Skip to main content

Programmed Cell Death in Plants

  • Chapter
  • First Online:
Abiotic Stress Adaptation in Plants

Summary

Throughout the life cycle of plants, programmed cell death (PCD) is involved in a wide range of deveĀ­lopmental processes and responses against abiotic or biotic stresses. PCD is an active form of cellular suicide controlled by a network of genes. Such phenomenon is associated with recovery of cellular compounds and sustaining plant life. Basic morphological and biochemical features of PCD are believed to be conserved in both plants and animals. Nevertheless, recent studies demonstrate an involvement of organelles such as vacuole and chloroplast in plant cell death regulation, indicating that plants evolved own cell death machinery. Reactive oxygen species (ROS) generated by biotic and abiotic stresses act as a signal that induces plant PCD. This article describes some of the fundamental characteristics of plant PCD and raises points that may lead to a better understanding and novel strategies for plant molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaM:

calmodulin

CERK:

ceramide kinase

ER:

endoplasmic reticulum

HR:

hypersensitive response

LRR:

leucine-rich repeat

MAPKs:

mitogen activated protein kinases

MTP:

mitochondrial-permeability transition pore

NBS:

nucleotide binding site

PCD:

programmed cell death

PK:

protein kinase

PS:

phosphatidyl serine

ROS:

reactive oxygen species

SERCA:

sarco endoplasmic reticulum Ca2+ ATPase

TM:

transmembrane-domain

TMV:

tobacco mosaic virus

TNF:

tumour necrosis factor

VPE:

vacuolar processing enzyme

References

  • Baek D, Nam J, Koo YD, Kim DH, Lee J, Jeong JC, Kwak SS, Chung WS, Lim CO, Bahk JD, Hong JC, Lee SY, Kawai-Yamada M, Uchimiya H, Yun DJ (2004) Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes. Plant Mol Biol 56:15-27

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bolduc N, Brisson LF (2003) Antisense down regulation of NtBI-1 in tobacco BY-2 cells induces accelerated cell death upon carbon starvation. FEBS Lett 532:111-114

    ArticleĀ  Google ScholarĀ 

  • Bolduc N, Ouellet M, Pitre F, Brisson LF (2003) Molecular characterization of two plant BI-1 homologues which suppress Bax-induced apoptosis in human 203 cells. Planta 216:377-386

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B, Von Arnold S (2004) VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death Differ 11:175-182

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ceccatelli S, Tamm C, Sleeper E, Orrenius S (2004) Neural stem cells and cell death. Toxicol Lett 149:59-66

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chae HJ, Ke N, Kim HR, Chen S, Godzik A, Dickman M, Reed JC (2003) Evolutionarily conserved cytoprotection provided by Bax inhibitor-1 homolog from animals, plants and yeast. Gene 323:101-113

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neil SK (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667-677

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Collazo C, Osmani C, Orlando B (2006) Programmed cell death in plants resembles apoptosis in animals. Biotecnologia Aplicada 23:1-10

    Google ScholarĀ 

  • Coursol S, Fan L-M, Le Stunff H, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signaling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651-654

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • De Jong AJ, Hoeberichts FA, Yakimova ER, Maximova E, Woltering EJ (2000) Chemical-induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. Planta 211:656-662

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • De Long A, Calderon-Urrea A, Dellaport SL (1993) Sex determination gene Tasselseed2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74:717-768

    Google ScholarĀ 

  • Del Pozo O, Lam E (1998) Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr Biol 8:1129-1132

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Dhariwal HS, Uchimiya H (1999) Genetic engineering for disease and pest resistance in plants. Plant Biotechnol 16:255-261

    ArticleĀ  Google ScholarĀ 

  • Dhariwal HS, Kawai M, Uchimiya H (1998) Genetic engineering for abiotic stress tolerance in plants. Plant Biotechnol 15:1-10

    CASĀ  Google ScholarĀ 

  • Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basanez G, Hardwick JM (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18:2785-2797

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379-391

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gan S, Amasino RM (1997) Making sense of senescence: Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113:313-319

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17-20

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Genoud T, Millar AJ, Nishizawa N, Kay SA, Schafer E, Nagatani A, Chua NH (1998) An Arabidopsis mutant hypersensitive to red and far-red light signals. Plant Cell 10:889-904

