Advertisement

Structural Properties and Torsional Dynamics of Peroxides and Persulfides

  • Glauciete S. Maciel
  • Ana Carla P. Bitencourt
  • Mirco Ragni
  • Gaia Grossi
  • Vincenzo Aquilanti
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 20)

Abstract

For the study of molecules containing O—O and S—S bonds, an analysis on the effect of level of theory and basis sets on electronic properties and geometrical parameters for H2O2 and H2S2 was done. Substitutions of one or both hydrogens in these molecules either by halogen atoms or alkyl groups were investigated for properties like geometries, dipole moments, cis and trans barriers. Attention has also been dedicated to the study of energy levels in the very anharmonic torsional potentials, obtaining their distributions as a function of temperature and partition functions for the torsional motion, of relevance for the isomerization rate leading to exchange between chiral enantiomers. Estimated rates both for underbarrier tunnelling and overbarrier transitions are consistently smaller for the S—S cases with respect to the corresponding O—O ones, due to the generally higher barriers. Regarding intermolecular interactions, of specific importance for collisional chirality exchange, an exploration was done for both H2O2– and H2S2–rare gases systems, extending the joint experimental and theoretical approach already tackled in this laboratory for interactions of H2O and H2S with the rare gases.

Keywords

Geometries Energy profiles Barriers heights Peroxides Persulfides Torsional energy levels Temperature distributions Chirality exchange rates Intermolecular interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Cacace, G. de Petris, A. Troiani, Rapid Commun. Mass Spectrom. 13, 1903 (1999); M. Lee, B.G. Heikes, D.W. O’Sullivan, Atmos. Environ. 34, 3475 (2000); S. Françoise, I. Sowka, A. Monod, B. Temime Roussel, J.M. Laugier, H. Wortham, Atmos. Res. 74, 525 (2005); V. Vaida, Int. J. Photoenergy 7, 61 (2005). B. Volgel, W. Feng, M. Streibel, R. Müller, Atmos. Chem. Phys. 6, 3099 (2006)Google Scholar
  2. 2.
    M. Streibel, M. Rex, P. Von der Gathen, R. Lehmann, N.R.P. Harris, G.O. Braathen, E. Reimer, H. Deckelmann, M. Chipperfield, G. Millard, M. Allaart, S. B. Andersen, H. Claude, J. Davies, H. De Backer, H. Dier, V. Dorokov, H. Fast, M. Gerding, E. Kyrò, Z. Litynska, D. Moore, E. Moran, T. Nagai, H. Nakane, C. Parrondo, P. Skrivankova, R. Stubi, G. Vaughan, P. Viatte, V. Yushkov, Atmos. Chem. Phys. 6, 83 (2006)CrossRefGoogle Scholar
  3. 3.
    B. Messer, D.E. Stielstra, C.D. Cappa, K.W. Scholtens, M. Elrod, J. Int. J. Mass. Spectrom. 197, 219 (2000)CrossRefGoogle Scholar
  4. 4.
    G.S. Maciel, A.C.P. Bitencourt, M. Ragni, V. Aquilanti, Chem. Phys. Lett. 432, 383 (2006)CrossRefGoogle Scholar
  5. 5.
    G.I. Cardenas-Jirón, A. Toro-Labbé, J. Mol. Struct. (THEOCHEM) 390, 79 (1997)CrossRefGoogle Scholar
  6. 6.
    J. Bergès, G.A. Rickards, A. Rauk, C. Houée-Levin, Chem. Phys. Lett. 421, 63 (2006)CrossRefGoogle Scholar
  7. 7.
    G.A. Rickard., J. Bergès, C. Houée-Levin, A. Rauk, J. Phys. Chem. B 112, 5774 (2008)CrossRefGoogle Scholar
  8. 8.
    E. Zysman-Colman, D.N. Harp, J. Sulfur Chem. 24, 291 (2004)Google Scholar
  9. 9.
