Skip to main content

Monte Carlo Application in Brachytherapy Dosimetry

  • Conference paper
Radiotherapy and Brachytherapy

Abstract

This paper devoted to Monte-Carlo Applications in BT Dosimetry is organized in four parts:

  1. 1.

    Motivation of the use of Monte Carlo in brachytherapy

  2. 2.

    The use of Monte Carlo to obtain dose distribution around brachytherapy sources

  3. 3.

    Experimental dosimetry versus Monte Carlo

  4. 4.

    Others Monte Carlo applications in brachytherapy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostinelli S., Allison J. and Amako K., et al. “Geant4 — A Simulation Toolkit” Nucl. Ins. Meth. A 506. 250–303 (2003).

    Article  ADS  Google Scholar 

  2. Anagnostopoulos G., Baltas D., Karaiskos P., Pantelis E., Papagiannis P. and Sakelliou L. “An analytical dosimetry model as a step towards accounting for inhomogeneities and bounded geometries in 192Ir brachytherapy treatment planning” Phys. Med. Biol. 48. 1625–1647 (2003).

    Article  Google Scholar 

  3. Ballester F., Hernandez C., Pérez-Calatayud J. and Lliso F. “Monte Carlo calculation of dose rate distributions around Ir-192 wires” Med. Phys. 24. 1221–1228 (1997).

    Article  Google Scholar 

  4. Ballester F., Granero D., Perez-Calatayud J., Casal E. and Puchades V. “Monte Carlo dosi-metric study of Best Industries and Alpha Omega Ir-192 brachytherapy seeds” Med. Phys. 31. 3298–3305 (2004).

    Article  Google Scholar 

  5. Baltas D., Sakelliou L. and Zamboglou N., Chapter 9: Monte Carlo-Based Source Dosimetry, in The Physics of Modern Brachytherapy for Oncology Oncology, Taylor & Francis 2007.

    Google Scholar 

  6. Bohm T. D., DeLuca P. M. and DeWerd L. A. “Brachytherapy dosimetry of 125I and 103Pd sources using an updated cross section library for the MCNP Monte Carlo transport code” Med. Phys. 30. 701–711 (2003).

    Article  Google Scholar 

  7. Brun R., Bruyant F., Marie M., McPherson A. C. and Zanarini P. GEANT3, CERN DD/EE/84-1 (1987).

    Google Scholar 

  8. Carrier J. F., D'Amours M., Verhaegen F., Reniers B., Martin A. G., Vigneault E. and Beaulieu L. “Postimplant dosimetry using a monte carlo dose calculation engine: A new clinical standard” Int. J. Radiat. Oncol. Biol. Phys. 68. 1190–1198 (2007).

    Article  Google Scholar 

  9. Chibani O. and Williamson J. F. “MCPI: A sub-minute Monte Carlo dose calculation engine for prostate implants” Med. Phys. 32. 3688–3698 (2005).

    Article  Google Scholar 

  10. Daskalov G. M., Baker R. S., Rogers D. W. O. and Williamson J. F. “Multigroup discrete ordinates modeling of 125I 6702 seed dose distributions using a broad energy-group cross section representation” Med. Phys. 29. 113–124 (2002).

    Article  Google Scholar 

  11. Granero D., Puchades V., Pérez-Calatayud J., Ballester F. and Casal E. “Cálculo por Monte Carlo de la distribución de la tasa de dosis alrededor de la fuente de Cs-137 CSM1” Revista de Física Médica 5. 32–37 (2004).

    Google Scholar 

  12. Granero D., Pérez-Calatayud J., Ballester F., Casal E. and de Frutos J. M. “Dosimetric study of the 15 mm ROPES eye plaque” Med. Phys. 31. 3330–3336 (2004).

    Article  Google Scholar 

  13. Granero D., Pérez-Calatayud J., Casal E., Ballester F. and Venselaar J. “A dosimetric study on the Ir-192 HDR Flexisource” Med. Phys. 33. 4578–4582 (2006).

    Article  Google Scholar 

  14. Granero D., Pérez-Calatayud J., Ballester F., Bos A. and Venselaar J. “Broad-beam transmission data of new brachytherapy sources, Tm-170 and Yb-169” Radiat. Protect. Dosim. 118. 11–15 (2006).

