Skip to main content

Formamide as the Model Compound for Photodissociation Studies of the Peptide Bond

Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH,volume 12)

Abstract

Dynamics simulations are an essential step in exploring ultrafast phenomena in photochemistry and photobiology. In this chapter we present results of photodynamics studies for some model compounds for the peptide bond using the on-the-fly surface hopping method. The mechanism of photodissociation of formamide, its protonated forms and methyl substituted derivatives in their lowest singlet excited states in the gas phase is discussed in detail. Merits and demerits of using these simple molecules as models in exploring photochemical and photophysical properties of more complex systems, like peptides and proteins, are emphasized. It is found that in all examined model molecules the major deactivation process after excitation to the S1 state is dissociation of the peptide C–N bond. The same holds for the deactivation path from the S2 state, with exception of the O- protonated formamide in which C–O dissociation becomes the major deactivation process. Furthermore, it is shown that substitution by the methyl group(s), as well as protonation, strongly influence the lifetime of both excited states. In the last section application of the newly developed hybrid nonadiabatic photodynamics QM/MM approach in calculating photodissociation of formamide in argon matrix is illustrated.

Keywords

  • Excited state
  • Peptide bond
  • Photodissociation
  • Nonadiabatic dynamics
  • Formamide
  • Substituted formamides
  • Surface hopping
  • Environmental effects
  • QM/MM

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-3034-4_3
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-3034-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)
Scheme 3-1.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.

References

  1. Greenberg A, Breneman CM, Liebman JF (2002) The amide linkage: structural significance in chemistry, biochemistry and materials science. Wiley, New York

