Skip to main content

Toll-Like Receptors and Infectious Diseases: Role of Heat Shock Proteins

  • Chapter
  • First Online:
Book cover Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease

Part of the book series: Heat Shock Proteins ((HESP,volume 4))

  • 654 Accesses

Abstract

The innate immune system is the primary line of defence against invading pathogenic microbes. Toll like receptors (TLR) are a family of membrane receptors which play a pivotal role in sensing a wide range of invading pathogens including bacteria, fungi and viruses and enable host to recognize a large number of pathogen-associated molecular patterns (PAMP) such as bacterial lipopolysaccharides, viral RNA, CPG-containing DNA, and flagellin, among others. TLR mediate responses to host molecules, including defensin, ROS, HMGB 1 (high-mobility group box protein 1), surfactant protein A, fibrinogen, breakdown products of tissue matrix, eosinophil-derived neurotoxin (EDN) and heat shock proteins (HSP). Dysregulation of TLR signaling is linked with a number of disease conditions. In this review, we focus on the evidence provided to date to explain the role of TLR in host defense against microbial pathogens. The relationship between heat shock proteins (HSP) and Toll-like receptors (TLR) has only just begun to be elucidated. This chapter highlights the role of TLR1-11 in infectious diseases and discusses the emerging role of HSP and TLR in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787.

    Article  PubMed  CAS  Google Scholar 

  2. Akira, S. and Takeda, K. (2004a) Functions of toll-like receptors: lessons from KO mice. C R Biol 327, 581–589.

    Article  PubMed  CAS  Google Scholar 

  3. Akira, S. and Takeda, K. (2004b) Toll-like receptor signalling. Nat Rev Immunol 4, 499–511.

    Article  PubMed  CAS  Google Scholar 

  4. Anders, H. J., Banas, B. and Schlondorff, D. (2004) Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 15, 854–867.

    Article  PubMed  CAS  Google Scholar 

  5. Andersen-Nissen, E., Hawn, T. R., Smith, K. D., Nachman, A., Lampano, A. E., Uematsu, S., Akira, S. and Aderem, A. (2007) Cutting edge: Tlr5–/– mice are more susceptible to Escherichia coli urinary tract infection. J Immunol 178, 4717–4720.

    PubMed  CAS  Google Scholar 

  6. Anderson, K. V. (2000) Toll signaling pathways in the innate immune response. Curr Opin Immunol 12, 13–19.

    Article  PubMed  CAS  Google Scholar 

  7. Andrejeva, J., Childs, K. S., Young, D. F., Carlos, T. S., Stock, N., Goodbourn, S. and Randall, R. E. (2004) The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci USA 101, 17264–17269.

    Article  PubMed  CAS  Google Scholar 

  8. Aosai, F., Chen, M., Kang, H. K., Mun, H. S., Norose, K., Piao, L. X., Kobayashi, M., Takeuchi, O., Akira, S. and Yano, A. (2002) Toxoplasma gondii-derived heat shock protein HSP70 functions as a B cell mitogen. Cell Stress Chaperones 7, 357–364.

    Article  PubMed  CAS  Google Scholar 

  9. Archer, K. A. and Roy, C. R. (2006) MyD88-dependent responses involving toll-like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires’ disease. Infect Immun 74, 3325–3333.

    Article  PubMed  CAS  Google Scholar 

  10. Asea, A. (2003) Chaperokine-induced signal transduction pathways. Exerc Immunol Rev 9, 25–33.

    PubMed  Google Scholar 

  11. Asea, A. (2005) Stress proteins and initiation of immune response: chaperokine activity of hsp72. Exerc Immunol Rev 11, 34–45.

    PubMed  Google Scholar 

  12. Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C. and Calderwood, S. K. (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6, 435–442.

    Article  PubMed  CAS  Google Scholar 

  13. Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A. and Calderwood, S. K. (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277, 15028–15034.

    Article  PubMed  CAS  Google Scholar 

  14. Backhed, F., Rokbi, B., Torstensson, E., Zhao, Y., Nilsson, C., Seguin, D., Normark, S., Buchan, A. M. and Richter-Dahlfors, A. (2003) Gastric mucosal recognition of Helicobacter pylori is independent of Toll-like receptor 4. J Infect Dis 187, 829–836.

    Article  PubMed  Google Scholar 

  15. Bafica, A., Scanga, C. A., Feng, C. G., Leifer, C., Cheever, A. and Sher, A. (2005) TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202, 1715–1724.

