Advertisement

Quantum Chemical Approach to Interatomic Decay Rates in Clusters

  • V. Averbukh
  • P. Kolorenč
  • K. Gokhberg
  • L.S. Cederbaum
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 20)

Abstract

Since their theoretical prediction in 1997, interatomic (intermolecular) Coulombic decay (ICD) and related processes have been in the focus of intensive theoretical and experimental research. The spectacular progress in this direction has been stimulated both by the fundamental importance of the discovered electronic decay phenomena and by the exciting possibility of their practical application, for example, in spectroscopy of interfaces. Interatomic decay phenomena take place in inner-shell-ionized clusters due to electronic correlation between two or more cluster constituents. These processes lead to the decay of inner-shell vacancies by electron emission and often also to the disintegration of the resulting multiple ionized cluster. The primary objective of the theory is, thus, to predict the kinetic energy spectra of the emitted electrons and of the cluster fragments. These spectra are determined by an interplay between the electronic decay process and the nucleardynamics. Key to the reliable prediction of the observable quantities is the knowledge of the time scale of the interatomic decay. Here we review the recent progress in the development of ab initio quantum chemical methods for the calculation of interatomic decay rates in excited, singly ionized, and doubly ionized systems as well as some of their applications, e.g.,~to rare gas systems and to endohedral fullerenes.

