Skip to main content

Osmolyte Regulation in Abiotic Stress

  • Chapter
  • First Online:
Abiotic Stress Adaptation in Plants

Summary

To withstand osmotic stress induced by salinity, drought or extreme temperatures, all organisms have evolved a machinery to synthesize metabolites, termed “compatible solutes” or “osmo-protectants”, which help in raising the osmotic pressure and thereby maintaining both the turgor pressure and the driving gradient for water uptake. In addition, these compounds also help in maintaining the structural integrity of enzymes, membranes and other cellular components during the stress regime. Of special importance among these metabolites is nitrogen containing compounds (e.g., quaternary amino compounds and proline) and hydroxyl compounds (e.g., polyols and oligosaccharides). These compounds are distributed throughout the biological kingdom and are generally products of stress-induced pathway extensions, although normal metabolites such inositols may also act as osmolytes. Chemically, different osmolytes function through a common mechanism of stabilization of proteins under stress or by osmotic adjustments, and these mechanisms seem to be universal among the biological system. Over-expression of genes for the synthesis of different osmolytes in transgenics enables the plants to cope better with the stress due to higher accumulation of the concerned osmolytes. However, in several cases, such as trehalose and inositol, the accumulation is far below the required amount and it is conjectured that these metabolites might function in a manner unrelated to their osmolyte role and are hence more involved in the general growth and development of the plants under abiotic stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BADH:

betaine aldehyde dehydrogenase

CDH:

choline dehydrogenase

CMO:

choline monooxygenase

COX:

choline oxidase

DAPDC:

diaminopimelate decarboxylase

DMSP:

dimethylsulfoniopropionate

GB:

glycine betaine

GG:

glucosylglycerol

GIPLs:

gycoinositolphospholipids

GPC:

glycerophosphocholine

GSA:

glutamic-semialdehyde

LPG:

lipophosphoglycan

MDCK:

Madin-Darby canine kidney cells

mPPG:

membrane bound proteophosphoglycan

NHK:

normal human keratinocytes

PCO:

photosynthetic carbon oxidation

P5C:

pyrroline-5-carboxylate

P5CDH:

P5C dehydrogenase

P5CR:

P5C reductase

P5CS:

P5C synthase

ProDH:

proline dehydrogenase

QACs:

quartenary ammonium compounds

SAM:

S-adenosylmethionine

TPP:

trehalose-6-phosphate phosphatase

TPS:

trehalose-6-phosphate synthase

References

  • Abe S, Kaneda T (1973) Studies on the effect of marine products on cholesterol metabolism in rats: VIII. The isolation of hypocholesterolemic substance from green laver. Bull Jpn Soc Sci Fish 39:383-389

    Article  CAS  Google Scholar 

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748-1755

    Article  PubMed  CAS  Google Scholar 

  • Abu-Abied M, Holland D (1994) Two newly isolated genes from citrus exhibit different pattern of diurnal expression and light response. Plant Mol Biol 26:165-173

    Article  Google Scholar 

  • Adhikari J, Majumder AL, Bhaduri TJ, Dasgupta S, Majumder AL (1987) Chloroplast as a locale of L-myo-inositol 1-phosphate synthase. Plant Physiol 85:611-614

    Article  PubMed  CAS  Google Scholar 

  • Andresen PA, Kaasen I, Styrvold OB, Boulnois G, Strøm AR (1988) Molecular cloning, physical mapping and expression of the bet genes governing the osmoregulatory choline-glycine betaine pathway of Escherichia coli. J Gen Microbiol 134:1737-1746

    PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411-414

    Article  PubMed  CAS  Google Scholar 

  • Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217-224

    Article  PubMed  Google Scholar 

  • Armengauda P, Thieryc L, Buhota N, Marchb GG, Savoure A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442-450

    Article  Google Scholar 

  • Bayles DO, Wilkinson BJ (2000) Osmoprotectants and cryoprotectants for Listeria monocytogenes. Lett Appl Microbiol 30:23-27

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89-97

    Article  CAS  Google Scholar 

  • Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hort 78:237-260

    Article  CAS  Google Scholar 

  • Bourot S, Sire O, Trautwetter A, Touze T, Wu LF, Blanco C, Bernard T (2000) Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli. J Biol Chem 275:1050-1056