    Article  Google Scholar 

  15. Granero D., Pérez-Calatayud J., Gimeno. J, Ballester F., Casal E., Crispin V. and van der Laarse R. “Design and evaluation of a HDR skin applicator with flattening filter” Med. Phys. 35(2) (2008). Pendiente de número de paginas definitivo.

    Google Scholar 

  16. Hedtjarn H., Carlsson G. A. and Williamson J. F. “Accelerated Monte Carlo based dose calculations for brachytherapy planning using correlated sampling” Phys. Med. Biol. 47. 351–376 (2002).

    Article  Google Scholar 

  17. Hubbell J. H. “Review and history of photon cross section calculations” Phys. Med. Biol. 51. R245–R262 (2006).

    Article  ADS  Google Scholar 

  18. Karaiskos P., Angelopoulos A., Pantelis E., Papagiannis P., Sakelliou L., Kouwenhoven E. and Baltas D. “Monte Carlo dosimetry of a 192Ir pulsed dose rate brachytherapy source” Med. Phys. 30. 9–16 (2003).

    Article  Google Scholar 

  19. Kirov A. S., Meigooni A. S., Zhu Y., Valicenti R. K. and Williamson J. F. “Quantitative verification of 192Ir PDR and HDR source structure by pin-hole autoradiography” Med. Phys. 22. 1753–1757 (1995).

    Article  Google Scholar 

  20. Kling A., Barao F., Nakagawa M., Távora L. and Vaz P. (Eds.) Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Proceedings of the Monte Carlo 2000 Conference, Lisbon, 23–26 October 2000, Springer, 2001.

    Google Scholar 

  21. Li Z., Das R. K., DeWerd L., Ibbot G. S., Meigooni A. S., Perez-Calatayud J., Rivard M. J., Sloboda R. S. and Williamson J. F. “Dosimetric prerequisites for routine clinical use of photon emitting brachytherapy sources with average energy higher than 50 KeV” Med. Phys. 34. 37–40 (2007).

    Article  Google Scholar 

  22. Lymperopoulou G., Pantelis E., Papagiannis P., Rozaki-Mavrouli H., Sakelliou L., Baltas D. and Karaiskos P. “A Monte Carlo dosimetry study of vaginal 192Ir brachytherapy applications with a shielded cylindrical applicator set” Med. Phys. 31. 3080–3086 (2004).

    Article  Google Scholar 

  23. Markman J., Williamson J. F., Dempsey J. F. and Low D. A. “On the validity of the superposition principle in dose calculations for intracavitary implants with shielding vaginal colpostats” Med. Phys. 28. 147–155 (2001).

    Article  Google Scholar 

  24. Melhus C. S. and Rivard M. J. “Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for 137Cs, 125I, 192Ir, 103Pd, and 169Yb sources” Med. Phys. 33. 1729–1737 (2006).

    Article  Google Scholar 

  25. Pantelis E., Papagiannis P., Anagnostopoulos G., Baltas D., Karaiskos P., Sandilos P. and Sakelliou L. “Evaluation of a TG-43 compliant analytical dosimetry model in clinical 192Ir HDR brachytherapy treatment planning and assessment of the significance of source position and catheter reconstruction uncertainties” Phys. Med. Biol. 49. 55–67 (2004).

    Article  Google Scholar 

  26. Perera H., Williamson J., Li Z., Mishra V. and Meigooni A. “Dosimetric characteristics, air-kerma strength calibration and verification of the Monte Carlo simulation for a new Yterbium-169 brachytherapy source” Int. J. Radiat. Oncol. Biol. Phys., 28. 953–971 (1994).

    Article  Google Scholar 

  27. Pérez-Calatayud J., Granero D. and Ballester F. “Phantom size in brachytherapy source dosi-metric studies” Med. Phys. 31. 2075–2081 (2004).

    Article  Google Scholar 

  28. Pérez-Calatayud J., Granero D., Ballester F., Puchades V. and Casal E. “Monte Carlo dosimetric characterization of the Cs-137 selectron/LDR source: Evaluation of applicator attenuation and superposition approximation effects” Med. Phys. 31. 493–499 (2004).

    Article  Google Scholar 

  29. Pérez-Calatayud J., Granero D., Ballester F., Casal E., Crispin V., Puchades V., León A. and Verdú G. “Monte Carlo evaluation of kerma in an HDR brachytherapy bunker” Phys. Med. Biol. 49. N389–N396 (2004).

