Tsugunori, N. 2008. Loop-mediated isothermal amplification (LAMP ) of gene sequences and simple visual detection of products. Nat. Protocols, 3, 877–82.

    Article  Google Scholar 

  55. Hiyoshi, M, Hosoi, S. 1994. Assay of DNA denaturation by polymerase chain reaction-driven fluorescent label incorporation and fluorescence resonance energy transfer. Anal. Biochem., 221 (2), 306–11.

    Article  CAS  PubMed  Google Scholar 

  56. Chen, X, Zehnbauer, B, Gnirke, A, Kwok, PY. 1997. Fluorescence energy transfer detection as a homogeneous DNA diagnostic method. Proc. Natl. Acad. Sci., U S A., 94 (20), 10756–61.

    Article  CAS  PubMed  Google Scholar 

  57. Holland, PM, Abramson, RD, Watson, R, Gelfand, DH. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase . Proc. Natl. Acad. Sci. U S A., 88(16), 7276–80.

    Article  CAS  PubMed  Google Scholar 

  58. Philip, SB, Richard SA, James, PK, Wittwer, CT. 1998. Homogeneous multiplex genotyping of hemochromatosis mutations with fluorescent hybridization probes. Am. J. Pathol., 153, 1055–61.

    Google Scholar 

  59. Ririe, KM, Rasmussen, RP, Wittwer CT. 1997. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem., 245(2), 154–60.

    Article  CAS  PubMed  Google Scholar 

  60. Pfaffl, MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29(9), 45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ericka A. Pestana .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pestana, E.A., Belak, S., Diallo, A., Crowther, J.R., Viljoen, G.J. (2009). Real-Time PCR – The Basic Principles. In: Early, rapid and sensitive veterinary molecular diagnostics - real time PCR applications. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3132-7_3

Download citation

Publish with us

Policies and ethics