    Article  PubMed  CAS  Google Scholar 

  • Burg MB (1996) Coordinate regulation of organic osmolytes in renal cells. Kidney Int 49:1684-1685

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay MK, Kern R, Mistou M, Dandekar AM, Uratsu SL, Richarme G (2004) The chemical chaperone proline relieves the thermosensitivity of a dnaK deletion mutant at 42°C. J Bacteriol 186:8149-8152

    Article  PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250-257

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579-599

    Article  PubMed  CAS  Google Scholar 

  • Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL (2006) Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 580:3980-3988

    Article  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215-223

    Article  CAS  Google Scholar 

  • Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586-39591

    Article  PubMed  CAS  Google Scholar 

  • Donahue TF, Henry SA (1981) Myo-Inositol-1-phosphate synthase: characteristics of the enzyme and identification of its structural gene in yeast. J Biol Chem 256:7077-7085

    PubMed  CAS  Google Scholar 

  • Ferjani A, Mustardy L, Sulpice R, Marin K, Suzuki I, Hagemann M, Murata N (2003) Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol 131:1628-1637

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837-845

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Perez A, Burg MB (1991) Role of organic osmolytes in adaptation of renal cells to high osmolality. J Membr Biol 119:1-13

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898-15903

    Article  PubMed  CAS  Google Scholar 

  • Ghosh Dastidar K, Maitra S, Goswami L, Roy D, Das KP, Majumder AL(2006). An insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol 140:1279-1296

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149-190

    Article  CAS  Google Scholar 

  • Grennan AK (2007) The role of trehalose biosynthesis in plants. Plant Physiol 144:3-5

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383-1400

    PubMed  CAS  Google Scholar 

  • Hanson AD, Burnet M (1994) Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. In: Cherry JH (ed) Cell biology: biochemical and cellular mechanisms of stress tolerance in plants. NATO ASI Series H. Springer, Berlin, pp 291-302

    Chapter  Google Scholar 

  • Hanson AD, Gage DA (1991) Identification and determination by fast atom bombardment mass spectrometry of the compatible solute choline-o-sulphate in Limonium sp. and other halophytes. Aust J Plant Physiol 18:317-327

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul 21:79-102

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Staden JV (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535-553

    Article  CAS  Google Scholar 

  • Hartmann A, Prabhu SR, Galinski EA (1991) Osmotolerance of diazotrophic rhizosphere bacteria. Plant Soil 137:105-109

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463-499

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Alia Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133-142

    Article  PubMed  CAS  Google Scholar 

  • Holmstrom KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycinebetaine. J Exp Bot 51:177-185

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang K, Verma DPS (2000) Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129-1136

    Article  PubMed  CAS  Google Scholar 

  • Ikuta S, Imamura S, Misaki H, Horiuti Y (1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem 82:1741-1749

    PubMed  CAS  Google Scholar 

  • Ilg T (2002) Generation of myo-inositol-auxotrophic Leishmania mexicana mutants by targeted replacement of the myo-inositol-1-phosphate synthase gene. Mol Biochem Parasitol 120:151-156

    Article  PubMed  CAS  Google Scholar 

  • Imhoff V, Bourdu R (1973) Formation d’inositol par les chloroplastsisole’s de pois. Phytochemistry 12:331-336

    Article  CAS  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537-548

    Article  PubMed  CAS  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516-524

    Article  PubMed  CAS  Google Scholar 

  • Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance in mannitol-accumulating transgenic tobacco. Plant Cell Environ 20:609-616

    Article  Google Scholar 

  • Kayingo G, Kilian SG, Prior BA (2001) Conservation and release of osmolytes by yeasts during hypo-osmotic stress. Arch Microbiol 177:29-35

    Article  PubMed  CAS  Google Scholar 

  • Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Alvarez-Nakase AM, TakabeT TT (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ 23:107-114

    Article  CAS  Google Scholar 

  • Kishor KPB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Over-expression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387-1394

    PubMed  CAS  Google Scholar 

  • Klig LS, Zobel PA, Devry CG, Losberger C (1994) Yeast sequencing reports: comparison of INOl gene sequences and products in Candida albicans and Saccharomyces cerevisiae. Yeast 10:789-800