    J.J. Grabowski, L. Zhang, J. Am. Chem. Soc. 111, 1193 (1989)CrossRefGoogle Scholar
  10. 10.
    C.J. Marsden, H. Oberhammer, O. Lösking, H. Willner, J. Mol. Struct. (THEOCHEM) 193, 233 (1989)Google Scholar
  11. 11.
    G.N. Dolenko, E.N. Deryagina, L.P. Turchaninova, V.P. Elin, E.I. Basina, T.O. Pavlova, V.K. Voronov, J. Heteroat. Chem. 6, 623 (1995)Google Scholar
  12. 12.
    B.-M. Cheng, W.-C. Hung, J. Phys. Chem. 100, 10210 (1996)Google Scholar
  13. 13.
    X. Cao, C. Qiao, D. Wang, Chem. Phys. Lett. 290, 405 (1998)CrossRefGoogle Scholar
  14. 14.
    C.J. Marsden, B.J. Smith, J. Phys. Chem. 92, 347 (1988)Google Scholar
  15. 15.
    F.M. Bickelhaupt, M. Solà, P.v.R. Schleyer, J. Comp. Chem. 16, 465 (1995)Google Scholar
  16. 16.
    G.I. Cardenas-Jirón, J. Lahsen, A. Toro-Labbé, J. Phys. Chem. 99, 5325 (1995)Google Scholar
  17. 17.
    J. Koput, Chem. Phys. Lett. 259, 146 (1996)CrossRefGoogle Scholar
  18. 18.
    J. Altmann, N.C. Handy, V.E. Ingamells, Int. J. Quantum Chem. 57, 533 (1996)CrossRefGoogle Scholar
  19. 19.
    B.R. Jursic, J. Comput. Chem. 17, 835 (1996)Google Scholar
  20. 20.
    R. Steudel, Y. Drozdova K. Miaskiewicz, R.H. Hertwig, W. Koch, J. Am. Chem. Soc. 119, 1990 (1997)CrossRefGoogle Scholar
  21. 21.
    D. Das, S.L. Whittenburg, J. Phys. Chem. A 103, 2134 (1999)CrossRefGoogle Scholar
  22. 22.
    B. Braida, P.C. Hiberty, J. Phys. Chem. A 107, 4741 (2003)CrossRefGoogle Scholar
  23. 23.
    D.W. Ball, J. Mol. Struct. (THEOCHEM) 676, 15 (2004)CrossRefGoogle Scholar
  24. 24.
    B.P. Prascher, A.K. Wilson, J. Mol. Struct. (THEOCHEM) 814, 1 (2007)CrossRefGoogle Scholar
  25. 25.
    F.R. Ornellas, Chem. Phys. Lett. 448, 24 (2007)CrossRefGoogle Scholar
  26. 26.
    Y. Zeng, X. Li, X. Zhang, S. Zheng, L. Meng, J. Mol. Struct. (THEOCHEM) 851, 115 (2008)CrossRefGoogle Scholar
  27. 27.
    E. Dumont, P.-F. Loos, X. Assfeld, Chem. Phys. Lett. 458, 276 (2008)CrossRefGoogle Scholar
  28. 28.
    G.S. Maciel, A.C.P. Bitencourt, M. Ragni, V. Aquilanti J. Phys. Chem. A 111, 12604 (2007)CrossRefGoogle Scholar
  29. 29.
    G.S. Maciel, A.C.P. Bitencourt, M. Ragni, V. Aquilanti, Int. J. Quant. Chem. 107, 2697 (2007)CrossRefGoogle Scholar
  30. 30.
    A.C.P. Bitencourt, M. Ragni, G.S. Maciel, V. Aquilanti, F.V. Prudente, J. Chem. Phys. 129, 154316 (2008)CrossRefGoogle Scholar
  31. 31.
    V. Aquilanti, M. Ragni, A.C.P. Bitencourt, G.S. Maciel, F.V. Prudente, J. Phys. Chem. A, 113, 3804 (2009)CrossRefGoogle Scholar
  32. 32.