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Giuliani C, Consonni G, Gavazzi G, Colombo M, Dolfini S (2002) Programmed cell death during embryogenesis in maize. Ann Bot 90:287-292

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Gray J, Janick-Buckner D, Buckner B, Close PS, Johal GS (2002) Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol 130:1894-1907

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309-1312

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Grutter MG (2000) Caspases: key players in programmed cell death. Curr Opin Struct Biol 10:649-655

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gunawardena A, Greenwood JS, Dengler N (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 16:70-73

    Google ScholarĀ 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436-3450

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hancock JT, Desikan R, Clarke A, Hurst RD, Neill SJ (2002) Cell signaling following plant/pathogen interactions involves the generation of reactive oxygen and reactive nitrogen species. Plant Physiol Biochem 40:611-617

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hannun YA, Obeid LM (2002) The ceramide centric universe of lipid-mediating cell regulation: Stress encounters of the lipid kind. J Biol Chem 277:25847-25850

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hara-Nishimura I, Hatsugai N, Nakane S, Kuroyanagi M, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8:404-408

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Havel L, Durzan DJ (1996) Apoptosis during diploid parthenogenesis and early somatic embryogenesis of Norway spruce. Int J Plant Sci 157:8-16

    ArticleĀ  Google ScholarĀ 

  • Hayashi M, Takahashi H, Tamura K, Huang J, Yu LH, Kawai-Yamada M, Tezuka T, Uchimiya H (2005) Enhanced dihydroflavonol-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice. Proc Natl Acad Sci USA 102:7020-7025

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • He CJ, Morgan PW, Drew MC (1996) Transduction of an ethylene signal is rewired for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol 112:463-472

    PubMedĀ  CASĀ  Google ScholarĀ 

  • He X, Kermode AR (2003) Nuclease activities and DNA fragmentation during programmed cell death of megaga-metophyte cells of white spruce (Picea glauca) seeds. Plant Mol Biol 51:509-521

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Sudy L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells in a dose-dependent manner. J Exp Bot 52:1721-1730

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • HĆ¼ckelhoven R (2004) BAX inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 9:299-307

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • HĆ¼ckelhoven R, Dechert C, Kogel KH (2001) Differential expression of putative cell death regulator genes in near isogenic, resistant and susceptible barley lines during interaction with powdery mildew fungus. Plant Mol Biol 47:739-748

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Ihara-Ohori Y, Nagano M, Muto S, Uchimiya H, Kawai-Yamada M (2007) Cell death suppressor Arabidopsiss Bax inhibitor-1 is associated with calmodulin binding and ion homeostasis. Plant Physiol 143:1-11

    Google ScholarĀ 

  • Inohara N, Koseki T, del Paso L, Hu Y, Yee C, Chen S, Cario R, Merino J, Liu D, Ni A, NuƱez J (1999) Nod 1, an Apaf-1-like activator of caspase 9 and nuclear factor-kappa B. J Biol Chem 274:14560-14567

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ishikawa A, Tanaka H, Nakai M, Asahi T (2003) Deletion of a chaperonin 60 beta gene leads to cell death in the Arabidopsis lesion initiation 1 mutant. Plant Cell Physiol 44:255-261

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ito J, Fukuda H (2000) ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14:3201-3211

    Google ScholarĀ 

  • Jones A (2000) Does the plant mitochondrion integrates cellular stress and regulate programmed cell death? Trends Plant Sci 5:1360-1385

    Google ScholarĀ 

  • Jones AM (2001) Programmed cell death in development and defense. Plant Physiol 125:94-99

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kam PCA (2000) Apoptosis: mechanisms and clinical implications. Anaesthesia 55:1081-1093

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Karbowski M, Arnoult D, Chen H, Chan DC, Smith CL, Youle RJ (2004) Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol 164:493-499

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Katsuhara M, Kawasaki T (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol 37:169-173

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kawai M, Uchimiya H (2000) Coleoptile senescence in rice. Ann Bot 86:405-414

