Skip to main content

Mass Transport Events and Their Tsunami Hazard

  • Chapter
Submarine Mass Movements and Their Consequences

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 28))

Abstract

Mass transport events, such as those from submarine landslides, volcanic flank collapse at convergent margins and on oceanic islands, and subaerial failure are reviewed and found to be all potential tsunami sources. The intensity and frequency of the tsunamis resulting is dependent upon the source. Most historical records are of devastating tsunamis from volcanic collapse at convergent margins. Although the database is limited, tsunamis sourced from submarine landslides and collapse on oceanic volcanoes have a climate influence and may not be as hazardous as their frequency suggests. Conversely, tsunamis sourced from submarine landslides at convergent margins may be more frequent historically than previously recognized and, therefore, more hazardous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bea RG, Wright SG, Sicar P, Niedoroda AW (1983) Wave-induced slides in South Pass Block 70, Mississippi delta. J Geotech Eng 109:619–644.

    Article  Google Scholar 

  • Billi A, Funiciello R, Minelli L, Faccenna C, Neri G, Orecchio B, Presti D (2008) On the cause of the 1908 Messina tsunami, southern Italy. Geophys Res Lett 35(L06301).

    Google Scholar 

  • Bohannon RG, Gardner JV (2004) Submarine landslides of San Pedro Sea Valley, southwest Long Beach, California. Mar Geol 203:261–268.

    Article  Google Scholar 

  • Bondevik S, Mangerud J, Dawson S, Dawson A, Lohne Ø (2003) Record-breaking height for 8000-year-old tsunami in the North Atlantic. EOS Trans, Am Geophys Union 84:289–293.

    Article  Google Scholar 

  • Bondevik S, Mangerud J, Dawson S, Dawson A, Lohne Ø (2005) Evidence for three North Sea tsunamis at the Shetland Islands between 8000 and 1500 years ago. Quat Sci Rev 24:1757–1775.

    Article  Google Scholar 

  • Bryn P, Berg K, Forsberg CF, Solheim A, Lien R (2005) Explaining the Storegga Slide. Marine and Petroleum Geology, 22:11–19

    Article  Google Scholar 

  • Chaytor JD, Twichell DC, ten Brink US, Buczkowski BJ, Andrews BD (2007) Revisiting submarine mass movements along the U.S. Atlantic continental margin: Implications for tsunami hazard. In: Lykouosis V, Sakellariou D, Locat J (eds.), Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp. 394–403.

    Google Scholar 

  • Cooke RJS (1981) Eruptive history of the volcano at Ritter Island. In: Johnson RW (ed.), Cooke— Ravian Volume of Volcanological Papers. Geol Surv Papua New Guinea Mem 10:115–123.

    Google Scholar 

  • Coulter HW, Migliaccio RR (1966). Effects of the earthquake of March 27, 1964 at Valdez, Alaska 542-C. US Geol Surv Prof Pap 542-E.

    Google Scholar 

  • Deplus C, Le Friant A, Boudon G, Komorowski JC, Villemant B, Harford C, Segoufin J, Cheminee JL (2001) Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc. Earth Planet Sci Lett 192:145–157.

    Article  Google Scholar 

  • Dingle RV (1977) Anatomy of a large submarine slump on sheared continental margin (southeast Africa). J Geol Soc Lond 134:293–310.

    Article  Google Scholar 

  • Elsworth D, Day SJ (1999) Flank collapse triggered by intrusion: The Canarian and Cape Verde Archipelagoes. J Volcanol Geotherm Res 94:323–340.

    Article  Google Scholar 

  • Fisher MA, Normark WR, Greene HG, Lee HJ, Sliter RW (2005) Geology and tsunamigenic potential of submarine landslides in Santa Barbara Channel, Southern California. Mar Geol 224:1–22.

    Article  Google Scholar 

  • Francis PW (1985) The origin of the 1883 Krakatau tsunamis. J Volcanol Geotherm Res 25:349–369.

    Article  Google Scholar 

  • Fryer GJ, Watts P, Pratson LF (2004) Source of the great tsunami of 1 April 1946: A landslide in the upper Aleutian forearc. Mar Geol 203:201–218.

    Article  Google Scholar 

  • Goldfinger C, Kulm LD, McNeill LC, Watts P (2000) Super-scale failure of the southern Oregon Cascadia margin. In: Keating B, Waythomas C, Dawson A (eds.), Special Issue on Landslides Tsunamis. Pure Appl Geophys 157:1189–1226.

