Skip to main content

Clinical Applications of 3-D Conformal Radiotherapy

  • Conference paper
  • 2018 Accesses

Abstract

Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2–3 decades, 30–40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal A, Clegg LX, Ward E, et al. Annual report to the nation on the status of cancer, 1975– 2001, with a special feature regarding survival. Cancer 2004; 101:3–27.

    Article  Google Scholar 

  2. Norlund A. Cost of radiotherapy. Acta Oncol 2003; 42:411–415.

    Article  Google Scholar 

  3. Dearnaley DP, Khoo VS, Norman AR, et al. Comparison of radiation side effects of con-formal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 1999; 353: 267–272.

    Article  Google Scholar 

  4. Pollack A, Zagars GK, Starkschall G, et al. Prostate cancer radiation dose response: results of the M.D. Anderson Phase III randomized trial. Int J Radiat Oncol Biol Phys 2002; 53:1097– 1105.

    Article  Google Scholar 

  5. Zietman AL, DeSilvio ML, Slater JD, et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate. A randomized controlled Trial. JAMA 2005; 294:1233–1239.

    Article  Google Scholar 

  6. Sathya JR, Davis IR, Julian JA, et al. Randomized trial comparing Iridium implants plus esxternal-beam radiation therapy with external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J Clin Oncol 2005; 23:1192–1199.

    Article  Google Scholar 

  7. Miralbell R, Lomax A, Russo M. Potential role of proton therapy in the treatment of pediatric medulloblastoma/primitive neuroectodermal tumors: spinal theca irradiation. Int J Radiat Oncol Biol Phys 1997; 38:805–811.

    Article  Google Scholar 

  8. Miralbell R, Lomax A, Cella L, Schneider U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int J Radiat Oncol Biol Phys 2002; 54:824–829.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Miralbell, R. (2009). Clinical Applications of 3-D Conformal Radiotherapy. In: Lemoigne, Y., Caner, A. (eds) Radiotherapy and Brachytherapy. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3097-9_7

Download citation

Publish with us

Policies and ethics