    Article  PubMed  CAS  Google Scholar 

  16. Baker, B. S., Ovigne, J. M., Powles, A. V., Corcoran, S. and Fry, L. (2003) Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 148, 670–679.

    Article  PubMed  CAS  Google Scholar 

  17. Barton, G. M., Kagan, J. C. and Medzhitov, R. (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7, 49–56.

    Article  PubMed  CAS  Google Scholar 

  18. Basu, S. and Fenton, M. J. (2004) Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 286, L887–L892.

    Article  PubMed  CAS  Google Scholar 

  19. Bellocchio, S., Moretti, S., Perruccio, K., Fallarino, F., Bozza, S., Montagnoli, C., Mosci, P., Lipford, G. B., Pitzurra, L. and Romani, L. (2004) TLRs govern neutrophil activity in aspergillosis. J Immunol 173, 7406–7415.

    PubMed  CAS  Google Scholar 

  20. Biragyn, A., Ruffini, P. A., Leifer, C. A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A. K., Farber, J. M., Segal, D. M., Oppenheim, J. J. and Kwak, L. W. (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298, 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  21. Breloer, M., Dorner, B., More, S. H., Roderian, T., Fleischer, B. and von Bonin, A. (2001) Heat shock proteins as “danger signals”: eukaryotic Hsp60 enhances and accelerates antigen-specific IFN-gamma production in T cells. Eur J Immunol 31, 2051–2059.

    Article  PubMed  CAS  Google Scholar 

  22. Bulut, Y., Faure, E., Thomas, L., Equils, O. and Arditi, M. (2001) Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 167, 987–994.

    PubMed  CAS  Google Scholar 

  23. Cario, E. and Podolsky, D. K. (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68, 7010–7017.

    Article  PubMed  CAS  Google Scholar 

  24. Caron, G., Duluc, D., Fremaux, I., Jeannin, P., David, C., Gascan, H. and Delneste, Y. (2005) Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells. J Immunol 175, 1551–1557.

    PubMed  CAS  Google Scholar 

  25. Chaudhuri, N., Dower, S. K., Whyte, M. K. and Sabroe, I. (2005) Toll-like receptors and chronic lung disease. Clin Sci (Lond) 109, 125–133.

    Article  CAS  Google Scholar 

  26. Coban, C., Ishii, K. J., Kawai, T., Hemmi, H., Sato, S., Uematsu, S., Yamamoto, M., Takeuchi, O., Itagaki, S., Kumar, N., Horii, T. and Akira, S. (2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201, 19–25.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen-Sfady, M., Nussbaum, G., Pevsner-Fischer, M., Mor, F., Carmi, P., Zanin-Zhorov, A., Lider, O. and Cohen, I. R. (2005) Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol 175, 3594–3602.

    PubMed  CAS  Google Scholar 

  28. Cook, E. B., Stahl, J. L., Esnault, S., Barney, N. P. and Graziano, F. M. (2005) Toll-like receptor 2 expression on human conjunctival epithelial cells: a pathway for Staphylococcus aureus involvement in chronic ocular proinflammatory responses. Ann Allergy Asthma Immunol 94, 486–497.

    Article  PubMed  CAS  Google Scholar 

  29. Cooke, A., Zaccone, P., Raine, T., Phillips, J. M. and Dunne, D. W. (2004) Infection and autoimmunity: are we winning the war, only to lose the peace? Trends Parasitol 20, 316–321.

    Article  PubMed  Google Scholar 

  30. Creagh, E. M. and O’Neill, L. A. (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27, 352–357.

    Article  PubMed  CAS  Google Scholar 

  31. Curry, J. L., Qin, J. Z., Bonish, B., Carrick, R., Bacon, P., Panella, J., Robinson, J. and Nickoloff, B. J. (2003) Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 127, 178–186.

    PubMed  CAS  Google Scholar 

  32. Delneste, Y., Magistrelli, G., Gauchat, J., Haeuw, J., Aubry, J., Nakamura, K., Kawakami-Honda, N., Goetsch, L., Sawamura, T., Bonnefoy, J. and Jeannin, P. (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17, 353–362.

    Article  PubMed  CAS  Google Scholar 

  33. Drennan, M. B., Nicolle, D., Quesniaux, V. J., Jacobs, M., Allie, N., Mpagi, J., Fremond, C., Wagner, H., Kirschning, C. and Ryffel, B. (2004) Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 164, 49–57.

