Advertisement

On the Electronic Spectra of a Molecular Bridge Under Non-Equilibrium Electric Potential Conditions

  • Alexander Prociuk
  • Barry D. Dunietz
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 20)

Abstract

The linear response of the electronic density of a molecular based junction under potential bias conditions to a probing polarizing perturbation is calculated to model the electronic spectra. It is shown that steady flux conditions lead to dramatic effects on the electronic spectra of the confined system. The non-equilibrium conditions enable electronic transitions that are otherwise forbidden. The implemented methodology uses the Keldysh contour formalism to express the electronic equations of motion. The related time correlation Green Functions are then solved for in the full frequency representation and at the linear response level.

Keywords

Non-equilibrium Green’s function Electronic spectra Electron dynamics Molecular conductance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Xue, S. Datta, M.A. Ratner, J. Chem. Phys. 115, 4292 (2001)CrossRefGoogle Scholar
  2. 2.
    P.S. Damle, A.W. Ghosh, S. Datta, Phys. Rev. B 64, 201403(R) (2001)CrossRefGoogle Scholar
  3. 3.
    J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)CrossRefGoogle Scholar
  4. 4.
    Y. Xue, S. Datta, M.A. Ratner, Chem. Phys 281, 151 (2002)CrossRefGoogle Scholar
  5. 5.
    P. Damle, A.W. Ghosh, F. Zahid, S. Datta, Chem. Phys. 171–187, 225 (2002)Google Scholar
  6. 6.
    Y. Xue, M.A. Ratner, Phys. Rev. B 68, 115406 (2003)CrossRefGoogle Scholar
  7. 7.
    M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Galperin, A. Nitzan, Ann. N.Y. Acad. Sci. 1006, 48 (2003)CrossRefGoogle Scholar
  9. 9.
    L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, C.J.P.M. Harmans, C.T. Foxon, Phys. Rev. Lett. 67(12), 1626 (1991).CrossRefGoogle Scholar
  10. 10.
    L.P. Kouwenhoven, S. Jauhar, K. McCormick, D. Dixon, P.L. McEuen, Y.V. Nazarov, N.C. van der Vaart, C.T. Foxon, Phys. Rev. B 50, 2019 (1994)CrossRefGoogle Scholar
  11. 11.
    B.J. Keay, S. Zeuner, S.J. Allen, K.D. Maranowski, A.C. Gossard, U. Bhattacharya, M.J.W. Rodwell, Phys. Rev. Lett. 75(22), 4102 (1995).CrossRefGoogle Scholar
  12. 12.
    T.H. Oosterkamp, L.P. Kouwenhoven, A.E.A. Koolen, N.C. van der Vaart, C.J.P.M. Harmans, Phys. Rev. Lett. 78(8), 1536 (1997)CrossRefGoogle Scholar
  13. 13.
    R. López, R. Aguado, G. Platero, C. Tejedor, Phys. Rev. Lett. 81, 4688 (1998)CrossRefGoogle Scholar
  14. 14.
    T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha, L.P. Kouwenhoven, Nature 395, 873 (1998)CrossRefGoogle Scholar
  15. 15.
    P. Nordlander, M. Pustilnik, Y. Meir, N.S. Wingreen, D.C. Langreth, Phys. Rev. Lett. 83, 808 (1999)CrossRefGoogle Scholar
  16. 16.
    L. DiCarlo, C.M. Marcus, J.S. Harris, Phys. Rev. Lett. 91(24), 246804 (2003)CrossRefGoogle Scholar
  17. 17.
    G. Platero, R. Aguado, Phys. Rep. 395, 1 (2004)CrossRefGoogle Scholar
  18. 18.
    M.G. Vavilov, L. DiCarlo, C.M. Marcus, Phys. Rev. B 71(24), 241309 (2005)CrossRefGoogle Scholar
  19. 19.
    P.J. Leek, M.R. Buitelaar, V.I. Talyanskii, C.G. Smith, D. Anderson, G.A.C. Jones, J. Wei, D.H. Cobden, Phys. Rev. Lett. 95, 256802 (2005)Google Scholar
  20. 20.
    B.H. Wu, J.C. Cao, Phys. Rev. B 73(20), 205318 (2006)CrossRefGoogle Scholar
  21. 21.
    T.H. Stoof, Y.V. Nazarov, Phys. Rev. B 53, 1050 (1996)CrossRefGoogle Scholar
  22. 22.
    C.A. Stafford, N.S. Wingreen, Phys. Rev. Lett. 76, 1916 (1996)CrossRefGoogle Scholar
  23. 23.
    P. Brune, C. Bruder, H. Schoeller, Phys. Rev. B 56, 4730 (1997)CrossRefGoogle Scholar
  24. 24.
    P.W. Brouwer, Phys. Rev. B 58(16), R10135 (1998)CrossRefGoogle Scholar
  25. 25.
    M. Switkes, C.M. Marcus, K. Campman, A.C. Gossard, Science 283, 1905 (1999)CrossRefGoogle Scholar