Keywords

Interatomic Coulombic decay Ab initio calculations Inner-shellionization Clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Auger, J. de Phys. 6, 205 (1925)Google Scholar
  2. 2.
    E.H.S. Burhop, W.N. Asaad, Adv. At. Mol. Phys. 8, 163 (1972); W. Mehlhorn, Atomic Inner-Shell Physics, ed. by B. Crasemann (Plenum, New York, 1985)Google Scholar
  3. 3.
    N.H. Turner, J.A. Schreifels, Anal. Chem. 72, 99R (2000)Google Scholar
  4. 4.
    C.D. Wagner, A. Joshi, J. Elec. Spectr. Rel. Phen. 47, 283 (1988)CrossRefGoogle Scholar
  5. 5.
    L.S. Cederbaum, J. Zobeley, F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997)CrossRefGoogle Scholar
  6. 6.
    R. Santra, J. Zobeley, L.S. Cederbaum, N. Moiseyev, Phys. Rev. Lett. 85, 4490 (2000)CrossRefGoogle Scholar
  7. 7.
    M.S. Deleuze, J.-P. Francois, E.S. Kryachko, J. Am. Chem. Soc. 127, 16824 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Marburger, O. Kugeler, U. Hergenhahn, T. Möller, Phys. Rev. Lett. 90, 203401 (2003)CrossRefGoogle Scholar
  9. 9.
    T. Jahnke, A. Czasch, M.S. Schöffler, S. Schössler, A. Knapp, M. Käsz, J. Titze, C. Wimmer, K. Kreidi, R.E. Grisenti, A. Staudte, O. Jagutzki, U. Hergenhahn, H. Schmidt-Böcking, R. Dörner, Phys. Rev. Lett. 93, 163401 (2004)CrossRefGoogle Scholar
  10. 10.
    R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H. Schmidt-Böcking, Physics Reports 330, 95 (2000)CrossRefGoogle Scholar
  11. 11.
    S. Scheit, V. Averbukh, H.-D. Meyer, N. Moiseyev, R. Santra, T. Sommerfeld, J. Zobeley, L. S. Cederbaum, J. Chem. Phys. 121, 8393 (2004)Google Scholar
  12. 12.
    G. Öhrwall, M. Tchaplygine, M. Lundwall, R. Feifel, H. Bergersen, T. Rander, A. Lindblad, J. Schulz, S. Peredkov, S. Barth, S. Marburger, U. Hergenhahn, S. Svensson, O. Björneholm, Phys. Rev. Lett. 93, 173401 (2004)CrossRefGoogle Scholar
  13. 13.
    R. Santra, J. Zobeley, L.S. Cederbaum, Phys. Rev. B 64, 245104 (2001)CrossRefGoogle Scholar
  14. 14.
    N. Vaval, L.S. Cederbaum, J. Chem. Phys. 126, 164110 (2007)CrossRefGoogle Scholar
  15. 15.
    I.B. Müller, L.S. Cederbaum, J. Chem. Phys. 122, 094305 (2005)CrossRefGoogle Scholar
  16. 16.
    V. Averbukh, L.S. Cederbaum, Phys. Rev. Lett. 96, 053401 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Barth, S. Marburger, S. Joshi, V. Ulrich, O. Kugeler, U. Hergenhahn, PCCP 8, 3218 (2006)Google Scholar
  18. 18.
    S. Barth, S. Joshi, S. Marburger, V. Ulrich, A. Lindblad, G. Öhrwall, O. Björneholm, U. Hergenhahn, J. Chem. Phys. 122, 241102 (2005)CrossRefGoogle Scholar
  19. 19.
    T. Aoto, K. Ito, Y. Hikosaka, F. Penent, P. Lablanquie, Phys. Rev. Lett. 97, 243401 (2006)CrossRefGoogle Scholar
  20. 20.
    W. Eberhardt, G. Kalkoffen, C. Kunz, Phys. Rev. Lett. 41, 156 (1978); G.C. Brown, M.H. Chen, B. Crasemann, G.E. Ice, Phys. Rev. Lett. 45, 1937 (1980)Google Scholar
  21. 21.
    F. Gel’mukhanov, H. Ågren, Phys. Rep. 312, 87 (1999)CrossRefGoogle Scholar
  22. 22.
    K. Gokhberg, V. Averbukh, L.S. Cederbaum, J. Chem. Phys. 124, 144315 (2006)CrossRefGoogle Scholar
  23. 23.
    R. Santra, L.S. Cederbaum, Phys. Rev. Lett. 90, 153401 (2003)CrossRefGoogle Scholar
  24. 24.
    S. D. Stoychev, A.I. Kuleff, F. Tarantelli, L.S. Cederbaum, J. Chem. Phys. 129, 074307 (2008)CrossRefGoogle Scholar
  25. 25.
    Y. Morishita, X.-J. Liu, N. Saito, T. Lischke, M. Kato, G. Prömper, M. Oura, H. Yamaoka, Y. Tamenori, I.H. Suzuki, K. Ueda, Phys. Rev. Lett. 96, 243402 (2006)CrossRefGoogle Scholar
  26. 26.
    S.D. Stoychev, A.I. Kuleff, F. Tarantelli, L.S. Cederbaum, J. Chem. Phys. 128, 014307 (2008)CrossRefGoogle Scholar
  27. 27.