    PubMed  CAS  Google Scholar 

  34. Dybdahl, B., Wahba, A., Lien, E., Flo, T. H., Waage, A., Qureshi, N., Sellevold, O. F., Espevik, T. and Sundan, A. (2002) Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 105, 685–690.

    Article  PubMed  CAS  Google Scholar 

  35. Echchannaoui, H., Frei, K., Schnell, C., Leib, S. L., Zimmerli, W. and Landmann, R. (2002) Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 186, 798–806.

    Article  PubMed  CAS  Google Scholar 

  36. Edelmann, K. H., Richardson-Burns, S., Alexopoulou, L., Tyler, K. L., Flavell, R. A. and Oldstone, M. B. (2004) Does Toll-like receptor 3 play a biological role in virus infections? Virology 322, 231–238.

    Article  PubMed  CAS  Google Scholar 

  37. Eder, W., Klimecki, W., Yu, L., von Mutius, E., Riedler, J., Braun-Fahrlander, C., Nowak, D. and Martinez, F. D. (2004) Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 113, 482–488.

    Article  PubMed  CAS  Google Scholar 

  38. Feuillet, V., Medjane, S., Mondor, I., Demaria, O., Pagni, P. P., Galan, J. E., Flavell, R. A. and Alexopoulou, L. (2006) Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci USA 103, 12487–12492.

    Article  PubMed  CAS  Google Scholar 

  39. Finberg, R. W., Re, F., Popova, L., Golenbock, D. T. and Kurt-Jones, E. A. (2004) Cell activation by Toll-like receptors: role of LBP and CD14. J Endotoxin Res 10, 413–418.

    PubMed  CAS  Google Scholar 

  40. Franchimont, D., Vermeire, S., El Housni, H., Pierik, M., Van Steen, K., Gustot, T., Quertinmont, E., Abramowicz, M., Van Gossum, A., Deviere, J. and Rutgeerts, P. (2004) Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 53, 987–992.

    Article  PubMed  CAS  Google Scholar 

  41. Frantz, S., Kelly, R. A. and Bourcier, T. (2001) Role of TLR-2 in the activation of nuclear factor κB by oxidative stress in cardiac myocytes. J Biol Chem 276, 5197–5203.

    Article  PubMed  CAS  Google Scholar 

  42. Gelman, A. E., Zhang, J., Choi, Y. and Turka, L. A. (2004) Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol 172, 6065–6073.

    PubMed  CAS  Google Scholar 

  43. Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. and Madara, J. L. (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167, 1882–1885.

    PubMed  CAS  Google Scholar 

  44. Guillot, L., Balloy, V., McCormack, F. X., Golenbock, D. T., Chignard, M. and Si-Tahar, M. (2002) Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 168, 5989–5992.

    PubMed  CAS  Google Scholar 

  45. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H. and Bauer, S. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529.

    Article  PubMed  CAS  Google Scholar 

  46. Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K. and Akira, S. (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3, 196–200.

    Article  PubMed  CAS  Google Scholar 

  47. Hirschfeld, M., Ma, Y., Weis, J. H., Vogel, S. N. and Weis, J. J. (2000) Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165, 618–622.

    PubMed  CAS  Google Scholar 

  48. Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J. P., Belaiche, J., Almer, S., Tysk, C., O’Morain, C. A., Gassull, M., Binder, V., Finkel, Y., Cortot, A., Modigliani, R., Laurent-Puig, P., Gower-Rousseau, C., Macry, J., Colombel, J. F., Sahbatou, M. and Thomas, G. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411, 599–603.

    Article  PubMed  CAS  Google Scholar 

  49. Ishihara, S., Rumi, M. A., Kadowaki, Y., Ortega-Cava, C. F., Yuki, T., Yoshino, N., Miyaoka, Y., Kazumori, H., Ishimura, N., Amano, Y. and Kinoshita, Y. (2004) Essential role of MD-2 in TLR4-dependent signaling during Helicobacter pylori-associated gastritis. J Immunol 173, 1406–1416.

    PubMed  CAS  Google Scholar 

  50. Janeway, C. A. J. (1999) Lipoproteins tale their toll on the host. Curr Biol 9, R879–R882.

    Article  PubMed  CAS  Google Scholar 

  51. Kataoka, K., Muta, T., Yamazaki, S. and Takeshige, K. (2002) Activation of macrophages by linear (→3)-beta-D-glucans. Implications for the recognition of fungi by innate immunity. J Biol Chem 277, 36825–36831.

    Article  PubMed  CAS  Google Scholar 

  52. Katz, J., Zhang, P., Martin, M., Vogel, S. N. and Michalek, S. M. (2006) Toll-like receptor 2 is required for inflammatory responses to Francisella tularensis LVS. Infect Immun 74, 2809–2816.

