Abstract
Dynamics simulations are an essential step in exploring ultrafast phenomena in photochemistry and photobiology. In this chapter we present results of photodynamics studies for some model compounds for the peptide bond using the on-the-fly surface hopping method. The mechanism of photodissociation of formamide, its protonated forms and methyl substituted derivatives in their lowest singlet excited states in the gas phase is discussed in detail. Merits and demerits of using these simple molecules as models in exploring photochemical and photophysical properties of more complex systems, like peptides and proteins, are emphasized. It is found that in all examined model molecules the major deactivation process after excitation to the S1 state is dissociation of the peptide C–N bond. The same holds for the deactivation path from the S2 state, with exception of the O- protonated formamide in which C–O dissociation becomes the major deactivation process. Furthermore, it is shown that substitution by the methyl group(s), as well as protonation, strongly influence the lifetime of both excited states. In the last section application of the newly developed hybrid nonadiabatic photodynamics QM/MM approach in calculating photodissociation of formamide in argon matrix is illustrated.
Keywords
- Excited state
- Peptide bond
- Photodissociation
- Nonadiabatic dynamics
- Formamide
- Substituted formamides
- Surface hopping
- Environmental effects
- QM/MM
This is a preview of subscription content, access via your institution.
Buying options















References
Greenberg A, Breneman CM, Liebman JF (2002) The amide linkage: structural significance in chemistry, biochemistry and materials science. Wiley, New York
Boyd DB (1993) J Med Chem 36:1443–1449
Jungheim LN, Boyd DB, Indelicato JM, Pasini CE, Preston DE, Alborn WE Jr (1991) J Med Chem 34:1732–1739
Challender RH, Dyer RB, Gilmanshin R, Woodruff WH (1998) Ann Rev Phys Chem 49:173–202
Nikogosyan DN, Görner HJ (1998) J Photochem Photobiol B 47:63–67
Sionkowska A, Wisniewski M, Skopinska J, Mantovani D (2006) Int J Photoenergy. Article ID 29196
Lundell J, Krajewska M, Räsänen M (1998) J Mol Struct 448:221–230
Kang TY, Kim HL (2006) Chem Phys Lett 431:24–27
Petersen C, Dahl NH, Jensen SK, Poulsen JA, Thogersen J, Keiding SR (2008) J Phys Chem A 112:3339–3344
Lundell J, Krajewska M, Räsänen M (1998) J Phys Chem A 102:6643–6650
Boden JC, Back RA (1970) Trans Faraday Soc 66:175–182
Liu D, Fang W-H, Fu X-Y (1999) Chem Phys Lett 318:291–297
Liu D, Fang W, Lin Z, Fu X (2002) J Chem Phys 117:9241–9247
Chen X-B, Fang W-H, Fang D-C (2003) J Am Chem Soc 125:9689–9698
Antol I, Eckert-Maksić M, Barbatti M, Lischka H (2007) J Chem Phys 127:234303
Antol I, Vazdar M, Barbatti M, Eckert-Maksić M (2008) Chem Phys 349:308–318
Eckert-Maksić M, Antol I (2009) J Phys Chem A. doi:10.1021/jp9046177
Pei K-M, Ma Y, Zheng X (2008) J Chem Phys 128:224310
Chen X-B, Fang W-H (2004) J Am Chem Soc 126:8976–8980
Ruckenbauer M, Barbatti M, Müller T, Lischka H J Phys Chem A. doi: 10.1021/jp103101t
For a recent review see e.g. Bargheer M, Borowski A, Cohen A, Fushitani M, Gerber RB, Gühr M, Hamm P, Ibrahim H, Kiljunen T, Korolkov MV, Kühn O, Manz J, Schmidt B, Schröder M, Schwentner N (2007). In: Kühn O, Wöste L (eds) Analysis and control of ultrafast photoinduced reactions. Springer Series in Chemical Physics, vol 87. Springer, Heidelberg, pp 257–385