    Google Scholar 

  • Graziani L, Maramai A, Tinti A (2006) A revision of the 1783–1784 Calabrian (southern Italy) tsunamis. Nat Hazards Earth Syst Sci 6:1053–1060.

    Article  Google Scholar 

  • Greene HG, Murai LY, Watts P, Maher NA, Fisher MA, Paull CE, Eichhubl P (2005) Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Nat Hazards Earth Syst Sci 6:63–88.

    Article  Google Scholar 

  • Hampton MA, Lemke RW, Coulter HW (1993) Submarine landslides that had a significant impact on man and his activities: Seward and Valdez, Alaska. In: Schwab WC, Lee HJ, Twichell DC (eds.), Submarine Landslides: Selected Studies in the US EEZ. USGS Bull 2002:123–142.

    Google Scholar 

  • Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59.

    Article  Google Scholar 

  • Heezen BC, Ericsson DB, Ewing M (1954) Further evidence of a turbidity current following the 1929 Grand Banks earthquake. Deep Sea Res 1:193–202.

    Article  Google Scholar 

  • Hendron AJ, Patten FD (1985) The Vaiont Slide. US Army Corps Eng Tech Rep GL-85-8.

    Google Scholar 

  • Hornbach MJ, Lavier LL Ruppel CD (2007) Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, U.S. Atlantic margin. Geochem Geophys Geosyst 8(Q12008).

    Google Scholar 

  • Hornbach MJ, Mondziel SA, Grindlay NR, Frohlich C, Mann P (2008) Did a submarine slide trigger the 1918 Puerto Rico tsunami? Sci Tsunami Hazards 27:1–31.

    Google Scholar 

  • Hühnerbach V, Masson DG, Partners CP (2004) Landslides in the north Atlantic and its adjacent seas: An analysis of their morphology, setting and behaviour. Mar Geol 213:343–362.

    Article  Google Scholar 

  • Imamura F, Gica E, Takahashi T, Shuto N (1995) Numerical simulation of the 1992 Flores tsunami: Interpretation of tsunami phenomena in northeastern Flores Island and damage at Babi Island. Pure Appl Geophys 144:555–568.

    Article  Google Scholar 

  • Jiang L, LeBlond PH (1994) Three dimensional modelling of tsunami generation due to submarine mudslide. J Phys Ocean 24:559–573.

    Article  Google Scholar 

  • Johnson RW (1987) Large-scale volcanic cone collapse: The 1888 slope failure of Ritter Volcano, and other examples from Papua New Guinea. Bull Volcanol 49:669–679.

    Article  Google Scholar 

  • Lastras G, Canals M, Urgeles R, De Batist M, Calafat AM, Casamor JL (2004) Characterisation of the recent debris flow deposit on the Ebro margin, Western Mediterranean Sea, after a variety of seismic reflection data. Mar Geol 231:235–255.

    Article  Google Scholar 

  • LeBlond PH, Jones A (1995) Underwater landslides ineffective at tsunami generation. Sci Tsunami Hazards 13:25–26.

    Google Scholar 

  • Lee HJ (1989) Undersea landslides: Extent and significance in the Pacific Ocean. In: Brabb EE, Harrod BL (eds.), Landslides, Extent and Economic Significance. Proceedings of the 28th International Geological Congress: Symposium on Landslides, Washington, DC, pp. 367–380.

    Google Scholar 

  • Lee HJ (2005) Undersea landslides: Extent and significance in the Pacific Ocean, an update. Nat Hazards Earth Syst Sci 5:877–892.

    Article  Google Scholar 

  • Lee HJ (2009) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol. 264:53–64.

    Article  Google Scholar 

  • Lee HJ, Kayen RE, Gardner JV, Locat J (2003) Characteristics of several tsunamigenics submarine landslides. In: Locat J, Mienert J (eds.), Submarine Mass Movements and Their Consequences. Kluwer, The Netherlands, pp. 357–366.

    Google Scholar 

  • Lemke RW (1967) Effects of the earthquake of 27 March 1964, at Seward, Alaska. US Geol Surv Prof Paper 542-E.

    Google Scholar 

  • Lipman PW, Normark WR, Moore JG, Wilson JB, Gutmacher C (1988) The giant submarine Alika debris slide, Mauna Loa, Hawaii. J Geophys Res 93:4279–4299.

