Skip to main content

Plant RNAi and Crop Improvement

  • Chapter
  • First Online:
Molecular Techniques in Crop Improvement
  • 2560 Accesses

Abstract

RNA interference (RNAi) is a sequence-specific gene silencing technology that is mediated by small interfering RNAs (siRNAs) as a guide of RNA cleavage, translational inhibition and DNA methylation. Most plant RNAi vectors produce hairpin RNAs that are immediately processed into double-stranded siRNAs. RNAi technology has been applied in the genetic engineering of important plant metabolites including starches, oils and storage proteins. RNAi is also useful for preventing plants from viral infection. Since siRNAs (or their precursor, double-stranded RNAs) can be transferred from plants to plant-feeding pests, RNAi has been used to engineer plants resistant to nematodes and insects. In this chapter, several RNAi applications concerning crop improvement are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aelbrecht T, Vuylsteke M, Bauwens M et al (2006) Introduction of silencing-inducing transgenes does not affect expression of known transcripts. FEBS Lett 580:4154–4159

    Article  PubMed  CAS  Google Scholar 

  • Andersson M, Melander M, Pojmark P et al (2006) Targeted gene suppression by RNA interference: an efficient method for production of high-amylose potato lines. J Biotechnol 123:137–148

    Article  PubMed  CAS  Google Scholar 

  • Anjum FM, Khan MR, Din A et al (2007) Wheat gluten: high molecular weight glutenin subunits- structure, genetics, and relation to dough elasticity. J Food Sci 72:R56-R63

    Article  CAS  Google Scholar 

  • Ashihara H, Sano H, Crozier A (2008) Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69:841–856

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruum-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Bucher E, Lohuis D, van Poppel PMJA et al (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3679–3701

    Article  CAS  Google Scholar 

  • Butaye KMJ, Goderis IJWM, Wouters PFJ et al (2004) Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J 39:440–449

    Article  PubMed  CAS  Google Scholar 

  • Canto T, Cillo F, Palukaitis P (2002) Generation of siRNAs by T-DNA sequences does not require active transcription or homology to sequences in the plant. Mol Plant Microbe Interact 15:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Cheung F, Haas BJ, Goldberg SMD et al (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7:272

    Article  PubMed  CAS  Google Scholar 

  • Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Davuluri GR, van Tuinen A, Fraser PD et al (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  PubMed  CAS  Google Scholar 

  • Di Nicola-Negri E, Brunetti A et al (2005) Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-pro genes for efficient and predictable resistance to the virus. Transgenic Res 14:989–994

    Article  PubMed  CAS  Google Scholar 

  • Dodo HW, Konan KN, Chen FC et al (2008) Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J 6:135–145

    Article  PubMed  CAS  Google Scholar 

  • Douchkov D, Nowara D et al (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant Microbe Interact 18:755–761

    Article  PubMed  CAS  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2006) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38:258–263

    Article  PubMed  CAS  Google Scholar 

  • Dunoyer P, Himber C, Ruiz-Ferrer V et al (2007) Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat Genet 39:848–856

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Flores T, Karpova O, Su X et al (2008) Silencing of GmFAD3 gene by siRNA leads to low α-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res 17:839–850

    Article  PubMed  CAS  Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  PubMed  CAS  Google Scholar 

  • Fusaro AF, Matthew L, Smith NA et al (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Vanholme B (2006) RNAi from plants to nematodes. Trends Biotechnol 25:89–92

    Article  CAS  Google Scholar 

  • Gilissen LJ, Bolhaar ST, Matos CI et al (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Kobori T, Kosaka Y et al (2007) Characterization of silencing suppressor 2b of Cucumber mosaic virus based on examination of its small RNA-binding abilities. Plant Cell Physiol 48:1050–1060

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–953

    Article  PubMed  CAS  Google Scholar 

  • Heilersig HJB, Loonen A, Bergervoet M et al (2006) Post-transcriptional gene silencing of GBSSI in potato: effects of size and sequence of the inverted repeats. Plant Mol Biol 60:647–662