    Article  PubMed  CAS  Google Scholar 

  • Ko R, Smith LT, Smithi GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 176:426-431

    PubMed  CAS  Google Scholar 

  • Kotchoni SO, Bartels D (2003) Water stress induces the up-regulation of a specific set of genes in plants: aldehyde dehydrogenases as an example. Bulg J Plant Physiol (special issue):37-51

    Google Scholar 

  • Loewus FA, Loewus MW (1983) Myo-inositol: its biosynthesis and metabolism. Annu Rev Plant Physiol 34:137-161

    Article  CAS  Google Scholar 

  • Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143:1141-1149

    Article  PubMed  CAS  Google Scholar 

  • Majumder AL, Johnson MD, Henry SA (1997) 1L-myo-inositol-1-phosphate synthase. Biochim Biophys Acta 1348:245-256

    Article  PubMed  CAS  Google Scholar 

  • Majumder AL, Chatterjee A, GhoshDastidar K, Majee M (2003) Diversification and evolution of L-myo-Inositol 1-phosphate synthase. FEBS Lett 553:3-10

    Article  PubMed  CAS  Google Scholar 

  • Majee M, Maitra S, Ghosh Dastidar K, Pattnaik S, Chatterjee A, Hait N, Das KP, Majumder AL (2004) A novel salt-tolerant L-myo-inositol 1- phosphate synthase from Porteresia coarctata Tateoka, a halophytic wild rice: Molecular cloning, bacterial overexpression, characterization and functional introgression into tobacco conferring salt-tolerance phenotype. J Biol Chem 279:28539-28552

    Article  PubMed  CAS  Google Scholar 

  • Marin K, Huckauf J, Fulda S, Hagemann M (2002) Salt-dependent expression of glucosylglycerol-phosphate synthase, involved in osmolyte synthesis in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 184:2870-2877

    Article  PubMed  CAS  Google Scholar 

  • Matsell DG, Bennetf T, Han X, Budreau AM, Chesney RW (1997) Regulation of the taurine transporter gene in the S3 segment of the proximal tubule. Kidney Int 52:748-754

    Article  PubMed  CAS  Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51-57

    PubMed  CAS  Google Scholar 

  • Molina Y, Ramos SE, Douglass T, Klig LS (1999) Inositol synthesis and catabolism in Cryptococcus neoformans. Yeast 15:1657-1667

    Article  PubMed  CAS  Google Scholar 

  • Mundree GS, Baker B, Mowla S, Peters S, Marais S, Willigen CV, Govender K, Maredza A, Muyanga S, Farrant JM, Thomson JA (2002) Physiological and molecular insights into drought tolerance. Afr J Biotechnol 1:28-38

    CAS  Google Scholar 

  • Nakayama H, Yoshida K, Ono H, Murooka Y, Shinmyo A (2000) Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol 122:1239-1247

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashia M, Yoshiba Y, Kakubaric Y, Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205-210

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Koukoumanos M, Bohnert HJ (1999) Myo-inositol-dependent sodium uptake in the ice plant. Plant Physiol 119:165-172

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Rammesmayer G, Bohnert HJ (1998) Regulation of cell specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10:753-764

    PubMed  CAS  Google Scholar 

  • Ono H, Sawada K, Khunajakr N, Tao T, Yamamoto M, Hiramoto M, Shinmyo A, Takano M, Murooka Y (1999) Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J Bacteriol 181:91-99

    PubMed  CAS  Google Scholar 

  • Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in Mesembryanthemum crystallinum L. J Exp Bot 40:1093-1098

    Article  CAS  Google Scholar 

  • Prasad KV, Sharmila P, Pardha Saradhi P (2000) Enhanced tolerance of transgenic Brassica juncea to choline confirms successful expression of the bacterial codA gene. Plant Sci 159:233-242

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH, Hanson AD (1997) Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA 94:3454-3458

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, McCue KF, Gage DA, Hanson AD (1994) Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta 193:155-162

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, Sigua C, Ho J, Gage DA (2000) Osmoprotectant β-alanine betaine synthesis in the plumbaginaceae: S-adenosyl-L-methionine dependent N- methylation of β-alanine to its betaine is via N-methyl and N, N-dimethyl β-alanines. Physiol Plant 109:225-231

