Advertisement

Influence of the Level of Protonation on the Geometry and the Electronic Structure of Emeraldine Oligomers

  • Jasmina Petrova
  • Julia Romanova
  • Galia Madjarova
  • Anela Ivanova
  • Alia Tadjer
  • Natalia Gospodinova
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 20)

Abstract

A number of studies prove the existence of magnetically active states in polyaniline and claim polaronic nature of conductivity, but the molecular structure of polarons and bipolarons with account of the solvent effect has not been exhausted. Alongside with conductivity, the optical and magnetic properties of the polymer related to its practical application could be rationalized by the elucidation of this problem. The purpose of this chapter is the assessment of the degree of protonation on the spatial and electronic structure of hydrated polyaniline oligomers. Neutral and protonated emeraldine octamers are modeled to this end. UHF, UBLYP, and UB3LYP with 6-31G* basis set were employed for optimization of the geometry in aqueous medium (PCM). Various structural parameters: bond lengths, valence, and torsion angles, were analyzed and compared. The distribution of Mulliken and NBO charge density and Mulliken atomic spin density was discussed.

Keywords

Polyaniline (PANI) Protonation Solvent effect Polarons vs. bipolarons DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Wang, E. Scherr, A. MacDiarmid, A. Epstein, Phys. Rev. B 45, 4190 (1992)CrossRefGoogle Scholar
  2. 2.
    K. Mizoguchi, M. Nechtschein, J. Travers, Synth. Metals 41, 113 (1991)CrossRefGoogle Scholar
  3. 3.
    J. Rouleau, J. Goyette, T. Bose, R. Singh, R. Tandon, Phys. Rev. B 52, 4801 (1995)CrossRefGoogle Scholar
  4. 4.
    (a) W.J.M. Naber, S. Faez, W.G. van der Wiel, J. Phys. D: Appl. Phys. 40, R205 (2007); (b) G. Paasch, J. Electroanal. Chem. 600, 131 (2007); (c) F.M. Kelly, J.H. Johnston, T. Borrmann, M.J. Richardson, J. Nanosci. Nanotechnol. 8, 1965 (2008); (d) H.P. Huang, X.M. Feng, J.J. Zhu, Nanotechnology 19, 145607 (2008); (e) C.C. Wang, J.F. Song, H.M. Bao, Q.D. Shen, C.Z. Yang, Adv. Func, Mater. 18, 1299 (2008); (f) B.N. Grgur, V. Ristic, M.M. Gvozdenovic, M.D. Maksimovic, B.Z. Jugovic, J. Power Sources. 180, 635 (2008)Google Scholar
  5. 5.
    A.G. MacDiarmid, A.J. Epst?in, Faraday Discuss Chem. Soc. 88, 317 (1989)CrossRefGoogle Scholar
  6. 6.
    D.V. Petrov, A.S. Gomes, Cid B. de Araujo, J.M. de Souza, W.M. de Azevedo, J.V. de Melo, F.B. Diniz, Optics. Lett. 20, 554 (1995)Google Scholar
  7. 7.
    S. Chen, G. Hwang, Macromolecules 29, 3950 (1996)CrossRefGoogle Scholar
  8. 8.
    D. Bloor, Nature 335, 115 (1988)CrossRefGoogle Scholar
  9. 9.
    A.G. MacDiarmid, Synth. Metals 84, 27 (1997)CrossRefGoogle Scholar
  10. 10.
    G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, A.J. Heeger, Nature 357, 477 (1992)CrossRefGoogle Scholar