    Article  PubMed  CAS  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295

    Article  PubMed  CAS  Google Scholar 

  • Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46:101–123

    Article  PubMed  CAS  Google Scholar 

  • Hilson P, Allemeersch J, Altmann T et al (2004) Versatile gene-specificsequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14:2176–2189

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Zierold U, Hensel G et al (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145:1192–1200

    Article  PubMed  CAS  Google Scholar 

  • Hirai S, Kodama H (2008) RNAi vectors for manipulation of gene expression in higher plants. Open Plant Sci J 2:31–40

    Article  CAS  Google Scholar 

  • Hirai S, Oka S et al (2007) The effects of spacer sequences on silencing efficiency of plant RNAi vectors. Plant Cell Rep 26:651–659

    Article  PubMed  CAS  Google Scholar 

  • Houmard NM, Mainville JL, Bonin CP et al (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5:605–614

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Allen R, Davis E et al (2006a) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103:14302–14306

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Frizzi A, Florida CA et al (2006b) High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD α-zeins. Plant Mol Biol 61:525–535

    Article  PubMed  CAS  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  PubMed  CAS  Google Scholar 

  • Jobling S (2004) Improved starch for food and industrial applications. Curr Opin Plant Biol 7:210–218

    Article  PubMed  CAS  Google Scholar 

  • Kalantidis K, Psaradakis S et al (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15:826–833

    Article  PubMed  CAS  Google Scholar 

  • Kamachi S, Mochizuki A et al (2007) Transgenic Nicotiana benthamiana plants resistant to cucumber green mottle mosaic virus based on RNA silencing. Plant Cell Rep 26:1283–1288

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Huettel B, Mette MF et al (2005) Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37:761–765

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Kim KN, Fisher DK et al (1998) Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize. Plant Mol Biol 38:945–956

    Article  PubMed  CAS  Google Scholar 

  • Le LQ, Lorenz Y, Scheurer S et al (2006a) Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J 4:231–242

    Article  PubMed  CAS  Google Scholar 

  • Le LQ, Mahler V, Lorenz Y et al (2006b) Reduced allergenicity of tomato fruits harvested from Lyc e 1-silenced transgenic tomato plants. J Allergy Clin Immunol 118:1176–1183

    Article  PubMed  CAS  Google Scholar 

  • Levin I, Frankel P, Gilboa N et al (2003) The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor Appl Genet 106:454–460

    PubMed  CAS  Google Scholar 

  • Lippman Z, May B, Yordan C et al (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol 1:420–428

    Article  CAS  Google Scholar 

  • Liu Q, Singh SP, Green AG (2002) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732–1743

    Article  PubMed  CAS  Google Scholar 

  • Lózsa R, Csorba T et al (2008) Inhibition of 3’ modification of small RNAs in virus-infected plants require spatial and temporal co-expression of small RNAs and viral silencing-suppressor proteins. Nucleic Acids Res 36:4099–4107

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Cai W, Wang J et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Kanno T, Huettel B et al (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512–519

    Article  PubMed  CAS  Google Scholar 

  • Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5’ terminal nucleotide. Cell 133:116–127

    Article  PubMed  CAS  Google Scholar 

  • Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490–495

    Article  PubMed  CAS  Google Scholar 

  • Mlotshwa S, Pruss GJ, Peragine A et al (2008) DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS ONE 3:e1755

    Article  CAS  Google Scholar 

  • Napier JA (2007) The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol 58:295–319

    Article  PubMed  CAS  Google Scholar 

  • Niu QW, Lin SS, Reyes JL et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y et al (2003) Producing decaffeinated coffee plants. Nature 423:823

    Article  PubMed  CAS  Google Scholar 

  • Ogita S, Uefuji H et al (2004) Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54:931–941

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  CAS  Google Scholar 

  • Otani M, Hamada T, Katayama K et al (2007) Inhibition of the gene expression for granule-bound starch synthase I by RNA interference in sweet potato plants. Plant Cell Rep 26:1801–1807

    Article  PubMed  CAS  Google Scholar 

  • Pidkowich MS, Ngyen HT, Heilmann I et al (2007) Modulating seed β-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Natl Acad Sci U S A 104:4742–4747