Schinke R (1995) Photodissociation dynamics: spectroscopy and fragmentation of small polyatomic molecules. Cambridge University Press, Cambridge
Tully JC (1998) Faraday Discuss 110:407–419
Tully JC (1990) J Chem Phys 93:1061–1071
Ben-Nun M, Quenneville J, Martínez TJ (2000) J Phys Chem A 104:5161–5175
Li XS, Tully JC, Schlegel HB, Frisch MJ (2005) J Chem Phys 123:084106
Barbatti M, Granucci G, Persico M, Ruckenbauer M, Vazdar M, Eckert-Maksić M, Lischka H (2006) J Photochem Photobiol A: Chem 190:228–240
Barbatti M, Sellner B, Aquino AJA, Lischka H (2008) In: Shukla MK, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acids. Springer Science+Business Media, The Netherlands, pp 209–235
Swope WC, Andersen HC, Berens P, Wilson KR (1982) J Chem Phys 76:637–649
Hayashi S, Taikhorshid E, Schulten K (2009) Biophys J 96:403–416
Lasser C, Swart T (2008) J Chem Phys 129:034302
Fabiano E, Groenhof G, Thiel W (2008) Chem Phys 351:111–116
Pittner J, Lischka H, Barbatti M (2009) Chem Phys 356:147–152
Butcher J (1965) J Assoc Comput Mach 12:124–135
Granucci G, Persico M (2007) J Chem Phys 126:134114
Muller U, Stock G (1997) J Chem Phys 107:6230–6245
Jasper AW, Stechmann SN, Truhlar DG (2002) J Chem Phys 116:5424–5431
Sellner B, Barbatti M, Lischka H (2009) J Chem Phys 131:024312
Shepard R, Lischka H, Szalay PG, Kovar T, Ernzerhof M (1992) J Chem Phys 96:2085–2098
Lischka H, Dallos M, Shepard R (2002) Mol Phys 100:1647–1658
Lischka H, Dallos M, Szalay PG, Yarkony DR, Shepard R (2004) J Chem Phys 120:7322–7329
Dallos M, Lischka H, Shepard R, Yarkony DR, Szalay PG (2004) J Chem Phys 120:7330–7339
Angeli C (2009) J Comput Chem 30:1319–1333
Lin H, Truhlar DG (2007) Theor Chem Acc 117:185–199
Bunge A (1970) J Chem Phys 53:20–28
Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236
Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373
Eckert-Maksić M, Vazdar M, Ruckenbauer M, Barbatti M, Müller T, Lischka H (2010) Phys Chem Chem Phys (submitted)
Lischka H, Shepard R, Brown FB, Shavitt I (1981) Int J Quant Chem S15:91–100
Lischka H, Shepard R, Pitzer RM, Shavitt I, Dallos M, Müller T, Szalay PG, Seth M, Kedziora GS, Yabushita S, Zhang ZY (2001) Phys Chem Chem Phys 3:664–673
Lischka H, Shepard R, Shavitt I, Pitzer RM, Dallos M, Müller T, Szalay PG, Brown FB, Ahlrichs R, Boehm HJ, Chang A, Comeau DC, Gdanitz R, Dachsel H, Ehrhardt C, Ernzerhof M, Hoechtl P, Irle S, Kedziora G, Kovar T, Parasuk V, Pepper MJM, Scharf P, Schiffer H, Schindler M, Schueler M, Seth M, Stahlberg EA, Zhao J-G, Yabushita S, Zhang Z, Barbatti M, Matsika S, Schuurmann M, Yarkony DR, Brozell SR, Beck EV, Blaudeau J-P (2006) COLUMBUS: an ab initio electronic structure program, release 5.9.1. www.univie.ac.at/columbus. Accessed date June 11 2010
Ren PY, Ponder JW (2003) J Phys Chem B 107:5933–5947
Barbatti M, Granucci G, Lischka H, Ruckenbauer M, Persico M (2007) NEWTON-X: a package for Newtonian dynamics close to the crossing seam, version 1.1.0a. www.newtonx.org. Accessed date June 11 2010
Vazdar M, Eckert-Maksić M (work in progress)
Barbatti M, Aquino AJA, Lischka H (2006) Mol Phys 104:1053–1060
Forde NR, Butler LJ, Abrash SA (1999) J Chem Phys 110:8954–8968
Forde NR, Myers TL, Butler LJ (1997) Faraday Discuss 108:221–242
Spall BC, Steacie EWR (1952) Proc R Soc Lond A239:1–15