    K. Kreidi, T Jahnke, Th. Weber, T. Havermeier, R.E. Grisenti, X. Liu, Y. Morisita, S. Schössler, L.Ph.H. Schmidt, M. Schöffler, M. Odenweller, N. Neumann, L. Foucar, J. Titze, B. Ulrich, F. Sturm, C. Stuck, R. Wallauer, S. Voss, I. Lauter, H.K. Kim, M. Rudloff, H. Fukuzawa, G. Prömper, N. Saito, K. Ueda, A. Czasch, O. Jagutzki, H. Schmidt-Böcking, S.K. Semenov, N.A. Cherepkov, R. Dörner, J. Phys. B 41, 101002 (2008)CrossRefGoogle Scholar
  28. 28.
    K. Kreidi, T. Jahnke, Th. Weber, T. Havermeier, X. Liu, Y. Morisita, S. Schössler, L.Ph.H. Schmidt, M. Schöffler, M. Odenweller, N. Neumann, L. Foucar, J. Titze, B. Ulrich, F. Sturm, C. Stuck, R. Wallauer, S. Voss, I. Lauter, H.K. Kim, M. Rudloff, H. Fukuzawa, G. Prömper, N. Saito, K. Ueda, A. Czasch, O. Jagutzki, H. Schmidt-Böcking, S. Stoychev, Ph. V. Demekhin, R. Dörner, Phys. Rev. A 78, 043422 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Yamazaki, J. Adachi, Y. Kimura, A. Yagishita, M. Stener, P. Decleva, N. Kosugi, H. Iwayama, K. Nagaya, M. Yao, Phys. Rev. Lett. 101, 043004 (2008)CrossRefGoogle Scholar
  30. 30.
    K. Ueda, private communication.Google Scholar
  31. 31.
    L.S. Cederbaum, F. Tarantelli, J. Chem. Phys. 98, 9691 (1993)CrossRefGoogle Scholar
  32. 32.
    S. Scheit, L.S. Cederbaum, H.-D. Meyer, J. Chem. Phys. 118, 2092 (2003)CrossRefGoogle Scholar
  33. 33.
    S. Scheit, V. Averbukh, H.-D. Meyer, J. Zobeley, L.S. Cederbaum, J. Chem. Phys. 124, 154305 (2006)CrossRefGoogle Scholar
  34. 34.
    U.V. Riss, H.-D. Meyer, J. Phys. B 26, 4593 (1993)CrossRefGoogle Scholar
  35. 35.
    J.G. Muga, J.P. Palao, B. Navarro, I.L. Egusquiza, Phys. Rep. 395, 357 (2004)CrossRefGoogle Scholar
  36. 36.
    R. Santra, L.S. Cederbaum, H.-D. Meyer, Chem. Phys. Lett. 303, 413 (1999)CrossRefGoogle Scholar
  37. 37.
    N. Moiseyev, J. Phys. B 31, 1431 (1998); U.V. Riss, H.-D. Meyer, J. Phys. B 31, 2279 (1998)Google Scholar
  38. 38.
    J. Schirmer, L.S. Cederbaum, O. Walter, Phys. Rev. A 28, 1237 (1983); L.S. Cederbaum, in Encyclopedia of Computational Chemistry, eds. by P.v.R. Schleyer, P.R. Schreiner, N.A. Allinger, T. Clark, J. Gasteiger, P. Kollman, H.F. Schaefer III (Wiley, New York, 1998)Google Scholar
  39. 39.
    J. Schirmer, Phys. Rev. A 43, 4647 (1991); F. Mertins, J. Schirmer, Phys. Rev. A 53, 2140 (1996); A. B. Trofimov, J. Schirmer, J. Chem. Phys. 123, 144115 (2005) J. Schirmer andF. Mertins, Int. J. Quant. Chem. 58, 329 (1996).Google Scholar
  40. 40.
    R. Santra, L.S. Cederbaum, Phys. Rep. 368, 1 (2002)CrossRefGoogle Scholar
  41. 41.
    A.B. Trofimov, J. Schirmer, J. Chem. Phys. 123, 144115 (2005)CrossRefGoogle Scholar
  42. 42.
    I.B. Möller, Ph.D. thesis, Universität Heidelberg, 2006, in GermanGoogle Scholar
  43. 43.
    H. Hennig, Diploma thesis, Universität Heidelberg, 2004, in GermanGoogle Scholar
  44. 44.
    V. Averbukh, L.S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)CrossRefGoogle Scholar
  45. 45.
    U. Fano, Phys. Rev. 124, 1866 (1961)CrossRefGoogle Scholar
  46. 46.
    P.W. Langhoff, in Electron-Molecule and Photon-Molecule Collisions, eds. by T. Rescigno, V. McKoy, B. Schneider (Plenum, New York, 1979); A. U. Hazi, ibid. Google Scholar
  47. 47.
    G. Howat, T. Åberg, O. Goscinski, J. Phys. B 11, 1575 (1978)CrossRefGoogle Scholar
  48. 48.
    T. Åberg, G. Howat, in Handbuch der Physik, Vol 31, ed. by W. Mehlhorn (Springer, Berlin, 1982)Google Scholar
  49. 49.
    A. Szabo, A.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover, New York, 1996)Google Scholar
  50. 50.
    J. Schirmer, A.B. Trofimov, G. Stelter, J. Chem. Phys. 109, 4734 (1998)CrossRefGoogle Scholar
  51. 51.
    E. Davidson, J. Comp. Phys. 17, 87 (1975)Google Scholar
  52. 52.
    V. Averbukh, L.S. Cederbaum, J. Chem. Phys. 125, 094107 (2006)CrossRefGoogle Scholar
  53. 53.
    F. Möller-Plathe, G.H.F. Diercksen, in Electronic Structure of Atoms, Molecules and Solids, eds. by S. Canuto, J. D’Albuquerque e Castro, F.J. Paixão (World Scientific, Singapore, 1990); F. Möller-Plathe, G.H.F. Diercksen, Phys. Rev. A 40, 696 (1989)Google Scholar
  54. 54.
    I. Cacelli, V. Caravetta, R. Moccia, Mol. Phys. 59, 385 (1986)CrossRefGoogle Scholar
  55. 55.
    R.K. Nesbet, Phys. Rev. A 14, 1065 (1976)CrossRefGoogle Scholar
  56. 56.
    K. Gokhberg, V. Visotskiy, L.S. Cederbaum, V. Averbukh, J. Chem. Phys. 130, 064104 (2009)CrossRefGoogle Scholar
  57. 57.
    B.N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, 1980)Google Scholar
  58. 58.
    J.A.D. Matthew, Y. Komninos, Surf. Sci. 63, 716 (1975)CrossRefGoogle Scholar
  59. 59.
    T.D. Thomas, C. Miron, K. Wiesner, P. Morin, T.X. Carroll, L.J. Sæthre, Phys. Rev. Lett. 89, 223001 (2002)CrossRefGoogle Scholar
  60. 60.
    D.C. Griffin, D.M. Mitnick, N.R. Randell, J. Phys. B 34, 4401 (2001)CrossRefGoogle Scholar
  61. 61.
    V. Averbukh, I.B. Möller, L.S. Cederbaum, Phys. Rev. Lett. 93, 263002 (2004)CrossRefGoogle Scholar
  62. 62.
    T.A. Carlson, M.O. Krause, Phys. Rev. Lett. 14, 390 (1965); Phys. Rev. Lett. 17, 1079 (1966)CrossRefGoogle Scholar
  63. 63.
    Y. Morishita, N. Saito, I.H. Suzuki, H. Fukuzawa, X.-J. Liu, K. Sakai, G. Prömper, K. Ueda, H. Iwayama, K. Nagaya, M. Yao, K. Kreidi, M. Schöffler, T. Jahnke, S. Schössler, R. Dörner, T. Weber, J. Harries, Y. Tamenori, J. Phys. B 41, 025101 (2008)CrossRefGoogle Scholar
  64. 64.
    P. Kolorenč, V. Averbukh, K. Gokhberg, L.S. Cederbaum, J. Chem. Phys. 129, 244102 (2008)CrossRefGoogle Scholar
  65. 65.
    J. Schirmer, A. Barth, Z. Phys. A 317, 267 (1984)Google Scholar
  66. 66.
    J. Schirmer, F. Mertins, J. Phys. B 29, 3559 (1996)CrossRefGoogle Scholar
  67. 67.
    J. Schirmer, A. Trofimov, J. Chem. Phys. 120, 11449 (2004)CrossRefGoogle Scholar
  68. 68.
    K. Gokhberg, V. Averbukh, L.S. Cederbaum, J. Chem. Phys. 126, 154107 (2007)CrossRefGoogle Scholar
  69. 69.
    K. Codling, R. Madden, D. Ederer, Phys. Rev. 155, 26 (1967)CrossRefGoogle Scholar
  70. 70.
    M. Stener, P. Decleva, A. Lisini, J. Phys. B 28, 4973 (1995)CrossRefGoogle Scholar
  71. 71.
    K. Schulz, M. Domke, R. Pöttner, A. Gutierrez, G. Kaindl, G. Miecznik, C. Greene, Phys. Rev. A 54, 3095 (1996)CrossRefGoogle Scholar
  72. 72.
    S. Sorensen, T. Åberg, J. Tulkki, E. Rachlew-Kälne, G. Sundström, M. Kirm, Phys. Rev. A 50, 1218 (1994)CrossRefGoogle Scholar
  73. 73.
    D.L. Ederer, Phys. Rev. A 4, 2263 (1971)CrossRefGoogle Scholar
  74. 74.
    U. Hergenhahn, private communication.Google Scholar
  75. 75.
    T. Jahnke, R. Dörner, private communication.Google Scholar
  76. 76.
    E.F. Aziz, N. Ottoson, M. Faubel, I.V. Hertel, B. Winter, Nature 455, 89 (2008)CrossRefGoogle Scholar
  77. 77.
    M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001); G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli, Science 314, 443 (2006)Google Scholar
  78. 78.
    M.A. Kornberg, A.L. Godunov, S. Itza-Ortiz, D.L. Ederer, J.H. McGuire, L. Young, J. Synchrotron Rad. 9, 298 (2002)CrossRefGoogle Scholar
  79. 79.
    M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419, 803 (2002)CrossRefGoogle Scholar
  80. 80.
    A.I. Kuleff, L.S. Cederbaum, Phys. Rev. Lett. 98, 083201 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • V. Averbukh
    • 1
  • P. Kolorenč
    • 2
  • K. Gokhberg
    • 3
  • L.S. Cederbaum
    • 3
  1. 1.Max Planck Institute for the Physics of Complex SystemsDresdenGermany
  2. 2.Institute of Theoretical Physics, Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic
  3. 3.Theoretische Chemie, Physikalisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 229HeidelbergGermany

Personalised recommendations