    Article  Google Scholar 

  30. Pérez-Calatayud J., Granero D., Casal E., Ballester F. and Puchades V. “Monte Carlo and experimental derivation of TG43 dosimetric parameters for CSM-type Cs-137 sources” Med. Phys. 32. 28–36 (2005).

    Article  Google Scholar 

  31. Pérez-Calatayud J., Granero D., Ballester F., Puchades V., Casal E., Soriano A. and Crispín V. “A dosimetric study of Leipzig applicators” Int. J. Radiat. Oncol. Biol. Phys. 62. 579–584 (2005).

    Article  Google Scholar 

  32. Pérez-Calatayud J., Granero D., Ballester F. and Lliso F. “A Monte Carlo study of intersource effects in dome-type applicators loaded with LDR Cs-137 sources” Radiother. Oncol.. 77. 216–219 (2005).

    Article  Google Scholar 

  33. Rivard M. J. “Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the MED3631-A/M 125I source” Med. Phys. 28. 629–637 (2001).

    Article  Google Scholar 

  34. Rivard M. J., Coursey B. M., DeWerd L. A., Hanson W. F., Huq M. S., Ibbot G. S., Mitch M. G., Nath R. and Williamson J. F. “Update of the AAPM Task Group No 43 Report: A revised AAPM protocol for brachytherapy dose calculations” Med. Phys. 31. 633–674 (2004).

    Article  Google Scholar 

  35. Rivard M. J., Butler W. M, DeWerd L. A., Huq M. S., Ibbott G. S., Meigooni A. S., Melhus C. S., Mitch M. G., Nath R. and Williamson J. F. “Supplement to the 2004 update of the AAPM Task Group No. 43 Report” Med. Phys. 34. 2187–2205 (2007).

    Article  Google Scholar 

  36. Rogers D. W. O., “Fifty years of Monte Carlo simulations for medical physics” Phys. Med. Biol. 51. R287–R301 (2006).

    Article  ADS  Google Scholar 

  37. Russell K. and Aneshjo A. “Dose calculation in brachytherapy for a 192Ir source using primary and scatter dose separation technique”. Phys. Med. Biol. 41. 1007–1024 (1996).

    Article  Google Scholar 

  38. Thomadsen B. R., Rivard M. J. and Butler W. M. (Eds.) Brachytherapy Physics. Second Edition. Proceedings of the Joint AAPM and ABS Summer School. Medical Physics Publishing, 2005.

    Google Scholar 

  39. Williamson J. F. “Monte Carlo evaluation of kerma at a point for photon transport problems,” Med. Phys. 14. 567–576 (1987).

    Article  Google Scholar 

  40. Williamson J. F., Perera H., Li Z. and Lutz W. R. “Comparison of calculated and measured heterogeneity correction factors for 125I, 137Cs, and 192Ir brachytherapy sources near localized heterogeneities” Med. Phys. 20. 209–222 (1993).

    Article  Google Scholar 

  41. Williamson J. and Li Z. “Monte Carlo aided dosimetry of the microSelectron pulsed and high dose-rate 192Ir sources.” Med. Phys. 22. 809–819 (1995).

    Article  Google Scholar 

  42. Williamson J. F. “Monte Carlo modelling of the transverse-axis dose of the Model 200 103Pd interstitial brachytherapy source” Med. Phys. 27. 643–654 (2000).

    Article  Google Scholar 

  43. Williamson J. F. “Dosimetric characteristics of the DRAXIMAGE model LS I-125 interstitial brachytherapy source design: A Monte Carlo investigation” Med. Phys. 29. 509–521 (2002).

    Article  Google Scholar 

  44. Williamson J. F. in “Brachytherapy Physics. Second Edition”. Joint AAPM/ABS Summer School. Thomadsen B., Rivard M. J.,, Butler W. (Eds.), July 22–25, 2005, Seattle University, Seattle, WA

    Google Scholar 

  45. Yegin G., Taylor R. and Rogers D. “BrachyDose: a new fast Monte Carlo Code for brachytherapy calculations” Med. Phys. 33. 2074 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Perez-Calatayud, J., CabaÑero, D.G., Pallarés, F.B. (2009). Monte Carlo Application in Brachytherapy Dosimetry. In: Lemoigne, Y., Caner, A. (eds) Radiotherapy and Brachytherapy. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3097-9_21

Download citation

Publish with us

Policies and ethics