    Article  Google Scholar 

  • Locat J, Locat P, Lee HJ, Imran J (2004) Numerical analysis of the mobility of the Palos Verdes debris avalanche, California, and its implication for the generation of tsunamis. Mar Geol 20:269–280.

    Article  Google Scholar 

  • López-Venegas AM, ten Brink US, Geist EL (2008) Submarine landslide as the source for the October 11, 1918 Mona Passage tsunami: Observations and modeling. Mar Geol 254:35–46.

    Article  Google Scholar 

  • Løvholt F, Pedersen G, Gisler G (2008) Oceanic propagation of a potential tsunami from the La Palma Island. J Geophys Res 113(C09026).

    Google Scholar 

  • Maslin M, Mikkelsen N, Vilela C, Haq B (1998) Sea-level- and gas-hydrate-controlled catastrophic sediment failures of the Amazon Fan. Geology 26:1107–1110.

    Article  Google Scholar 

  • Maslin M, Owen M, Day S, Long D (2004) Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis. Geology 32:53–56.

    Article  Google Scholar 

  • Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci Rev 57:1–35.

    Article  Google Scholar 

  • McAdoo BG, Pratson LF, Orange DL (2000) Submarine landslide geomorphology, U.S. continental slope. Mar Geol 169:103–136.

    Article  Google Scholar 

  • McAdoo BG, Capone MK, Minder J (2004) Seafloor geomorphology of convergent margins: Implications for Cascadia seismic hazard. Tectonics 23, TC6008.

    Google Scholar 

  • McCoy FW, Heiken G (2000) Tsunami generated by the Late Bronze Age eruption of Thera (Santorini), Greece. Pure and Applied Geophysics, 157:1227–1256.

    Article  Google Scholar 

  • McGuire WJ (1996) Volcano instability: A review of contemporary themes. Geol Soc Lond Spec Pub 110:1–23.

    Article  Google Scholar 

  • McGuire WJ, Howarth RJ, Firth CR, Solow AR, Pullen AD, Saunders SJ, Stewart IS, Vita-Finzi C (1997) Correlation between rate of sea-level change and frequency of explosive volcanism in the Mediterranean. Nature 389:473–476.

    Article  Google Scholar 

  • McMurtry GM, Watts P, Fryer GJ, Smith JR, Imamura F (2003) Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Mar Geol 203:219–233.

    Article  Google Scholar 

  • McMurtry GM, Fryer GJ, Tappin DR, Wilkinson IP, Williams M, Fietzke J, Garbe-Schoenberg D, Watts P (2004) Megatsunami deposits on Kohala volcano, Hawaii, from flank collapse of Mauna Loa. Geology 32:741–744.

    Article  Google Scholar 

  • Mienert J (2002) Special issue: European North Atlantic Margin (ENAM II): Quantification and modelling of large-scale sedimentary processes. Mar Geol 188:1–248.

    Article  Google Scholar 

  • Miller D (1960) Giant waves in Lituya Bay, Alaska. Geol Surv Prof Pap 354-C.

    Google Scholar 

  • Miyachi M (1992) Geological examination of the two old maps from the Tokugawa Era concerning the Shimabara Catastrophe. In: Yanagi T, Okada H, Ohta K (eds.), Unzen Volcano, the 1990–1992 Eruption. Nishinippon & Kyushu University Press, Fukuoka, pp. 99–102.

    Google Scholar 

  • Moore GW, Moore JG (1988) Large-scale bedforms in boulder gravel produced by giant waves in Hawaii, sedimentologic consequences of convulsive geologic events. Geol Soc Am Spec Pap 229:101–110.

    Google Scholar 

  • Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94:17465–17484.

    Article  Google Scholar 

  • Mosher DC, Piper DJW (2007) Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 Grand Banks landslide area. In: Lykouosis V, Sakellariou D, Locat J (eds.), Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp. 77–88.

    Chapter  Google Scholar 

  • Nishimura Y, Miyaji N, Suzuki M (1999) Behavior of historic tsunamis of volcanic origin as revealed by onshore tsunami deposits. Phys Chem Earth, Part A: Solid Earth Geod 24:985–988.

    Article  Google Scholar 

  • Nomanbhoy N, Satake K (1995) Generation mechanism of tsunamis from the 1883 Krakatau eruption. Geophys Res Lett 22, doi: 10.1029/94GL03219.

    Google Scholar 

  • Normark WR, McGann M, Sliter R (2004) Age of Palos Verdes submarine debris avalanche, southern California. Mar Geol 203:247–259.