    Article  CAS  Google Scholar 

  • Raychaudhuri A, Majumder AL (1996) Salinity-induced enhancement of l-myo-inositol 1-phosphate synthase in rice (Oryza sativa L.). Plant Cell Environ 19:1437-1442

    Article  CAS  Google Scholar 

  • Rhodes D, Samaras Y (1994) Genetic control of osmoregulation in plants. In: Strange SK (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, FL, pp 347-361

    Google Scholar 

  • Richard H, Sterns MD, Stephen M (2006) Brain volume regulation in response to hypo-osmolality and its correction - hyponatremia: new understanding, new therapy. Am J Med 119:S12-S16

    Article  Google Scholar 

  • Sakamoto A, Alia A, Murata N, Murata A (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011-1019

    Article  PubMed  CAS  Google Scholar 

  • Santoro M, Liu Y, Khan S, Hou L, Bolen DW (1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry 31:5278-5283

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) lncreased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177-1183

    Article  PubMed  CAS  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211-1219

    PubMed  CAS  Google Scholar 

  • Shimizu S, Boon CL (2004) The Kirkwood-Buff theory and the effect of cosolvents on biochemical reactions. J Chem Phys 121:9147-9155

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Smith DJ (2004) Preferential hydration and the exclusion of cosolvents from protein surfaces. J Chem Phys 121:1124-1154

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (eds) (1999) Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Company, Austin, TX, pp 169

    Google Scholar 

  • Singh TN, Aspinall D, Paleg LG (1972) Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nature 236:188-190

    Article  CAS  Google Scholar 

  • Smart CC, Fleming AJ (1993) A plant gene with homology to D-myo-inositol-phosphate synthase is rapidly and specially upregulated during an abscisic acid induced response in Spirodela polyrrhiza. Plant J 4:279-293

    Article  PubMed  CAS  Google Scholar 

  • Smart CC, Flores S (1997) Overexpression of D-myo inositol-3-phosphate synthase leads to elevated levels of myo-inositol in Arabidopsis. Plant Mol Biol 33:811-820

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057-1060

    Article  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417-426

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508-510

    Article  PubMed  CAS  Google Scholar 

  • Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18:801-806

    Article  CAS  Google Scholar 

  • Timmerman BN, Steelink C, Loewus FA (eds) (1983) Phytochemical adaptations to stress, Recent Adv Phytochemistry, p 18. Plenum Press, New York

    Google Scholar 

  • Uchida S, Nakanishi T, Kwon HM, Preston AS, Handler JS (1991) Taurine behaves as an osmolyte in Madin-Darby canine kidney cells: protection by polarized, regulated transport of taurine. J Clin Invest 88:656-662

    Article  PubMed  CAS  Google Scholar 

  • Warskulat U, Reinen A, Grether-Beck S, Krutmann J, Haussinger D (2004) The osmolyte strategy of normal human keratinocytes in maintaining cell homeostasis. J Invest Dermatol 123:516-521

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1:109-115

    Article  PubMed  CAS  Google Scholar 

  • Welsh DT, Herbert RA (1999) Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli. FEMS Microbiol Lett 174:57-63

    Article  PubMed  CAS  Google Scholar 

  • Weretilnyk EA, Smith DD, Wilch GA, Summers PS (1995) Enzymes of choline synthesis in spinach: response of phosphobase N-methyltransferase activities to light and salinity. Plant Physiol 109:1085-1091

    PubMed  CAS  Google Scholar 

  • Yamauchi A, Sugiura T, Ito T, Miyai A, Horio M, Imai E, Kamada T (1996) Na+/Myo-inositol transport is regulated by basolateral tonicity in Madin-Darby canine kidney cells. J Clin Invest 97:263-267

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095-1102

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of a ∆1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci 139:41-48

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66-71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Lahiri Majumder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Majumder, A.L., Sengupta, S., Goswami, L. (2009). Osmolyte Regulation in Abiotic Stress. In: Pareek, A., Sopory, S., Bohnert, H. (eds) Abiotic Stress Adaptation in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3112-9_16

Download citation

Publish with us

Policies and ethics