    P.R.P Barreto, A.F.A. Vilela, A. Lombardi, G.S. Maciel, F. Palazzetti, V. Aquilanti, J. Phys. Chem. A 111, 154 (2007)CrossRefGoogle Scholar
  33. 33.
    G.S. Maciel, P.R.P. Barreto, F. Palazzetti, A. Lombardi, V. Aquilanti J. Chem. Phys. 129, 164302 (2008)CrossRefGoogle Scholar
  34. 34.
    P.R.P. Barreto, F. Palazzetti, G. Grossi, A. Lombardi, G.S. Maciel, A.F.A. Vilela, Int. J. Quantum Chem. in press (2009)Google Scholar
  35. 35.
    V. Aquilanti, G.S. Maciel, Orig. Life Evol. Biosph. 36, 435(2006)CrossRefGoogle Scholar
  36. 36.
    V. Aquilanti, G. Grossi, A. Lombardi, G.S. Maciel, F. Palazzetti, Phys. Scr. 78, 058119 (2008)CrossRefGoogle Scholar
  37. 37.
    M.J. Frisch et al. Gaussian 03, Revision C.02 (Gaussian, Inc. Wallingford, CT, 2004)Google Scholar
  38. 38.
    H. Oberhammer, J. Comput. Chem. 2, 123 (1998); S. Tonmunphean, V. Parasuk, A. Karpfen, J. Phys. Chem. A, 106, 438 (2002); S.C. Homitsky, S.M. Dragulin, L.M. Haynes, S. Hsieh, J. Phys. Chem A 108, 9492 (2004)CrossRefGoogle Scholar
  39. 39.
    J. Matthews, A. Sinha, J.S. Francisco, J. Chem. Phys. 122, 221101 (2005); J.D. Watts, J.S. Francisco, J. Chem. Phys. 125,104301 (2006)CrossRefGoogle Scholar
  40. 40.
    C.J. Marsden, B.J. Smith, J. Phys. Chem. 92, 347 (1988)CrossRefGoogle Scholar
  41. 41.
    D. Harmony, V.W. Laurie, R.L. Kuczkowski, R.H. Schwendeman, D.A. Ramsay, F.J. Lovas, W.J. Lafferty, A.G. Maki, J. Phys. Chem. 8, 619 (1979)Google Scholar
  42. 42.
    J. Koput, Chem. Phys. Lett. 259, 146 (1996)CrossRefGoogle Scholar
  43. 43.
    G. Winnewisser, M. Winnewisser, W. Gordy, J. Chem. Phys. 49, 3465 (1968)Google Scholar
  44. 44.
    K.B. Wiberg, J. Comput. Chem. 25, 1342 (2004)CrossRefGoogle Scholar
  45. 45.
    R.R.M. Moreno, A.M. Grana, R.A. Mosquera, Struct. Chem. 11, 9 (2000)CrossRefGoogle Scholar
  46. 46.
    D.R. Lide, Handbook of Chemistry and Physics, 0th ed. (CRC Press, Cambridge, MA, 2000)Google Scholar
  47. 47.
    J. Koput, Chem. Phys. Lett. 257, 36 (1996)CrossRefGoogle Scholar
  48. 48.
    A. Perrin, J.-M. Flaud, C. Camy-Peyret, R. Schermaul, M. Winnewisser, J.-Y. Mandin, V. Dana, M. Badaoui, J. Koput, J. Mol. Spectrosc. 176, 287 (1996)CrossRefGoogle Scholar
  49. 49.
    A.G. Steng, Chem. Rev.63, 607 (1967)CrossRefGoogle Scholar
  50. 50.
    G.N. Dolenko, E.N. Deryagina, L.P. Turchaninova, V.P. Elin, E.I. Basina, T.O. Pavlova, V.K. Voronov, J. Heteroat. Chem. 6, 623 (1995)Google Scholar
  51. 51.