    Article  PubMed  CAS  Google Scholar 

  53. Khor, C. C., Chapman, S. J., Vannberg, F. O., Dunne, A., Murphy, C., Ling, E. Y., Frodsham, A. J., Walley, A. J., Kyrieleis, O., Khan, A., Aucan, C., Segal, S., Moore, C. E., Knox, K., Campbell, S. J., Lienhardt, C., Scott, A., Aaby, P., Sow, O. Y., Grignani, R. T., Sillah, J., Sirugo, G., Peshu, N., Williams, T. N., Maitland, K., Davies, R. J., Kwiatkowski, D. P., Day, N. P., Yala, D., Crook, D. W., Marsh, K., Berkley, J. A., O’Neill, L. A. and Hill, A. V. (2007) A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39, 523–528.

    Article  PubMed  CAS  Google Scholar 

  54. Kim, J., Ochoa, M. T., Krutzik, S. R., Takeuchi, O., Uematsu, S., Legaspi, A. J., Brightbill, H. D., Holland, D., Cunliffe, W. J., Akira, S., Sieling, P. A., Godowski, P. J. and Modlin, R. L. (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169, 1535–1541.

    PubMed  CAS  Google Scholar 

  55. Komai-Koma, M., Jones, L., Ogg, G. S., Xu, D. and Liew, F. Y. (2004) TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci USA 101, 3029–3034.

    Article  PubMed  CAS  Google Scholar 

  56. Kopp, E. B. and Medzhitov, R. (1999) The Toll-receptor family and control of innate immunity. Curr Opin Immunol 11, 13–18.

    Article  PubMed  CAS  Google Scholar 

  57. Krieg, A. M. (2000) The role of CpG motifs in innate immunity. Curr Opin Immunol 12, 35–43.

    Article  PubMed  CAS  Google Scholar 

  58. Krug, A., French, A. R., Barchet, W., Fischer, J. A., Dzionek, A., Pingel, J. T., Orihuela, M. M., Akira, S., Yokoyama, W. M. and Colonna, M. (2004) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119.

    Article  PubMed  CAS  Google Scholar 

  59. Krutzik, S. R., Ochoa, M. T., Sieling, P. A., Uematsu, S., Ng, Y. W., Legaspi, A., Liu, P. T., Cole, S. T., Godowski, P. J., Maeda, Y., Sarno, E. N., Norgard, M. V., Brennan, P. J., Akira, S., Rea, T. H. and Modlin, R. L. (2003) Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 9, 525–532.

    Article  PubMed  CAS  Google Scholar 

  60. Kurt-Jones, E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., Walsh, E. E., Freeman, M. W., Golenbock, D. T., Anderson, L. J. and Finberg, R. W. (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1, 398–401. taf

    Article  PubMed  CAS  Google Scholar 

  61. Lehmann, J., Retz, M., Harder, J., Krams, M., Kellner, U., Hartmann, J., Hohgrawe, K., Raffenberg, U., Gerber, M., Loch, T., Weichert-Jacobsen, K. and Stockle, M. (2002) Expression of human beta-defensins 1 and 2 in kidneys with chronic bacterial infection. BMC Infect Dis 2, 20.

    Article  PubMed  Google Scholar 

  62. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. and Hoffmann, J. A. (1996a) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983.

    Article  PubMed  CAS  Google Scholar 

  63. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. and Hoffmann, J. A. (1996b) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983.

    Article  PubMed  CAS  Google Scholar 

  64. Liew, F. Y., Xu, D., Brint, E. K. and O’Neill, L. A. (2005) Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 5, 446–458.

    Article  PubMed  CAS  Google Scholar 

  65. Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N. C., Gale, N. W., Iwasaki, A. and Flavell, R. A. (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101, 5598–5603.

    Article  PubMed  CAS  Google Scholar 

  66. Malley, R., Henneke, P., Morse, S. C., Cieslewicz, M. J., Lipsitch, M., Thompson, C. M., Kurt-Jones, E., Paton, J. C., Wessels, M. R. and Golenbock, D. T. (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 100, 1966–1971.

    Article  PubMed  CAS  Google Scholar 

  67. Mandell, L., Moran, A. P., Cocchiarella, A., Houghton, J., Taylor, N., Fox, J. G., Wang, T. C. and Kurt-Jones, E. A. (2004) Intact gram-negative Helicobacter pylori, Helicobacter felis, and Helicobacter hepaticus bacteria activate innate immunity via toll-like receptor 2 but not toll-like receptor 4. Infect Immun 72, 6446–6454.