    Article  PubMed  CAS  Google Scholar 

  • Pooggin MM, Hohn T (2004) Fighting geminiviruses by RNAi and vice versa. Plant Mol Biol 55:149–152

    Article  PubMed  CAS  Google Scholar 

  • Pop M, Salzberg SL (2007) Bioinformatics challenges of new sequencing technology. Trends Genet 24:142–149

    Google Scholar 

  • Qu F, Ye X, Hou G et al (2005) RDR6 has a broad-spectrum but temperature-dependent antiviral defense role in Nicotiana benthamiana. J Virol 79:15209–15217

    Article  PubMed  CAS  Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  PubMed  CAS  Google Scholar 

  • Radauer C, Breiteneder H (2007) Evolutionary biology of plant food allergens. J Allergy Clin Immunol 120:518–525

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SV, Mishra AK, Praveen S (2007) Hairpin RNA-mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides 17:251–257

    Article  PubMed  CAS  Google Scholar 

  • Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    Article  PubMed  CAS  Google Scholar 

  • Regina A, Bird A, Topping D et al (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci U S A 103:3546–3551

    Article  PubMed  CAS  Google Scholar 

  • Roignant J, Carré C, Mugat B et al (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9:299–308

    Article  PubMed  CAS  Google Scholar 

  • Schwach F, Vaistij FE et al (2005) An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol 138:1842–1852

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Song R, Messing J (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397

    PubMed  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K et al (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Sijen T, Fleenor J, Simmer F et al (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  PubMed  CAS  Google Scholar 

  • Silhavy D, Burgyán J (2004) Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci 9:76–83

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB et al (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Song J, Smith SK et al (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    Article  PubMed  CAS  Google Scholar 

  • Sönnichsen B, Koski LB, Walsh A et al (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469

    Article  PubMed  CAS  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L et al (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci U S A 103:18054–18059

    Article  PubMed  CAS  Google Scholar 

  • Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282:430–431

    Article  PubMed  CAS  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  PubMed  CAS  Google Scholar 

  • Tomita R, Hamada T, Horiguchi G et al (2004) Transgene overexpression with cognate small interfering RNA in tobacco. FEBS Lett 573:117–120

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu Y, Miller SC, Tomita S et al (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10

    Article  CAS  Google Scholar 

  • Tribolium genome sequencing consortium (2008) The genome of the developmental model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  CAS  Google Scholar 

  • Topping DL, Fukushima M, Bird AR (2003) Resistant starch as a prebiotic and synbiotic: state of the art. Proc Nut Soc 62:171–176

    Article  CAS  Google Scholar 

  • Vanitharani R, Chellappan P, Fauquet CM (2003) Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured cells. Proc Natl Acad Sci U S A 100:9632–9636

    Article  PubMed  CAS  Google Scholar 

  • Vargason JF, Szittya G et al (2003) Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115:799–811

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2005) Non-cell autonomous RNA silencing. FEBS Lett 579:5858–5871

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96:14147–14152

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Whitehurst AW, Bodemann BO, Cardenas J et al (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446:815–819

    Article  PubMed  CAS  Google Scholar 

  • Wielopolska A, Townley H, Moore I et al (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnol J 3:583–590

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:642–652

    Article  Google Scholar 

  • Xu P, Zhang Y, Kang L et al (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142:429–440

    Article  PubMed  CAS  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  PubMed  CAS  Google Scholar 

  • Ye K, Malinina L, Patel DJ (2003) Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426:874–848

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    Article  PubMed  CAS  Google Scholar 

  • Yue SJ, Li H, Li YW et al (2008) Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference. J Cereal Sci 47:153–161

    Article  CAS  Google Scholar 

  • Zheng X, Zhu J et al (2007) Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26:1691–1701

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Cai XL et al (2003) An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. J Biol Chem 278:47803–47811

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D, Cao X, Johansen LK et al (2004) Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol 14:1214–1220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kodama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Isshiki, M., Kodama, H. (2010). Plant RNAi and Crop Improvement. In: Jain, S., Brar, D. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_28

Download citation

Publish with us

Policies and ethics