    Article  Google Scholar 

  • Pelayo AM, Wiens DA (1990) The November 20, 1960 Peru tsunami earthquake: Source mechanism of a slow event. Geophys Res Lett 17:661–664.

    Article  Google Scholar 

  • Pérez-Torrado FJ, Paris R, Cabrera MC, Schneider J-L, Wassmer P, Carracedo J-C, Rodriguez-Santana Á, Santana F (2006) Tsunami deposits related to flank collapse in oceanic volcanoes: The Agaete Valley evidence, Gran Canaria, Canary Islands. Mar Geol 227:135–149.

    Article  Google Scholar 

  • Piper DJW, Asku AE (1987) The source and origin of the 1929 Grand Banks turbidity current inferred from sediment budgets. Geo-Mar Lett 7:177–182.

    Article  Google Scholar 

  • Piper DJW, Mosher DC, Gauley B-J, Jenner K, Campbell DC (2003). The chronology and recurrence of submarine mass movements on the continental slope off southeastern Canada. In: J. Locat and J. Mienert (Editors), Submarine mass movements and their consequences. Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 299–306.

    Google Scholar 

  • Piper DJW, McCall C (2003) A synthesis of the distribution of submarine mass movements on the eastern Canadian Margin. In: Locat J, Mienert J (eds.), Submarine Mass Movements and Their Consequences. Kluwer, Dordrecht/Boston/London, pp. 291–298.

    Google Scholar 

  • Plafker G, Kachadoorian R, Eckel EB, Mayo LR (1969) Effects of the earthquake of March 27, 1964 on various communities, US Geol Surv Prof Paper 542-G.

    Google Scholar 

  • Prior DB, Bornhold BD, Coleman JM, Bryant WR (1982) Morphology of a submarine slide, Kitimat Arm, British Columbia. Geology 10:588–592.

    Article  Google Scholar 

  • Prior DB, Bornhold BD, Johns MW (1986) Active sand transport along a fjord-bottom channel, Bute Inlet, British Columbia. Geology 14:581–584.

    Article  Google Scholar 

  • Quidelleur X, Hildenbrand A, Samper A (2008) Causal link between Quaternary paleoclimatic changes and volcanic islands evolution. Geophys Res Lett 35(L02303).

    Google Scholar 

  • Rajendran CP, Ramanamurthy MV, Reddy NT, Rajendran K (2008) Hazard implications of the late arrival of the 1945 Makran tsunami. Curr Sci 95:1739–1743.

    Google Scholar 

  • Rathburn AE, Levin LA, Tryon M, Gieskes JM, Martin JB, Pérez ME, Fodrie FJ, Neira C, Fryer GJ, Mendoza G, McMillan PA, Kluesner J, Adamic J, Ziebis W (2009) Geological and biological heterogeneity of the Aleutian margin (1965–4822 m). Prog Ocean 80:22–50.

    Article  Google Scholar 

  • Rubin KH, Fletcher CH III, Sherman C (2000) Fossiliferous Lanai deposits formed by multiple events rather than a single giant tsunami. Nature 408:675–681.

    Article  Google Scholar 

  • Satake K (2007) Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea. Earth Planets Space 59:381–390.

    Google Scholar 

  • Satake K, Smith JR, Shinozaki K (2002) Three-dimensional reconstruction and tsunami model of the Nuuanu and Wailau giant landslides. In: Takahashi E, Lipman P, Garcia M, Naka J, Aramaki S (eds.), Hawaiian Volcanoes: Deep Underwater Perspectives. AGU Monograph 128:333–346.

    Google Scholar 

  • Self S, Rampino MR (1981) The 1883 eruption of Krakatau. Nature 294:699–704.

    Article  Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches: Characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197.

    Article  Google Scholar 

  • Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull Volcanol 49:435–459.

    Article  Google Scholar 

  • Sigurdsson H, Carey S, Mandeville C, Bronto S (1991) Pyroclastic flows of the 1883 Krakatau eruption. Eos Trans AGU 72:377.

    Article  Google Scholar 

  • Silver E, et al. (2005) Island arc debris avalanches and tsunami generation. Eos Trans AGU 86:485.

    Article  Google Scholar 

  • Simkin T, Fiske RS (1983) Krakatau 1883: The volcanic eruption and its effects. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Solheim A, Bryn P, Sejrup HP, Mienert J, Berg K (2005) Ormen Lange — an integrated study for the safe development of a deep-water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary. Mar Pet Geol 22:1–9.