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kawai M, Samarajeewa PK, Barrero RA, Nishiguchi M, Uchimiya H (1998) Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta 204:277-287

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kawai M, Pan L, Reed JC, Uchimiya H (1999) Evolutionally conserved plant homologue of the Bax-induced cell death in yeast. FEBS Lett 64:143-147

    ArticleĀ  Google ScholarĀ 

  • Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-induced plant cell death can be down regulated by over-expression of Arabidopsis Bax inhibitor-1(AtBI-1). Proc Natl Acad Sci USA 98:12295-12300

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax, hydrogen peroxide and salicylic acid-induced cell death. Plant Cell 16:21-32

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kawai-Yamada M, Saito Y, Jin L, Ogawa T, Kim KM, Yu LH, Tone Y, Hirata A, Umeda M, Uchimiya H (2005a) A novel Arabidopsis gene causes Bax-like lethality in Saccharomyces cerevisiae. J Biol Chem 280:39468-39473

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kawai-Yamada M, Yoshinaga K, Ogawa T, Ihara-Ohori Y, Uchimiya H (2005b) Oxidative stress and plant cell death suppressors. Plant Biotechnol 22:419-422

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim M, Lim JH, Ahn CS, Park K, Kim GT, Kim WT, Pai HS (2006) Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18:2341-2355

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kozela C, Regan S (2003) How plants make tubes? Trends Plant Sci 8:159-164

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lam E (2004) Controlled cell death: plant survival and development. Nat Rev Mol Cell Biol 5:305-315

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848-853

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lancomme C, Roby D (1999) Identification of new early markers of the hypersensitive response in Arabidopsis thaliana. FEBS Lett 459:149-153

    ArticleĀ  Google ScholarĀ 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg T (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636-2641

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lincoln JE, Richael C, Overduin B, Smith K, Bostock R, Gilchrist DG (2002) Expression of antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provide broad-spectrum resistance to disease. Proc Natl Acad Sci USA 99:15217-15221

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA 98:771-776

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Madeo F, Frƶhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frƶhlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757-767

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Martienssen R (1997) Cell death: fatal induction in plants. Curr Biol 7:R534-R537

    ArticleĀ  Google ScholarĀ 

  • Martins LM, Earnshaw WC (1997) Apoptosis: Alive and kicking in 1997. Trends Cell Biol 7:111-114

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Kawai-Yamada M, Uchimiya H, Terauchi R (2003) Over-expression of Bax-inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. Plant J 33:425-434

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mittler R, Lam E (1995) In situ detection of nDNA fragmentation during the differentiation of tracheary elements in higher plants. Plant Physiol 108:489-493

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mittler R, Lam E (1997) Pathogen-induced programmed cell death in tobacco. Plant Mol Biol 34:209-221

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Moller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase. Plant J 13:781-791

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nakagami H, Kiegerl S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J Biol Chem 279:26959-26966

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nakashima J, Takabe M, Fukuda H (2000) Autolysis during in vitro tracheary element differentiation: formation and location of the perforation. Plant Cell Physiol 4:1267-1271

    ArticleĀ  Google ScholarĀ 

  • Navarre DA, Wolpert TJ (1995) Inhibition of the glycine decarboxylase multienzyme complex by the host-selective toxin victorin. Plant Cell 7:463-471

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ng CKY, Hetherington AM (2001) Sphingolipid-mediated signaling in plants. Ann Bot 88:95-965

    ArticleĀ  Google ScholarĀ 

  • Ordog SH, Higgins VJ, Vanlerberghe GC (2002) Mitochondrial alternative oxidase is not a critical component of plant viral resistance but may play a role in the hypersensitive response. Plant Physiol 129:1858-1865

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • OrzaĀ“ez D, Granell A (1997) DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum. Plant J 11:137-144

    Google ScholarĀ 

  • Oā€™Brien IE, Baguley BC, Murray BG, Morris BA, Ferguson IB (1998) Early stages in the apoptotic pathway in plant cells are reversible. Plant J 3:803-814

    ArticleĀ  Google ScholarĀ 

  • Paris N, Stanley CM, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563-572

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Pennel RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157-1168