    Article  PubMed  CAS  Google Scholar 

  68. More, S. H., Breloer, M. and von Bonin, A. (2001) Eukaryotic heat shock proteins as molecular links in innate and adaptive immune responses: Hsp60-mediated activation of cytotoxic T cells. Int Immunol 13, 1121–1127.

    Article  PubMed  CAS  Google Scholar 

  69. Muzio, M. and Mantovani, A. (2000) Toll-like receptors. Microbes Infect. 2, 251–255.

    Article  PubMed  CAS  Google Scholar 

  70. Netea, M. G., Sutmuller, R., Hermann, C., Van der Graaf, C. A., Van der Meer, J. W., van Krieken, J. H., Hartung, T., Adema, G. and Kullberg, B. J. (2004a) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172, 3712–3718.

    PubMed  CAS  Google Scholar 

  71. Netea, M. G., Van der Graaf, C., Van der Meer, J. W. and Kullberg, B. J. (2004b) Recognition of fungal pathogens by Toll-like receptors. Eur J Clin Microbiol Infect Dis 23, 672–676.

    Article  PubMed  CAS  Google Scholar 

  72. Okamura, Y., Watari, M., Jerud, E. S., Young, D. W., Ishizaka, S. T., Rose, J., Chow, J. C. and Strauss, J. F., 3rd (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276, 10229–10233.

    Article  PubMed  CAS  Google Scholar 

  73. Oppenheim, J. J. and Yang, D. (2005) Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17, 359–365.

    Article  PubMed  CAS  Google Scholar 

  74. Osterloh, A., Meier-Stiegen, F., Veit, A., Fleischer, B., von Bonin, A. and Breloer, M. (2004) Lipopolysaccharide-free heat shock protein 60 activates T cells. Journal of Biological Chemistry 279, 47906–47911.

    Article  PubMed  CAS  Google Scholar 

  75. Park, J. S., Svetkauskaite, D., He, Q., Kim, J. Y., Strassheim, D., Ishizaka, A. and Abraham, E. (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279, 7370–7377.

    Article  PubMed  CAS  Google Scholar 

  76. Parroche, P., Lauw, F. N., Goutagny, N., Latz, E., Monks, B. G., Visintin, A., Halmen, K. A., Lamphier, M., Olivier, M., Bartholomeu, D. C., Gazzinelli, R. T. and Golenbock, D. T. (2007) Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA 104, 1919–1924.

    Article  PubMed  CAS  Google Scholar 

  77. Perera, P. Y., Mayadas, T. N., Takeuchi, O., Akira, S., Zaks-Zilberman, M., Goyert, S. M. and Vogel, S. N. (2001) CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J Immunol 166, 574–581.

    PubMed  CAS  Google Scholar 

  78. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. and Bazan, J. F. (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95, 588–593.

    Article  PubMed  CAS  Google Scholar 

  79. Rodriguez, N., Wantia, N., Fend, F., Durr, S., Wagner, H. and Miethke, T. (2006) Differential involvement of TLR2 and TLR4 in host survival during pulmonary infection with Chlamydia pneumoniae. Eur J Immunol 36, 1145–1155.

    Article  PubMed  CAS  Google Scholar 

  80. Schmausser, B., Andrulis, M., Endrich, S., Muller-Hermelink, H. K. and Eck, M. (2005) Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. Int J Med Microbiol 295, 179–185.

    Article  PubMed  CAS  Google Scholar 

  81. Shapiro, S. D., Campbell, E. J., Kobayashi, D. K. and Welgus, H. G. (1991) Dexamethasone selectively modulates basal and lipopolysaccharide-induced metalloproteinase and tissue inhibitor of metalloproteinase production by human alveolar macrophages. J Immunol 146, 2724–2729.

    PubMed  CAS  Google Scholar 

  82. Shoham, S., Huang, C., Chen, J. M., Golenbock, D. T. and Levitz, S. M. (2001) Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 166, 4620–4626.

    PubMed  CAS  Google Scholar 

  83. Sitaraman, S. V., Klapproth, J. M., Moore, D. A., 3rd, Landers, C., Targan, S., Williams, I. R. and Gewirtz, A. T. (2005) Elevated flagellin-specific immunoglobulins in Crohn’s disease. Am J Physiol Gastrointest Liver Physiol 288, G403–G406.