  11. 11.
    G.M. Tsivgoulis, J.M. Lehn, Adv. Mater. 9, 627 (1997)CrossRefGoogle Scholar
  12. 12.
    P. McManus, R. Cushman, S. Yang, J. Phys. Chem. 9, 744 (1987)CrossRefGoogle Scholar
  13. 13.
    (a) O. Aksimentyeva, O. Konopelnik, Mol. Cryst. Liq. Cryst. 427, 429 (2005); (b) D. Sarno, S. Manohar, A. MacDiarmid, Synth. Metals 148, 237 (2005); (c) C.G. Wu, S.S. Chang, J. Phys. Chem. B 109, 825 (2005)Google Scholar
  14. 14.
    M. Kulkarni, A. Viswanath, R. Marimuthu, T. Seth, Polym. Eng. Sci. 44, 1676 (2004)CrossRefGoogle Scholar
  15. 15.
    S. Sahoo, R. Nagarajan, S. Roy, L.A. Samuelson, J. Kumar, A.L. Cholli, Macromolecules 37, 4130 (2004)CrossRefGoogle Scholar
  16. 16.
    M.C. Bernard, A. Hugot-Le Goff, Electrochim. Acta 52, 595 (2006)CrossRefGoogle Scholar
  17. 17.
    V. Krinichnyi, S. Chemerisov, Y. Lebedev, Phys. Rev. B 55, 16233 (1997)CrossRefGoogle Scholar
  18. 18.
    A. Kon’kin, V. Shtyrlin, R. Garipov, A. Aganov, A. Zakharov, V. Krinichnyi, P. Adams, A. Monkman, Phys. Rev. B 66, 075203 (2002)CrossRefGoogle Scholar
  19. 19.
    A. Petr, A. Neudeck, L. Dunsch, Chem. Phys. Lett. 401, 130 (2005)CrossRefGoogle Scholar
  20. 20.
    (a) L. Ge, S. Li, T.F. George, X. Sun, Phys. Lett. A 372, 3375 (2008); (b) Y. Harima, F. Ogawa, R. Patil, X. Jiang, Electrochim. Acta 52, 3615 (2007)Google Scholar
  21. 21.
    P.K. Kahol, A. Raghunathan, B.J. McCormick, Synth. Metals 140, 261 (2004)CrossRefGoogle Scholar
  22. 22.
    (a) V. Prigodin, A. Samukhin, A. Epstein, Synth. Metals 141, 155 (2004); (b) J. Joo, S. Long, J. Pouget, E.J. Oh, A. MacDiarmid, A. Epstein, Phys. Rev. B 57, 9567 (1998); (c) R. Kohlman, A. Zibold, D. Tanner, G. Ihas, T. Ishiguro, Y. Min, A. MacDiarmid, A. Epstein, Phys. Rev. Lett. 78, 3915 (1997); (d) M. Angelopoulos, A. Ray, A. MacDiarmid, A. Epstein, Synth. Metals 21, 21 (1987)Google Scholar
  23. 23.
    Z.T. Oliveira Jr., M. dos Santos, Chem. Phys. 260, 95 (2000)CrossRefGoogle Scholar
  24. 24.
    J.P. Foreman, A.P. Monkman, J. Phys. Chem. A 107, 7604 (2003)CrossRefGoogle Scholar
  25. 25.
    (a) R.H. Baughman, J.F. Wolf, H. Eckhardt, L.W. Shaklette, Synth. Metals 25, 121 (1989); (b) L.W. Shaklette, J.F. Wolf, S. Gould, R.H. Baughman, J. Chem. Phys. 88, 3955 (1988); (c) M.P. Lima, G.M. Silva, J. Molec. Struct THEOCHEM 852, 15 (2008); (d) A. Varela-Àlvarez, J.A. Sordo, J. Chem. Phys. 128, 174706 (2008)Google Scholar
  26. 26.
    M. Schreiber, K. Tenelsenb, T. Vojta, J. Luminescence 66–67, 521 (1996)Google Scholar
  27. 27.
    (a) J.L. Bredas, C. Quattrocchi, J. Libert, A.G. MacDiarmid, J.M. Ginder, A.J. Epstein, Phys. Rev. B 44, 6002 (1991); (b) A.G. MacDiarmid, A.J. Epstein, Synth. Metals 69, 85 (1995); (c) S. Stafstroem, J.L. Bredas, A.J. Epstein, H.S. Woo, D.B. Tanner, W.S. Huang, A.G. MacDiarmid, Phys. Rev. Lett. 59, 1464 (1987)Google Scholar