    Google Scholar 

  2. Boyd DB (1993) J Med Chem 36:1443–1449

    CrossRef  CAS  Google Scholar 

  3. Jungheim LN, Boyd DB, Indelicato JM, Pasini CE, Preston DE, Alborn WE Jr (1991) J Med Chem 34:1732–1739

    CrossRef  CAS  Google Scholar 

  4. Challender RH, Dyer RB, Gilmanshin R, Woodruff WH (1998) Ann Rev Phys Chem 49:173–202

    CrossRef  Google Scholar 

  5. Nikogosyan DN, Görner HJ (1998) J Photochem Photobiol B 47:63–67

    CrossRef  CAS  Google Scholar 

  6. Sionkowska A, Wisniewski M, Skopinska J, Mantovani D (2006) Int J Photoenergy. Article ID 29196

    Google Scholar 

  7. Lundell J, Krajewska M, Räsänen M (1998) J Mol Struct 448:221–230

    CrossRef  CAS  Google Scholar 

  8. Kang TY, Kim HL (2006) Chem Phys Lett 431:24–27

    CrossRef  CAS  Google Scholar 

  9. Petersen C, Dahl NH, Jensen SK, Poulsen JA, Thogersen J, Keiding SR (2008) J Phys Chem A 112:3339–3344

    CrossRef  CAS  Google Scholar 

  10. Lundell J, Krajewska M, Räsänen M (1998) J Phys Chem A 102:6643–6650

    CrossRef  CAS  Google Scholar 

  11. Boden JC, Back RA (1970) Trans Faraday Soc 66:175–182

    CrossRef  CAS  Google Scholar 

  12. Liu D, Fang W-H, Fu X-Y (1999) Chem Phys Lett 318:291–297

    CrossRef  Google Scholar 

  13. Liu D, Fang W, Lin Z, Fu X (2002) J Chem Phys 117:9241–9247

    CrossRef  CAS  Google Scholar 

  14. Chen X-B, Fang W-H, Fang D-C (2003) J Am Chem Soc 125:9689–9698

    CrossRef  CAS  Google Scholar 

  15. Antol I, Eckert-Maksić M, Barbatti M, Lischka H (2007) J Chem Phys 127:234303

    CrossRef  Google Scholar 

  16. Antol I, Vazdar M, Barbatti M, Eckert-Maksić M (2008) Chem Phys 349:308–318

    CrossRef  CAS  Google Scholar 

  17. Eckert-Maksić M, Antol I (2009) J Phys Chem A. doi:10.1021/jp9046177

    Google Scholar 

  18. Pei K-M, Ma Y, Zheng X (2008) J Chem Phys 128:224310

    CrossRef  Google Scholar 

  19. Chen X-B, Fang W-H (2004) J Am Chem Soc 126:8976–8980

    CrossRef  CAS  Google Scholar 

  20. Ruckenbauer M, Barbatti M, Müller T, Lischka H J Phys Chem A. doi: 10.1021/jp103101t

    Google Scholar 

  21. For a recent review see e.g. Bargheer M, Borowski A, Cohen A, Fushitani M, Gerber RB, Gühr M, Hamm P, Ibrahim H, Kiljunen T, Korolkov MV, Kühn O, Manz J, Schmidt B, Schröder M, Schwentner N (2007). In: Kühn O, Wöste L (eds) Analysis and control of ultrafast photoinduced reactions. Springer Series in Chemical Physics, vol 87. Springer, Heidelberg, pp 257–385

    Google Scholar 

  22. Schinke R (1995) Photodissociation dynamics: spectroscopy and fragmentation of small polyatomic molecules. Cambridge University Press, Cambridge

    Google Scholar 

  23. Tully JC (1998) Faraday Discuss 110:407–419

    CrossRef  CAS  Google Scholar 

  24. Tully JC (1990) J Chem Phys 93:1061–1071

    CrossRef  CAS  Google Scholar 

  25. Ben-Nun M, Quenneville J, Martínez TJ (2000) J Phys Chem A 104:5161–5175

    CrossRef  CAS  Google Scholar 

  26. Li XS, Tully JC, Schlegel HB, Frisch MJ (2005) J Chem Phys 123:084106

    CrossRef  Google Scholar 

  27. Barbatti M, Granucci G, Persico M, Ruckenbauer M, Vazdar M, Eckert-Maksić M, Lischka H (2006) J Photochem Photobiol A: Chem 190:228–240

    CrossRef  Google Scholar 

  28. Barbatti M, Sellner B, Aquino AJA, Lischka H (2008) In: Shukla MK, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acids. Springer Science+Business Media, The Netherlands, pp 209–235