    Article  PubMed  CAS  Google Scholar 

  84. Smiley, S. T., King, J. A. and Hancock, W. W. (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167, 2887–2894.

    PubMed  CAS  Google Scholar 

  85. Strober, W., Murray, P. J., Kitani, A. and Watanabe, T. (2006) Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6, 9–20.

    Article  PubMed  CAS  Google Scholar 

  86. Sugawara, I., Yamada, H., Li, C., Mizuno, S., Takeuchi, O. and Akira, S. (2003) Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol Immunol 47, 327–336.

    PubMed  CAS  Google Scholar 

  87. Takeda, K. and Akira, S. (2005) Toll-like receptors in innate immunity. Int Immunol 17, 1–14.

    Article  PubMed  CAS  Google Scholar 

  88. Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L. and Akira, S. (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169, 10–14.

    PubMed  CAS  Google Scholar 

  89. Termeer, C., Benedix, F., Sleeman, J., Fieber, C., Voith, U., Ahrens, T., Miyake, K., Freudenberg, M., Galanos, C. and Simon, J. C. (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195, 99–111.

    Article  PubMed  CAS  Google Scholar 

  90. Torok, H. P., Glas, J., Tonenchi, L., Mussack, T. and Folwaczny, C. (2004) Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol 112, 85–91.

    Article  PubMed  CAS  Google Scholar 

  91. Trinchieri, G. and Sher, A. (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7, 179–190.

    Article  PubMed  CAS  Google Scholar 

  92. Tsan, M. F. and Gao, B. (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76, 514–519.

    Article  PubMed  CAS  Google Scholar 

  93. Tsuboi, N., Yoshikai, Y., Matsuo, S., Kikuchi, T., Iwami, K., Nagai, Y., Takeuchi, O., Akira, S. and Matsuguchi, T. (2002) Roles of toll-like receptors in C-C chemokine production by renal tubular epithelial cells. J Immunol 169, 2026–2033.

    PubMed  CAS  Google Scholar 

  94. Underhill, D. M., Ozinsky, A., Smith, K. D. and Aderem, A. (1999) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 96, 14459–14463.

    Article  PubMed  CAS  Google Scholar 

  95. Vabulas, R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C. J., Issels, R. D. and Wagner, H. (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277, 15107–15112.

    Article  PubMed  CAS  Google Scholar 

  96. Wang, T., Town, T., Alexopoulou, L., Anderson, J. F., Fikrig, E. and Flavell, R. A. (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10, 1366–1373.

    Article  PubMed  CAS  Google Scholar 

  97. West, A. P., Koblansky, A. A. and Ghosh, S. (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22, 409–437.

    Article  PubMed  CAS  Google Scholar 

  98. Wild, J. S., Choudhury, B. K. and Sur, S. (2000) CpG DNA modulation of allergic asthma. Isr Med Assoc J 2 Suppl, 13–15.

    PubMed  CAS  Google Scholar 

  99. Yarovinsky, F., Zhang, D., Andersen, J. F., Bannenberg, G. L., Serhan, C. N., Hayden, M. S., Hieny, S., Sutterwala, F. S., Flavell, R. A., Ghosh, S. and Sher, A. (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629.

    Article  PubMed  CAS  Google Scholar 

  100. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S. and Fujita, T. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730–737.

    Article  PubMed  CAS  Google Scholar 

  101. Zanin-Zhorov, A., Nussbaum, G., Franitza, S., Cohen, I. R. and Lider, O. (2003) T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J 17, 1567–1569.

    PubMed  CAS  Google Scholar 

  102. Zhang, D., Zhang, G., Hayden, M. S., Greenblatt, M. B., Bussey, C., Flavell, R. A. and Ghosh, S. (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang, G. and Ghosh, S. (2001) Toll-like receptor-mediated NF-κB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107, 13–19.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Scott & White Proteomics Core Facility. This work was supported in part by the National Institute of Health grant RO1CA91889 and Institutional support from the Department of Pathology Scott & White Memorial Hospital and Clinic, the Texas A&M Health Science Center, College of Medicine, the Central Texas Veterans Health Administration and an Endowment from the Cain Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexzander Asea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Netherlands

About this chapter

Cite this chapter

Kaur, P., Asea, A. (2009). Toll-Like Receptors and Infectious Diseases: Role of Heat Shock Proteins. In: Pockley, A., Calderwood, S., Santoro, M. (eds) Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease. Heat Shock Proteins, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2976-8_8

Download citation

Publish with us

Policies and ethics