  28. 28.
    D. Djurado, M. Bee, M. Gonzalez, C. Mondelli, B. Dufour, P. Rannou, A. Pron, J.P. Travers Chem. Phys. 292, 355 (2003)Google Scholar
  29. 29.
    (a) A. Kulikov, A. Komissarova, A. Ryabenko, L. Fokeeva, I. Shunina, O. Belonogova, Russ. Chem. Bull. 12, 2794 (2005); (b) A. Kulikov, V. Bogatyrenko, O. Belonogova, L. Fokeeva, A. Lebedev, T. Echmaeva, I. Shunina, Russ. Chem. Bull. 51, 2216 (2002)Google Scholar
  30. 30.
    B. Champagne, M. Spassova, Phys. Chem. Chem. Phys. 6, 3167 (2004)CrossRefGoogle Scholar
  31. 31.
    B. Grossmann, J. Heinze, T. Moll, C. Palivan, C. Ivan, G. Gescheidt, J. Phys. Chem. B 108, 4669 (2004)CrossRefGoogle Scholar
  32. 32.
    (a) C. Aleman, C.A. Ferreira, J. Torras, A. Meneguzzi, M. Canales, M.A.S. Rodrigues, J. Casanovas, Polymer 49, 5169 (2008); (b) S.L. Lim, K.L. Tan, E.T. Kang, W.S. Chin, J. Chem. Phys. 112, 10648 (2000)Google Scholar
  33. 33.
    J. Libert, J.L. Bredas, Synth. Metals 69, 121 (1995)CrossRefGoogle Scholar
  34. 34.
    G. Yang, W. Hou, X. Feng, X. Jiang, J. Guo, Int. J. Quant. Chem. 108, 1156 (2008)Google Scholar
  35. 35.
    A. Pecchia, A. Di Carlo, Rep. Prog. Phys. 67, 1497 (2004)CrossRefGoogle Scholar
  36. 36.
    E.A.A. Noh, J. Zhang, Chem. Phys. 330, 82 (2006)CrossRefGoogle Scholar
  37. 37.
    (a) H. Zhekova, A. Tadjer, A. Ivanova, J. Petrova, N. Gospodinova, Int. J. Quant. Chem. 107, 1688 (2007); (b) N. Gospodinova, S. Dorey, A. Ivanova, H. Zhekova, A. Tadjer, Int. J. Polym. Anal. Charact. 12, 251 (2007); (c) A. Ivanova, A. Tadjer, N. Gospodinova, J. Phys. Chem. B, 110, 2555 (2006); (d) A. Ivanova, G. Madjarova, A. Tadjer, N. Gospodinova, Int. J. Quant. Chem. 106, 1383 (2006)Google Scholar
  38. 38.
    (a) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005); (b) S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117, (1981)Google Scholar
  39. 39.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, revision D.01 (Gaussian Inc., Pittsburgh PA, 2004)Google Scholar
  40. 40.
    (a) Y. Yan, Z. Yu, Y.W. Huang, W.X. Yuan, Z.X. Wei, Adv. Mater. 19, 3353 (2007); (b) B. Jia, T, Hino, N. Kuramoto, Reactive Func. Polym. 67, 836 (2007); (c) J. Li, L.H. Zhu, W. Luo, Y. Liu, H.Q. Tang, J. Phys. Chem. C 111, 8383 (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jasmina Petrova
    • 1
  • Julia Romanova
    • 1
  • Galia Madjarova
    • 1
  • Anela Ivanova
    • 1
  • Alia Tadjer
    • 1
  • Natalia Gospodinova
    • 2
    • 3
  1. 1.Laboratory of Quantum and Computational Chemistry, Department of Physical Chemistry, Faculty of ChemistryUniversity of SofiaSofiaBulgaria
  2. 2.Laboratoire de Chimie Macromoleculaire, Ecole Nationale Superieure de Chimie de MulhouseMulhouse CedexFrance
  3. 3.Institut de Science des Matériaux de Mulhouse68057 Mulhouse CedexFrance

Personalised recommendations