Volman DH (1941) J Am Chem Soc 63:2000
Bosco SR, Cirillo A, Timmons RB (1969) J Am Chem Soc 91:3140–3143
Booth GH, Norrish RGW (1952) J Chem Soc 188–198
Antol I, Vazdar M, Eckert-Maksić M, Lischka H (2009) (manuscript in preparation)
Thompson MS, Cui W, Reilly JP (2007) J Am Soc Mass Spectrom 18:1439–1452
Cui W, Thompson MS, Reilly JP (2005) J Am Soc Mass Spectrom 16:1384–1398
Jeong HM, Young SS, Hyun JC, Myung SK (2007) Rapid Commun Mass Spectrom 21:359–368
Yoon SH, Kim MS (2007) J Am Soc Mass Spectrom 18:1729–1739
Grégoire G, Dedonder-Lardeux C, Jouvet C, Desfrancois C, Fayeton JA (2007) Phys Chem Chem Phys 9:78–82
Antol I, Eckert-Maksić M, Lischka H (2004) J Phys Chem A 108:10317–10325 and references cited therein
Hunter EP, Lias SG (1998) J Phys Chem Ref Data 27:413
Barbatti M, Lischka H (2007) J Phys Chem A 111:2852–2858
Macas EMS, Khriachtchev L, Petersson M, Fausto R, Räsänen M (2004) Vib Spec 34:73–82
Macas EMS, Khriachtchev L, Petersson M, Fausto R, Lundell J, Räsänen M (2005) J Phys Chem A 109:3617–3625
Duvernay F, Trivella A, Brget F, Coussan S, Aycard J-P, Chiavassa T (2005) J Phys Chem A 109:11155–11162
Vaskonen KJ, Kunttu HM (2003) J Phys Chem A 107:5881–5886
Sałdyka M, Mielke Z (2003) Phys Chem Chem Phys 5:4790–4797
Chen M, Yang R, Ma R, Zhou M (2008) J Phys Chem A 112:7157–7161
Fraser GT, Nelson DD Jr, Peterson KI, Klemperer W (1986) Chem Phys 84:2472–2480
Hayon E, Nakashima M (1971) J Phys Chem 75:1910–1914
Acknowledgements
This work has been supported by the Ministry of Science, Education and Sport of Croatia through the project. No. 098-0982933-2920 (Mirjana Eckert-Maksić, Ivana Antol, and Mario Vazdar) and by the Austrian Science Fund within the framework of the Special Research Program F16 (Advanced Light Sources) and Project P18411-N19 (Hans Lischka and Mario Barbatti). H.L. acknowledges support by the grant from the Ministry of Education of the Czech Republic (Center for Biomolecules and Complex Molecular Systems, LC512) and by the Praemium Academiae of the Academy of Sciences of the Czech Republic, awarded to Pavel Hobza in 2007 and by the research project Z40550506 of the Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic. The support by the COST D37 action, WG0001-06 and WTZ treaty between Austria and Croatia (Project No. HR17/2008) are also acknowledged. The authors especially acknowledge the technical support and computer time at the Linux PC cluster Schrödinger III of the computer center of the University of Vienna. Zagreb group (Mirjana Eckert-Maksić, Ivana Antol, and Mario Vazdar) also thanks allocation of computation time on the ISABELLA cluster at the University Computing Center in Zagreb.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer Netherlands
About this chapter
Cite this chapter
Eckert-Maksić, M., Antol, I., Vazdar, M., Barbatti, M., Lischka, H. (2010). Formamide as the Model Compound for Photodissociation Studies of the Peptide Bond. In: Paneth, P., Dybala-Defratyka, A. (eds) Kinetics and Dynamics. Challenges and Advances in Computational Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3034-4_3
Download citation
DOI: https://doi.org/10.1007/978-90-481-3034-4_3
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-3033-7
Online ISBN: 978-90-481-3034-4
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)