    ArticleĀ  Google ScholarĀ 

  • Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Chem Biol 4:559-565

    Google ScholarĀ 

  • Ryerson DE, Heath MC (1996) Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatments. Plant Cell 8:393-402

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Samarajeewa PK, Barrero RA, Umeda-Hara C, Kawai M, Uchimiya H (1999) Cortical cell death, cell proliferation, macromolecular movements and rTip1 expression pattern in roots of rice (Oryza sativa L.) under NaCl stress. Planta 207:354-361

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sanchez P, de Torres-Zabala M, Grant M (2000) AtBI-1, a plant homologue of Bax inhibitor-1, suppresses Bax-induced cell death in yeast and is rapidly up-regulated during wounding and pathogen challenge. Plant J 21:393-399

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Schussler EE, Longstreth DJ (2000) Changes in cell structure during the formation of root aerenchyma in Sagittaria lancifolia (Alismataceae). Am J Bot 87:12-19

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Seo S, Okamoto M, Iwai T, Iwano M, Fukui K, Isogai A, Nakajima N, Ohashi Y (2000) Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12:917-932

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B, Bozhkov PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14:R339-R340

    ArticleĀ  Google ScholarĀ 

  • Thornberry NA, Rosen A, Nicholson DW (1997) Control of apoptosis by proteases. Adv Pharmacol 41:155-177

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271-1281

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Uren AG, Oā€™Rourke K, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961-967

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Van der Biezen EA, Jones JD (1998) The NBARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:226-267

    ArticleĀ  Google ScholarĀ 

  • Vanlerberghe GC, Robson CA, Yip JYH (2002) Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome c pathway prevents programmed cell death. Plant Physiol 129:1829-1842

    Google ScholarĀ 

  • Walker PR, Sikorska M (1994) Endonuclease activities, chromatin structure and DNA degradation in apoptosis. Biochem Cell Biol 72:615-623

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wang H, Li J, Bostock RM, Gilchrist DG (1996a) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375-391

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wang M, Oppedijk BJ, Lu X, Van Dujin V, Schilperoort RA (1996b) Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol Biol 32:1125-1134

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wolpert TJ, Navarre DA, Moore DL, Macko V (1994) Identification of the 100 kD victorin binding protein from oats. Plant Cell 6:1145-1155

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Woltering EJ, Van der Bent A, Hoeberichts A (2002) Do plant caspases exist? Plant Physiol 130:1764-1769

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Xu CJ, Chen KS, Ferguson IB (2004) Programmed cell death feature in apple suspension cells under low oxygen culture. J Zhejiang Univ Sci 5:137-143

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Xu Q, Reed JC (1998) Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1:337-346

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yamakawa H, Katou S, Seo S, Mitsuhara I, Kamada H, Ohashi Y (2004) Plant mitogen activated protein kinase phosphatase interacts with calmodulins. J Biol Chem 279:928-936

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yao N, Tada Y, Park P, Nakayashiki H, Tosa Y, Mayama S (2001) Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats. Plant J 28:13-26

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yen CH, Yang CH (1998) Evidence for programmed cell death during leaf senescence in plants. Plant Cell Physiol 39:922-927

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yoshinaga K, Arimura S, Hirata A, Niwa Y, Yun DJ, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005a) Mammalian Bax initiates plant cell death through organelle destruction. Plant Cell Rep 24:408-417

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yoshinaga K, Arimura S, Niwa Y, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005b) Mitochondrial behavior in the early stages of ROS stress leading to cell death in Arabidopsis thaliana. Ann Bot 96:337-342

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yu LH, Kawai-Yamada M, Naito M, Watanabe K, Reed JC, Uchimiya H (2002) Induction of mammalian cell death by a plant Bax inhibitor. FEBS Lett 512:308-312

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhang XG, Cote GG, Crain RC (2002) Involvement of phosphoinositide turnover in tracheary element differentiation in Zinnia elegans L. cells. Planta 215:312-318

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Uchimiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Das, A., Kawai-Yamada, M., Uchimiya, H. (2009). Programmed Cell Death in Plants. In: Pareek, A., Sopory, S., Bohnert, H. (eds) Abiotic Stress Adaptation in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3112-9_17

Download citation

Publish with us

Policies and ethics