Skip to main content

Shared Memory Parallelization of the Multiconfiguration Time-Dependent Hartree Method and Application to the Dynamics and Spectroscopy of the Protonated Water Dimer

  • Chapter
Advances in the Theory of Atomic and Molecular Systems

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 20))

Abstract

The Heidelberg multiconfiguration time-dependent Hartree (MCTDH) code for propagation of wavepackets is parallelized using shared memory techniques. A parallelization scheme based on a scheduler–worker approach is introduced. The performance of the parallel code is evaluated by benchmark tests. Using the parallelized version of the MCTDH code, the infrared absorption spectrum of the protonated water dimer \({\rm{H}}_5 {\rm{O}}_2^+\) is simulated in full dimensionality (15D) in the spectral range 0–4,000 cm-1. The middle spectral region, between 800 and 2,000 wavenumbers, is discussed and the couplings that shape this region of the spectrum are identified and explained, and the corresponding spectral lines are assigned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Brill, O. Vendrell, F. Gatti, H.-D. Meyer, in High Performance Computing in Science and Engineering 07, eds. by W.E. Nagel, D.B. Kröner, M. Resch (Springer, Heidelberg, 2008), pp. 141–156

    Google Scholar 

  2. C. Meier, U. Manthe, J. Chem. Phys. 115, 5477 (2001)

    Article  CAS  Google Scholar 

  3. J. Caillat, J. Zanghellini, A. Scrinzi, AURORA Technical Reports 19, 1 (2004)

    Google Scholar 

  4. H.-D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990)

    Article  CAS  Google Scholar 

  5. U. Manthe, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 97, 3199 (1992)

    Article  CAS  Google Scholar 

  6. M.H. Beck, A. Jäckle, G.A. Worth, H.-D. Meyer, Phys. Rep 324, 1 (2000)

    Article  CAS  Google Scholar 

  7. H.-D. Meyer, G.A. Worth, Theor. Chem. Acc. 109, 251 (2003)

    Article  CAS  Google Scholar 

  8. M.H. Beck, H.-D. Meyer, Z. Phys. D 42, 113 (1997)

    Article  CAS  Google Scholar 

  9. F. Otto, F. Gatti, H.-D. Meyer, J. Chem. Phys. 128, 064305 (2008)

    Article  Google Scholar 

  10. A.N. Panda, F. Otto, F. Gatti, H.-D. Meyer, J. Chem. Phys. 127, 114310 (2007)

    Article  Google Scholar 

  11. M.R. Brill, F. Gatti, D. Lauvergnat, H.-D. Meyer, Chem. Phys. 338, 186 (2007)

    Google Scholar 

  12. O. Vendrell, F. Gatti, D. Lauvergnat, H.-D. Meyer, J. Chem. Phys. 127, 184302 (2007)

    Article  Google Scholar 

  13. O. Vendrell, F. Gatti, H.-D. Meyer, J. Chem. Phys. 127, 184303 (2007)

    Article  Google Scholar 

  14. K.R. Asmis et al., Science 299, 1375 (2003)

    Article  CAS  Google Scholar 

  15. T.D. Fridgen et al., J. Phys. Chem. A 108, 9008 (2004)

    Article  CAS  Google Scholar 

  16. J.M. Headrick et al., Science 308, 1765 (2005)

    Article  CAS  Google Scholar 

  17. N.I. Hammer et al., J. Chem. Phys. 122, 244301 (2005)

    Article  Google Scholar 

  18. L. McCunn, J. Roscioli, M. Johnson, A. McCoy, J. Phys. Chem. B 112, 321 (2008)

    Article  CAS  Google Scholar 

  19. J. Dai et al., J. Chem. Phys. 119, 6571 (2003)

    Article  CAS  Google Scholar 

  20. X. Huang, B.J. Braams, J.M. Bowman, J. Chem. Phys. 122, 044308 (2005)

    Article  Google Scholar 

  21. A.B. McCoy et al., J. Chem. Phys. 122, 061101 (2005)

    Article  Google Scholar 

  22. O. Vendrell, F. Gatti, H.-D. Meyer, Angew. Chem. Int. Ed. 46, 6918 (2007)

    Article  CAS  Google Scholar 

  23. G.A. Worth, M.H. Beck, A. Jäckle, H.-D. Meyer, The {MCTDH} Package, Version 8.2 (2000) H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007); see http://mctdh.uni-hd.de/

    Google Scholar 

  24. G.G. Balint-Kurti, R.N. Dixon, C.C. Marston, J. Chem. Soc., Faraday Trans. 86, 1741 (1990)

    Article  CAS  Google Scholar 

  25. H.-D. Meyer, F. Le Quéré, C. Léonard, F. Gatti, Chem. Phys. 329, 179 (2006)

    Article  CAS  Google Scholar 

  26. M.V. Vener, O. Kühn, J. Sauer, J. Chem. Phys. 114, 240 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brill, M., Vendrell, O., Meyer, HD. (2009). Shared Memory Parallelization of the Multiconfiguration Time-Dependent Hartree Method and Application to the Dynamics and Spectroscopy of the Protonated Water Dimer. In: Piecuch, P., Maruani, J., Delgado-Barrio, G., Wilson, S. (eds) Advances in the Theory of Atomic and Molecular Systems. Progress in Theoretical Chemistry and Physics, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2985-0_4

Download citation

Publish with us

Policies and ethics