    CrossRef  Google Scholar 

  29. Swope WC, Andersen HC, Berens P, Wilson KR (1982) J Chem Phys 76:637–649

    CrossRef  CAS  Google Scholar 

  30. Hayashi S, Taikhorshid E, Schulten K (2009) Biophys J 96:403–416

    CrossRef  CAS  Google Scholar 

  31. Lasser C, Swart T (2008) J Chem Phys 129:034302

    CrossRef  Google Scholar 

  32. Fabiano E, Groenhof G, Thiel W (2008) Chem Phys 351:111–116

    CrossRef  CAS  Google Scholar 

  33. Pittner J, Lischka H, Barbatti M (2009) Chem Phys 356:147–152

    CrossRef  CAS  Google Scholar 

  34. Butcher J (1965) J Assoc Comput Mach 12:124–135

    CrossRef  Google Scholar 

  35. Granucci G, Persico M (2007) J Chem Phys 126:134114

    CrossRef  Google Scholar 

  36. Muller U, Stock G (1997) J Chem Phys 107:6230–6245

    CrossRef  CAS  Google Scholar 

  37. Jasper AW, Stechmann SN, Truhlar DG (2002) J Chem Phys 116:5424–5431

    CrossRef  CAS  Google Scholar 

  38. Sellner B, Barbatti M, Lischka H (2009) J Chem Phys 131:024312

    CrossRef  Google Scholar 

  39. Shepard R, Lischka H, Szalay PG, Kovar T, Ernzerhof M (1992) J Chem Phys 96:2085–2098

    CrossRef  CAS  Google Scholar 

  40. Lischka H, Dallos M, Shepard R (2002) Mol Phys 100:1647–1658

    CrossRef  CAS  Google Scholar 

  41. Lischka H, Dallos M, Szalay PG, Yarkony DR, Shepard R (2004) J Chem Phys 120:7322–7329

    CrossRef  CAS  Google Scholar 

  42. Dallos M, Lischka H, Shepard R, Yarkony DR, Szalay PG (2004) J Chem Phys 120:7330–7339

    CrossRef  CAS  Google Scholar 

  43. Angeli C (2009) J Comput Chem 30:1319–1333

    CrossRef  CAS  Google Scholar 

  44. Lin H, Truhlar DG (2007) Theor Chem Acc 117:185–199

    CrossRef  CAS  Google Scholar 

  45. Bunge A (1970) J Chem Phys 53:20–28

    CrossRef  CAS  Google Scholar 

  46. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236

    CrossRef  CAS  Google Scholar 

  47. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    CrossRef  CAS  Google Scholar 

  48. Eckert-Maksić M, Vazdar M, Ruckenbauer M, Barbatti M, Müller T, Lischka H (2010) Phys Chem Chem Phys (submitted)

    Google Scholar 

  49. Lischka H, Shepard R, Brown FB, Shavitt I (1981) Int J Quant Chem S15:91–100

    Google Scholar 

  50. Lischka H, Shepard R, Pitzer RM, Shavitt I, Dallos M, Müller T, Szalay PG, Seth M, Kedziora GS, Yabushita S, Zhang ZY (2001) Phys Chem Chem Phys 3:664–673

    CrossRef  CAS  Google Scholar 

  51. Lischka H, Shepard R, Shavitt I, Pitzer RM, Dallos M, Müller T, Szalay PG, Brown FB, Ahlrichs R, Boehm HJ, Chang A, Comeau DC, Gdanitz R, Dachsel H, Ehrhardt C, Ernzerhof M, Hoechtl P, Irle S, Kedziora G, Kovar T, Parasuk V, Pepper MJM, Scharf P, Schiffer H, Schindler M, Schueler M, Seth M, Stahlberg EA, Zhao J-G, Yabushita S, Zhang Z, Barbatti M, Matsika S, Schuurmann M, Yarkony DR, Brozell SR, Beck EV, Blaudeau J-P (2006) COLUMBUS: an ab initio electronic structure program, release 5.9.1. www.univie.ac.at/columbus. Accessed date June 11 2010

  52. Ren PY, Ponder JW (2003) J Phys Chem B 107:5933–5947

    CrossRef  CAS  Google Scholar 

  53. Barbatti M, Granucci G, Lischka H, Ruckenbauer M, Persico M (2007) NEWTON-X: a package for Newtonian dynamics close to the crossing seam, version 1.1.0a. www.newtonx.org. Accessed date June 11 2010

  54. Vazdar M, Eckert-Maksić M (work in progress)

    Google Scholar 

  55. Barbatti M, Aquino AJA, Lischka H (2006) Mol Phys 104:1053–1060

    CrossRef  CAS  Google Scholar 

  56. Forde NR, Butler LJ, Abrash SA (1999) J Chem Phys 110:8954–8968

    CrossRef  CAS  Google Scholar 

  57. Forde NR, Myers TL, Butler LJ (1997) Faraday Discuss 108:221–242

    CrossRef  CAS  Google Scholar 

  58. Spall BC, Steacie EWR (1952) Proc R Soc Lond A239:1–15

    Google Scholar 

  59. Volman DH (1941) J Am Chem Soc 63:2000

    CrossRef  CAS  Google Scholar 

  60. Bosco SR, Cirillo A, Timmons RB (1969) J Am Chem Soc 91:3140–3143

    CrossRef  CAS  Google Scholar 

  61. Booth GH, Norrish RGW (1952) J Chem Soc 188–198

    Google Scholar 

  62. Antol I, Vazdar M, Eckert-Maksić M, Lischka H (2009) (manuscript in preparation)

    Google Scholar 

  63. Thompson MS, Cui W, Reilly JP (2007) J Am Soc Mass Spectrom 18:1439–1452

    CrossRef  CAS  Google Scholar 

  64. Cui W, Thompson MS, Reilly JP (2005) J Am Soc Mass Spectrom 16:1384–1398

    CrossRef  CAS  Google Scholar 

  65. Jeong HM, Young SS, Hyun JC, Myung SK (2007) Rapid Commun Mass Spectrom 21:359–368

    CrossRef  Google Scholar 

  66. Yoon SH, Kim MS (2007) J Am Soc Mass Spectrom 18:1729–1739

    CrossRef  CAS  Google Scholar 

  67. Grégoire G, Dedonder-Lardeux C, Jouvet C, Desfrancois C, Fayeton JA (2007) Phys Chem Chem Phys 9:78–82

    CrossRef  Google Scholar 

  68. Antol I, Eckert-Maksić M, Lischka H (2004) J Phys Chem A 108:10317–10325 and references cited therein

    Google Scholar 

  69. Hunter EP, Lias SG (1998) J Phys Chem Ref Data 27:413

    CrossRef  CAS  Google Scholar 

  70. Barbatti M, Lischka H (2007) J Phys Chem A 111:2852–2858

    CrossRef  CAS  Google Scholar 

  71. Macas EMS, Khriachtchev L, Petersson M, Fausto R, Räsänen M (2004) Vib Spec 34:73–82

    CrossRef  Google Scholar 

  72. Macas EMS, Khriachtchev L, Petersson M, Fausto R, Lundell J, Räsänen M (2005) J Phys Chem A 109:3617–3625

    CrossRef  Google Scholar 

  73. Duvernay F, Trivella A, Brget F, Coussan S, Aycard J-P, Chiavassa T (2005) J Phys Chem A 109:11155–11162

    CrossRef  CAS  Google Scholar 

  74. Vaskonen KJ, Kunttu HM (2003) J Phys Chem A 107:5881–5886

    CrossRef  CAS  Google Scholar 

  75. Sałdyka M, Mielke Z (2003) Phys Chem Chem Phys 5:4790–4797

    CrossRef  Google Scholar 

  76. Chen M, Yang R, Ma R, Zhou M (2008) J Phys Chem A 112:7157–7161

    CrossRef  CAS  Google Scholar 

  77. Fraser GT, Nelson DD Jr, Peterson KI, Klemperer W (1986) Chem Phys 84:2472–2480

    CAS  Google Scholar 

  78. Hayon E, Nakashima M (1971) J Phys Chem 75:1910–1914

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Science, Education and Sport of Croatia through the project. No. 098-0982933-2920 (Mirjana Eckert-Maksić, Ivana Antol, and Mario Vazdar) and by the Austrian Science Fund within the framework of the Special Research Program F16 (Advanced Light Sources) and Project P18411-N19 (Hans Lischka and Mario Barbatti). H.L. acknowledges support by the grant from the Ministry of Education of the Czech Republic (Center for Biomolecules and Complex Molecular Systems, LC512) and by the Praemium Academiae of the Academy of Sciences of the Czech Republic, awarded to Pavel Hobza in 2007 and by the research project Z40550506 of the Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic. The support by the COST D37 action, WG0001-06 and WTZ treaty between Austria and Croatia (Project No. HR17/2008) are also acknowledged. The authors especially acknowledge the technical support and computer time at the Linux PC cluster Schrödinger III of the computer center of the University of Vienna. Zagreb group (Mirjana Eckert-Maksić, Ivana Antol, and Mario Vazdar) also thanks allocation of computation time on the ISABELLA cluster at the University Computing Center in Zagreb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Eckert-Maksić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Eckert-Maksić, M., Antol, I., Vazdar, M., Barbatti, M., Lischka, H. (2010). Formamide as the Model Compound for Photodissociation Studies of the Peptide Bond. In: Paneth, P., Dybala-Defratyka, A. (eds) Kinetics and Dynamics. Challenges and Advances in Computational Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3034-4_3

Download citation