  26. 26.
    F. Zhou, B. Spivak, B. Altshuler, Phys. Rev. Lett. 82(3), 608 (1999)CrossRefGoogle Scholar
  27. 27.
    P.W. Brouwer, Phys. Rev. B 63(12), 121303 (2001)CrossRefGoogle Scholar
  28. 28.
    B. Wang, J. Wang, H. Guo, Phys. Rev. B 65(7), 073306 (2002)CrossRefGoogle Scholar
  29. 29.
    M. Moskalets, M. Büttiker, Phys. Rev. B 69, 205316 (2004)CrossRefGoogle Scholar
  30. 30.
    L. Arrachea, Phys. Rev. B 72, 121306 (2005)CrossRefGoogle Scholar
  31. 31.
    L. Arrachea, Phys. Rev. B 72, 125349 (2005)CrossRefGoogle Scholar
  32. 32.
    L.E.F.F. Torres, Phys. Rev. B 72, 245339 (2005)CrossRefGoogle Scholar
  33. 33.
    S. Kohler, J. Lehmann, P. Hanggi, Phys. Rep. 406, 379 (2005)CrossRefGoogle Scholar
  34. 34.
    A. Agarwal, D. Sen, Phys. Rev. B 76, 235316 (2007)CrossRefGoogle Scholar
  35. 35.
    L. Arrachea, C. Naon, M. Salvay, Phys. Rev. B 76, 165401 (2007)CrossRefGoogle Scholar
  36. 36.
    G. Stefanucci, S. Kurth, A. Rubio, E.K.U. Gross, Phys. Rev. B 77, 075339 (2008)CrossRefGoogle Scholar
  37. 37.
    A.M. Nowak, R.L. McCreery, J. Am. Chem. Soc. 126, 16621 (2004)Google Scholar
  38. 38.
    A.M. Nowak, R.L. McCreery, Anal. Chem. 76, 1089 (2004)CrossRefGoogle Scholar
  39. 39.
    A.P. Bonifas, R.L. McCreery, Chem. Mater. 20, 3849 (2008)CrossRefGoogle Scholar
  40. 40.
    D.R. Ward, N.J. Halas, J.W. Ciszek, J.M. Tour, Y. Wu, P. Nordlander, D. Natelson, Nano. Lett. 8, 919 (2008)CrossRefGoogle Scholar
  41. 41.
    D.R. Ward, G.D. Scott, Z.K. Keane, N.J. Halas, D. Natelson, J. Phys.-Cond. Mat. 20, 374118 (2008)CrossRefGoogle Scholar
  42. 42.
    G. Stefanucci, C.O. Almbladh, Phys. Rev. B 69, 195318 (2004)CrossRefGoogle Scholar
  43. 43.
    S. Kurth, G. Stefanucci, C.O. Almbladh, E.K.U. Rubio, A. Gross, Phys. Rev. B 72, 035308 (2005)CrossRefGoogle Scholar
  44. 44.
    J. Maciejko, J. Wang, H. Guo, Phys. Rev. B 74, 085324 (2006)CrossRefGoogle Scholar
  45. 45.
    A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)CrossRefGoogle Scholar
  46. 46.
    R. Baer, D. Neuhauser, Int. J. Quantum Chem. 91, 524 (2003)CrossRefGoogle Scholar
  47. 47.
    R. Baer, T. Seidman, S. Ilani, D. Neuhauser, J. Chem. Phys. 120, 3387 (2004)Google Scholar
  48. 48.
    R. Baer, D. Neuhauser, J. Chem. Phys. 121, 9803 (2004)CrossRefGoogle Scholar
  49. 49.
    D. Neuhauser, R. Baer, J. Chem. Phys. 123, 204105 (2005)CrossRefGoogle Scholar
  50. 50.
    N. Bushong, N. Sai, M. Di Ventra, Nano. Lett. 5, 2569 (2005)CrossRefGoogle Scholar
  51. 51.
    K. Burke, R. Car, R. Gebauer, Phys. Rev. Lett. 94, 146803 (2005)CrossRefGoogle Scholar
  52. 52.
    N. Sai, M. Zwolak, G. Vignale, M. Di Ventra, Phys. Rev. Lett. 94, 186810 (2005)CrossRefGoogle Scholar
  53. 53.
    C.L. Cheng, J.S. Evans, T. Van Voorhis, Phys. Rev. B 74, 155112 (2006)CrossRefGoogle Scholar
  54. 54.
    X. Qian, J. Ju Li, X. Lin, S. Yip, Phys. Rev. B 73, 035408 (2006)CrossRefGoogle Scholar
  55. 55.
    J. Lehmann, S. Kohler, P. Hänggi, A. Nitzan, Phys. Rev. Lett. 88, 228305 (2002)CrossRefGoogle Scholar
  56. 56.
    J. Lehmann, S. Kohler, P. Hanggi, A. Nitzan, J. Chem. Phys. 118, 3283 (2003)CrossRefGoogle Scholar
  57. 57.
    S. Camalet, J. Lehmann, S. Kohler, P. Hänggi, Phys. Rev. Lett. 90, 210602 (2003)CrossRefGoogle Scholar
  58. 58.
    M. Moskalets, M. Büttiker, Phys. Rev. B 69, 205316 (2004)CrossRefGoogle Scholar
  59. 59.
    S. Camalet, S. Kohler, P. Hänggi, Phys. Rev. B 70, 155326 (2004)CrossRefGoogle Scholar
  60. 60.
    L. Arrachea, Phys. Rev. B 72, 125349 (2005)CrossRefGoogle Scholar
  61. 61.
    L. Arrachea, M. Moskalets, Phys. Rev. B 74, 245322 (2006)CrossRefGoogle Scholar
  62. 62.
    A. Prociuk, B.D. Dunietz, Phys. Rev. B 78, 165112 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.The University of MichiganAnn ArborUSA

Personalised recommendations