    B.P. Winnewisser, M. Winnewisser, I.R. Medvedev, M. Behnke, F.C. De Lucia, S.C. Ross, J. Koput, Phys. Rev. Lett. 95, 243002 (2005)CrossRefGoogle Scholar
  52. 52.
    M. Quack, M. Willeke, J. Phys. Chem A 110, 3338 (2006)CrossRefGoogle Scholar
  53. 53.
    T.S. Dibbe, J.S. Francisco, J. Am. Chem. Soc. 119, 2894 (1997)CrossRefGoogle Scholar
  54. 54.
    Y. Li, J.S. Francisco, J. Chem. Phys. 113, 7976 (2000)CrossRefGoogle Scholar
  55. 55.
    S.A. Nizkorodov, P.O. Wennberg, J. Phys. Chem. A 106, 855 (2002)CrossRefGoogle Scholar
  56. 56.
    D.A. Dixon, D. Feller, C.-G. Zhan, J.S. Francisco, J. Phys. Chem. A 106, 3191 (2002)CrossRefGoogle Scholar
  57. 57.
    B.D. Bean, A.K. Mollner, S.A. Nizkorodov, G. Nair, M. Okumura, S.P. Sander, K.A. Petersos, J.S. Francisco, J. Phys. Chem. A 107, 6474 (2003)CrossRefGoogle Scholar
  58. 58.
    J. Matthews, A. Sinha, J. Chem. Phys. 122, 1043313 (2005)Google Scholar
  59. 59.
    M.P. McGrath, F.S. Rowland, J. Chem. Phys. 122, 134312(2005)CrossRefGoogle Scholar
  60. 60.
    R.H. Hunt, R.A. Leacock, C.W. Peters, K.T. Hecht, J. Chem. Phys. 42, 1931 (1965)CrossRefGoogle Scholar
  61. 61.
    B.A. Elligson, V.A. Lynch, S.L. Mielke, D.G. Truhlar, J. Chem. Phys. 125, 084305 (2006)CrossRefGoogle Scholar
  62. 62.
    G. Pelz, K.M.T. Yamada, G. Winnewisser, J. Mol. Spectrosc. 159, 507 (1993); K.M.T. Yamada, G. Winnewisser, P. Jensen, J. Mol. Struct. 695, 323 (2004); A. Bakasov, R. Berger, T.-K. Ha, M. Quack, Int. J. Quantum Chem. 99, 393407 (2004)CrossRefGoogle Scholar
  63. 63.
    G. Winnewisser, P. Jensen, J. Mol. Struct. 695, 323 (2004); P. Winnewisser, M. Winnewisser, I.R. Medvedev, M. Behnke, M. Winnewisser, B.P. Winnewisser, I.R. Medvedev, F.C. De Lucia, S.C. Ross, L.M. Bates, J. Mol. Struct. 798, 1 (2006)CrossRefGoogle Scholar
  64. 64.
    S.C. Ross, K.M.T. Yamada, Phys. Chem. Chem. Phys. 9, 5809 (2007)CrossRefGoogle Scholar
  65. 65.
    Y.-Y. Chuang, D.G. Truhlar, J. Chem. Phys. 112, 1221 (2000);121, 7036(E) (2004), 124, 179903(E) (2006)CrossRefGoogle Scholar
  66. 66.
    V.A. Lynch, S.L. Mielke, D.G. Truhlar, J. Chem. Phys, 121, 5148 (2004)CrossRefGoogle Scholar
  67. 67.
    V.A. Lynch, S.L. Mielke, D.G. Truhlar, J. Phys. Chem. A 109, 10092 (2005); 110, 5965 (2006)CrossRefGoogle Scholar
  68. 68.
    B.A. Ellingson, V.A. Lynch, S.L. Mielke, D.G. Truhlar, J. Chem. Phys. 125, 084305 (2006)CrossRefGoogle Scholar
  69. 69.
    Y.K. Sturdy, D.C. Clary, Phys. Chem. Chem. Phys. 9, 2065 (2007)CrossRefGoogle Scholar
  70. 70.