    Article  Google Scholar 

  • Sowers T (2006) Late quaternary atmospheric CH4 isotope record suggests marine Clathrates are stable. Science 311:838–840.

    Article  Google Scholar 

  • Stearns HT (1978) Quaternary shorelines in the Hawaiian Islands. Bernice P. Bishop Museum Bull 237:57.

    Google Scholar 

  • Tappin, DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano Papua New Guinea tsunami of July 1998 — offshore evidence on the source mechanism. Mar Geol 175:1–23.

    Article  Google Scholar 

  • Tappin DR, McNeil L, Henstock T, Mosher D (2007) Mass wasting processes — offshore Sumatra. In: Lykouosis V, Sakellariou D, Locat J (eds.), Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp. 327–336.

    Chapter  Google Scholar 

  • Tappin DR, Watts P, Grilli ST (2008a) The Papua New Guinea tsunami of 17 July 1998: Anatomy of a catastrophic event. Nat Hazards Earth Sys Sci 8:1–24.

    Article  Google Scholar 

  • Tappin DR, Watts P, Grilli ST, Dubosq S, Billi A, Pophet N, Marani MP (2008b) The 1908 Messina tsunami. Some comments on the source: Earthquake, submarine landslide or a combination of both? Eos Trans AGU 89, Fall Meeting Suppl, Abstract S41D-07.

    Google Scholar 

  • Ten Brink US, Lee HJ, Geist EL, Twichell D (2009) Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes. Mar Geol. 264:65–73.

    Article  Google Scholar 

  • Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni F (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: Sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Syst Sci 5:763–775.

    Article  Google Scholar 

  • Tuttle MP, Ruffman A, Anderson T, Jeter H (2004) Distinguishing tsunami from storm deposits in eastern North America: The 1929 Grand Banks tsunami versus the 1991 Halloween storm. Seismol Res Lett 75:117–131.

    Article  Google Scholar 

  • Van Padang M (1971) Two catastrophic eruptions in Indonesia, comparable with the Plinian Outburst of the Volcano of Thera (Santorini) in Minoan Time. Acta of the 1st Int. Sci. Cong. on the Volcano of Thera; Arch. Services of Greece, General Direction of Antiquitiest and Research, Athens: 51–63.

    Google Scholar 

  • von Huene R, Bourgois J, Miller J, Pautot G (1989) A large tsunamogenic landslide and debris flow along the Peru Trench. J Geophys Res 94:1703–1714.

    Article  Google Scholar 

  • von Huene R, Ranero CR, Watts P (2004) Tsunamigenic slope failure along the Middle America Trench in two tectonic settings. Mar Geol 203:303–317.

    Article  Google Scholar 

  • Ward SN, Day S (2001) Cumbre Vieja volcano — potential collapse and tsunami at La Palma, Canary Islands. Geophys Res Lett 28:3397–3400.

    Article  Google Scholar 

  • Waythomas CF, Neal CA (1997) Tsunami generation during the 3500 yr BP Caldera-forming Eruption of Aniakchak Volcano. EOS Trans Am Geophys Union 78:F816.

    Google Scholar 

  • Weaver PPE, Wynn RB, Kenyon NH, Evans J (2000) Continental margin sedimentation, with special reference to the north-east Atlantic margin. Sedimentology 47:239–225.

    Article  Google Scholar 

  • Wynn R, Masson D (2003) Canary Islands landslides and tsunami generation: Can we use tur-bidite deposits to interpret landslide processes. In: Locat J, Mienert J (eds.), Submarine Mass Movements and Their Consequences. Kluwer, Dordrecht, The Netherlands, pp. 325–332.

    Google Scholar 

  • Yokoyama I (1987) A scenario of the 1883 Krakatau tsunami. J Volcanol Geotherm Res 34:123–132.

    Article  Google Scholar 

  • Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS (1996) An 110,000-year record of explosive volcanism from the GISP2 (Greenland) ice core. Quat Res 43:109–118.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the patience and encouragement of Jason Chaytor, who also provided an excellent review. This paper is published with the permission of the Director of the British Geological Survey, Natural Environment Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Tappin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tappin, D.R. (2010). Mass Transport Events and Their Tsunami Hazard. In: Mosher, D.C., et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3071-9_54

Download citation

Publish with us

Policies and ethics