Skip to main content

Marine Drugs Development and Social Implication

  • Chapter
Coastal Environments: Focus on Asian Regions

Abstract

Marine sources have attracted much attention as potential sources for natural products over recent years. The future of the biopharmaceutical holds great promise due to the many compounds that have and will be isolated from marine sources. Marine organisms have long been recognized as a source of novel metabolites with applications in human disease therapy. The marine environment is a rich source of both biological and chemical diversity, where it has been reported that oceans contain nearly 300,000 described species, representing only a small percentage of the total number of species that have to be discovered. The ocean represents a rich resource for ever more novel compounds with great potential as pharmaceutical, nutritional supplements, cosmetics, agrichemicals and enzymes, where each of these marine bioproducts has a strong potential market value. The reasons for the strong showing of drug discovery from natural products can be attributed to the diverse structures, intricate carbon skeletons, and the ease that human bodies will accept these molecules with minimal manipulation. With new pressures from the public and governments around the world to develop products to combat diseases and infections commonly encountered, new chemical entities need to be found and developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, L. Demain and Sanchez Sergio (2009). Microbial drug discovery: 80 years of progress. The Journal of Antibiotics, 62: 5-16.

    Article  Google Scholar 

  • Balaban, N. and G. Dell’Acqua (2005). Barriers on the road to new antibiotics. Scientist, 19: 42-43.

    Google Scholar 

  • Balick, M.J. and P.A. Cox (1996). Plants, People and Culture. The Science of Ethnobotany. Scientific American Library, New York.

    Google Scholar 

  • Berdy, J. (2005). Bioactive microbial metabolites. A personal view. J. Antibiot., 58: 1-26.

    Google Scholar 

  • Blunt, J.W., Copp, B.R., Munro, M.H.G., Northcote, P.T. and M.R. Prinsep (2005). Nat. Prod. Rep., 22: 15.

    Google Scholar 

  • Bourguet-Kondracki, M.L. and J.M. Kornprobst (2005). Marine Pharmacology: Potentialities in the Treatment of Infectious Diseases, Osteoporosis, and Alzheimer's Disease. Adv Biochem Engin/Biotechnol., 97: 105-131.

    Article  Google Scholar 

  • Bull, A.T., Stach, J.E.M., Ward, A.C. and M. Goodfellow (2005). Antonie van Leeuwenhoek, 87: 65.

    Google Scholar 

  • Butler, M.S. (2004). The role of natural product chemistry in drug discovery. J. Nat. Prod., 67: 2141-2153.

    Article  Google Scholar 

  • Christie, S.N., McCaughey, C., McBride, M. and P.V. Coyle (1997). Herpes simplex type 1 and genital herpes in Northern Ireland. Int J STD AIDS, 8: 68-69.

    Article  Google Scholar 

  • Constantino, V, Fattorusso, E., Menna, M. and O. Taglialatela-Scafati (2004). Chemical diversity of bioactive marine natural products: an illustrative case study. Current Medicinal Chemisty 11: 1671-1692.

    Google Scholar 

  • Cragg, G.M., Newman, D.J. and K.M. Snader (1997). Natural products in drug discovery and development. J. Nat.Prod., 60: 52-60.

    Article  Google Scholar 

  • Cragg, G.M. and D.J. Newman (2001). Medicinals for the millennia. The historical record. Ann. NYAcad. Sci., 953a: 3-25.

    Google Scholar 

  • Colwell, R.R. (2002). Fulfilling the promise of biotechnology. Biotechnol. Adv., 20: 215-228.

    Article  Google Scholar 

  • Cragg, G.M., Newman, D.J. and S.S. Yang (2006). Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience. J. Nat. Prod., 69: 488-498.

    Google Scholar 

  • De Vries, D.J. and P.M. Beart (1995). Fishing for drugs from the sea: status and strategies. Trends Pharmacol Sci., 16: 275-279.

    Article  Google Scholar 

  • Faulkner, D.J. (2000). Highlights of marine natural products chemistry (1972’1999). Nat. Prod. Rep, 17: 1-6.

    Article  Google Scholar 

  • Faulkner, J. (2002). Marine natural products. Nat. Prod. Rep., 19: 1-48.

    Google Scholar 

  • Feling, R.H., Buchanan, G.O., Mincer, T.J., Kauffman, C.A., Jensen, P.R. and W. Fenical (2003). Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Ed., 42: 355-357.

    Article  Google Scholar 

  • Hancock, R.E.W. (2007). The end of an era? Nat. Rev. Drug Discov., 6: 26.

    Article  Google Scholar 

  • Haefner, B. (2003). Drugs from the deep: Marine natural products as drug candidates. Drug Discov Today; 8: 536-544.

    Article  Google Scholar 

  • Hale, K.J., Hummersone, M.G., Manaviazar, S. and M. Frigerio (2002). The chemistry and biology of the bryostatin antitumour macrolides. Nat. Prod. Rep., 19: 413-453.

    Article  Google Scholar 

  • Isaka, M., Suyarnsestakorn, C., Tanticharoen, M., Kongsaeree, P. and Y. Thebtaranonth (2002). Aigialomycins A–E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J. Org. Chem., 67:1561-1566.

    Article  Google Scholar 

  • Jung, W.S. et al. (2006). Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl. Microbiol. Biotechnol., 72: 763-769.

    Article  Google Scholar 

  • Katz, M.L., Mueller, L.V., Polyakov, M. and S.F. Weinstock (2006). Where have all the antibiotic patents gone? Nat. Biotechnol., 24: 1529-1531.

    Article  Google Scholar 

  • Kijjoa, A. and P. Sawangwong (2004). Drugs and cosmetics from the sea. Marine Drugs, 2: 73-82.

    Article  Google Scholar 

  • Kim, T.K., Garson, M.J. and J.A. Fuerst (2005). Marine actinomycetes related to the ‘Salinospora’ group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol., 7: 509-518.

    Google Scholar 

  • Kin, S. Lam. (2006). Discovery of novel metabolites from marine actinomycetes. Current Opinion in Microbiology, 9: 245-251.

    Article  Google Scholar 

  • Kuhlmann, J. (1997). Drug research: From the idea to the product. International Journal of Clinical Pharmacology & Therapeutics, 35: 541-542.

    Google Scholar 

  • Konig, G.M., Wright, A.D., Sticher, O., Angerhofer, C.K. and J.M. Pezzuto (1994). Biological activities of selected marine natural products. Planta Med., 60: 532-537.

    Article  Google Scholar 

  • Kwon, H.C. et al. (2006). Marinomycins A–D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus ‘Marinispora’. J. Am. Chem. Soc, 128: 1622-1632.

    Article  Google Scholar 

  • Lederberg, J. (2000). Infectious history. Science, 288: 287-293.

    Article  Google Scholar 

  • Malakoff, D. (1997). Extinction on the high seas. Science, 277: 486-488.

    Article  Google Scholar 

  • Martin, V.J. et al. (2003). Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol., 21: 796-802.

    Article  Google Scholar 

  • Mazor, Y. (2007). Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli. Nat. Biotechnol., 25: 563-565.

    Article  Google Scholar 

  • Minami, H. (2008). Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl. Acad. Sci. U.S.A., 105: 7393-7398.

    Article  Google Scholar 

  • Morse, S.S. (1997). The public health threat of emerging viral disease. J. Nutr., 127: 951S-957S.

    Google Scholar 

  • Narsinh, L. Thakur (2008). Marine Molecular Biology: An emerging field of biological sciences. Biotechnology Advances, 26: 233-245.

    Article  Google Scholar 

  • Newman, D.J., Cragg, G.M and K.M. Snader (2003). Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 66: 1022-1037.

    Article  Google Scholar 

  • Nguyen, K.T. et al. (2006). Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc. Natl. Acad. Sci. U.S.A., 103: 17462-17467.

    Article  Google Scholar 

  • Patrzykat, A. and S.E. Douglas (2003). Gone gene fishing: how to catch novel marine antimicrobials. Trends in Biotechnology., 21: 362-369.

    Article  Google Scholar 

  • Rayl, A.J.S. (1999). Oceans: medicine chests of the future? Scientist, 13: 1-5.

    Google Scholar 

  • Redfield, A.C. (1958). The biological control of chemical factors in the environment. Am. Sci., 46: 205-221.

    Google Scholar 

  • Rowley, D.C., Hansen, M.S., Rhodes, D., Sotriffer, C.A., Ni, H., McCammon, J.A., Bushman, F.D. and W. Fenical (2002). Thalassiolins A–C: New marine-derived inhibitors of HIV cDNA integrase. Bioorg. Med. Chem., 10: 3619-3625.

    Article  Google Scholar 

  • Sang, Yup Lee (2009). Microorganisms: general strategies and drug production. Drug Discovery Today, 14(1/2): 78-88.

    Google Scholar 

  • Schwartsmann, G., Da Rocha, A.B., Mattei, J. and R. Lopes (2003). Marine-derived anticancer agents in clinical trials. Expert Opin Investig Drugs, 12: 1367-1383.

    Article  Google Scholar 

  • Sipkema, D., Franssen, M.C.R., Osinga, R., Tramper, J. and R.H. Wijffels (2005). Mar. Biotechnol., 7: 142.

    Google Scholar 

  • Sudek, S. (2007). Identification of the putative bryostatin polyketide synthase gene clusters from ‘Candidatus Endobugula sertula’, the uncultivated microbial symbiont of the marine byrozoan Bugula neritina. J. Nat. Prod., 70: 67-74.

    Article  Google Scholar 

  • Thayer, A.M. (1998). Chemical & Engineering News February 23, 25.

    Article  Google Scholar 

  • Tziveleka, L.A., Vagias, C. and V. Roussis (2003). Natural products with anti-HIV activity from marine organisms. Curr Top Med Chem., 3: 1512-1535.

    Article  Google Scholar 

  • Vignesh, S., Raja, A. and R. Arthur James (2011). Marine Drugs: Implication and Future Studies. International Journal of Pharmacology, 7(1): 22-30.

    Article  Google Scholar 

  • Wang, C.Y., Geng, M.Y. and H.S. Guan (2005). Chin. J. New Drugs, 14: 278.

    Google Scholar 

  • Website: Drugs from the sea: will the next penicillin come from a sponge? (Florida Atlantic University) http://www.science.fau.edu/drugs.htm.

  • William Fenical (2006). Marine pharmaceuticals: Past, present and future. Oceanography, 19(2): 75-78.

    Article  Google Scholar 

  • Zhang, Z. (2004). A new strategy for the synthesis of glycoproteins. Science, 303: 371-373.

    Article  Google Scholar 

  • Zhang, L., An, R., Wang, R., Sun, N., Zhang, S., Hu, J. and J. Kuai (2005). Isolation of novel bioactive compounds from marine microbes. Curr. Opin. Microbiol., 8: 276-281.

    Article  Google Scholar 

  • Zubia, E., Ortega, M.J. and J. Salva (2005). Mini-Rev. Org. Chem, 2: 389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arthur James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Capital Publishing Company

About this chapter

Cite this chapter

James, R.A., Vignesh, S., Muthukumar, K. (2012). Marine Drugs Development and Social Implication. In: Subramanian, V. (eds) Coastal Environments: Focus on Asian Regions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3002-3_15

Download citation

Publish with us

Policies and ethics