    Y.K. Sturdy, D.C. Clary, Phys. Chem. Chem. Phys. 9, 2397 (2007)CrossRefGoogle Scholar
  71. 71.
    F.V. Prudente, A. Riganelli, A.J.C. Varandas, J. Phys. Chem. A 105, 52 (2001)CrossRefGoogle Scholar
  72. 72.
    F.V. Prudente, A.J.C. Varandas, J. Phys. Chem. A 106, 6193 (2002)CrossRefGoogle Scholar
  73. 73.
    K.S. Pitzer, W.D. Gwinn, J. Chem. Phys. 10, 428 (1942)CrossRefGoogle Scholar
  74. 74.
    V. Aquilanti, E. Cornicchi, M.M. Teixidor, N. Saendig, F. Pirani, D. Cappelletti, Angew. Chem. Int. Edition 44, 2356 (2005)CrossRefGoogle Scholar
  75. 75.
    D. Cappelletti, A.F.A. Vilela, P.R.P. Barreto, R. Gargano, F. Pirani, V. Aquilanti, J. Chem. Phys. 125, 133111 (2006)CrossRefGoogle Scholar
  76. 76.
    D. Cappelletti, V. Aquilanti, E. Cornicchi, M.M. Teixidor, F. Pirani, J. Chem. Phys. 123, 024302 (2005)CrossRefGoogle Scholar
  77. 77.
    F. Pirani, G.S. Maciel, D. Cappelletti, V. Aquilanti Int. Rev. Phys. Chem. 25, 165 (2006)CrossRefGoogle Scholar
  78. 78.
    V. Aquilanti, D. Ascenzi, D. Cappelletti, S. Franceschini, F. Pirani, Phys. Rev. Lett. 74, 2929 (1995)CrossRefGoogle Scholar
  79. 79.
    V. Aquilanti, D. Ascenzi, D. Cappelletti, M. de Castro, F. Pirani, J. Chem. Phys. 109, 3898 (1998)CrossRefGoogle Scholar
  80. 80.
    V. Aquilanti, D. Cappelletti, F. Pirani, Chem. Phys. 209, 299 (1996)CrossRefGoogle Scholar
  81. 81.
    R. Cambi, D. Cappelletti, G. Liuti, F. Pirani, J. Chem. Phys. 95, 1852 (1991)CrossRefGoogle Scholar
  82. 82.
    F. Pirani, D. Cappelletti, G. Liuti, Chem. Phys. Lett. 350, 286 (2001)CrossRefGoogle Scholar
  83. 83.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1998)CrossRefGoogle Scholar
  84. 84.
    V. Aquilanti, D. Cappelletti, F. Pirani, L.F. Roncaratti, Int. J. Mass Spectrom. 280, 72 (2009)CrossRefGoogle Scholar
  85. 85.
    G.S. Maciel, D. Cappelletti, G. Grossi, F. Pirani, Adv. Quantum Chem. 55, 311 (2008)CrossRefGoogle Scholar
  86. 86.
    V. Aquilanti, D. Ascenzi, M. Bartolomei, D. Cappelletti, S. Cavalli, M. De Castro Vitores, F. Pirani, J. Am. Chem. Soc. 121, 10794 (1999)CrossRefGoogle Scholar
  87. 87.
    M.C. van Hemert, P.E.S. Wormer, A. van der Avoird, Phys. Rev. Lett. 51, 1167 (1993)CrossRefGoogle Scholar
  88. 88.
    S. Green, J. Chem. Phys. 62, 21 (1975)Google Scholar
  89. 89.
    V. Aquilanti, D. Cappelletti, F. Pirani, Chem. Phys. Lett. 271, 216 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Glauciete S. Maciel
    • 1
  • Ana Carla P. Bitencourt
    • 1
  • Mirco Ragni
    • 1
  • Gaia Grossi
    • 1
  • Vincenzo Aquilanti
    • 1
  1. 1.Dipartimento di ChimicaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations