Skip to main content

Impacts of Climate on the Flux of Dissolved Organic Carbon from Catchments

  • Chapter
  • First Online:

Part of the book series: Aquatic Ecology Series ((AQEC,volume 4))

Abstract

Recent increases in dissolved organic carbon (DOC) concentrations in surface waters across both Europe and North America have focused attention on the factors controlling the export of DOC compounds from catchments. Waters containing high concentrations of DOC generally have a characteristic brown colour and are associated with the presence of highly organic soils. Catchments dominated by these soils typically export between 10 and 300 kg DOC ha−1 year−1 (Billett et al., 2004; Laudon et al., 2004; Jonsson et al., 2006). A portion of this DOC is mineralised in streams and lakes to CO2, while the remainder is transported to the sea (Jonsson et al., 2006). Organic matter accumulates in soils when decomposition rates are restricted either by low temperatures or water-logged conditions. In Europe organic soils are found mainly in colder, wetter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson, T., Nilsson, Å. and Janssot. M. (1991) Coloured substances in Swedish lakes and rivers, Lecture Notes in Earth Sciences 33, 243–253.

    Article  Google Scholar 

  • Apsite, E. and Klavins, M. (1998) Assessment of the changes of COD and color in rivers of Latvia during the last twenty years, Environmenl International 24, 637–643.

    Article  CAS  Google Scholar 

  • Arvola, L., Eloranta, P., Järvinen, M., Keskitalo, J. and Holopainen, A.-L. (1999) Phytoplankton. In Keskitalo and P. Eloranta (eds.), Limnology of humic waters, Backhuys Publishers, Leiden, Netherlands, pp.137–171.

    Google Scholar 

  • Arvola, L., Räike, A., Kortelainen, P and Järvinen, M. (2004) The effect of climate and landuse on TOC concentrations in Finnish rivers, Boreal Environment Research 9, 381–387.

    Google Scholar 

  • Billett, M.F., Palmer, S.M., Hope, D., Deacon, C., Storeton-West, R., Hargreaves, K.J., Flechard, C. and Fowler, D. (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system, Global Biogeochemical Cycles 18, GB1024, doi: 10.1029/2003GB002058.

    Google Scholar 

  • Bouchard, A. (1997) Recent lake acidification and recovery trends in southern Quebec, Canada, Water, Soil and Air Pollution 84, 225–245.

    Google Scholar 

  • Buishand, T.A. (1982) Some methods for testing the homogeneity of rainfall records, Journal of Hydrology 58, 11–27.

    Article  Google Scholar 

  • Byrne, K., Farrell, E.P., Papen, H. and Butterbach-Bahl, K. (2001) The influence of temperature on carbon dioxide production in laboratory columns of virgin and forested blanket peat, International Peat Journal 11, 35–42.

    CAS  Google Scholar 

  • Chapman, S.J. and Thurlow, M. (1998) Peat respiration at low temperatures, Soil Biology and Biochemistry 30, 1013–1021.

    Article  CAS  Google Scholar 

  • Chow, A.T., Tanji, K.K., Gao, S., and Dahlgren, R.A. (2006) Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils, Soil Biology and Biochemistry 38, 477–488.

    Article  CAS  Google Scholar 

  • Clark, J.M., Chapman, P.J., Adamson, J.K. and Lane, S.N. (2005) Influence of drought induced acidification on the mobility of dissolved organic carbon in a peat soil, Global Change Biology 11, 791–809.

    Article  Google Scholar 

  • Cummins, T. and Farrell, E.P. (2003) Biogeochemical impacts of clearfelling and reforestation on blanket-peatland streams – II. major ions and dissolved organic carbon, Forest Ecology and Management 180, 557–570.

    Article  Google Scholar 

  • Davidson, E.A. and Janssens, I.A. (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature 440, 165–173.

    Article  CAS  Google Scholar 

  • de Wit, H., Mulder, J. and Atlehindar. A. (2007) Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition, Environmental Science and Technology 41, 7706–7713.

    Article  CAS  Google Scholar 

  • Driscoll, C.T., Driscoll, K.M., Roy, K.M., and Mitchell, M.J. (2003) Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition, Environmental Science and Technology 37, 2036–2042.

    Article  CAS  Google Scholar 

  • Eliasson, P.E., McMurtrie, R.E., Pepper, D.A., Strömgren, M., Linder, S. and Ågren, G.I. (2005) The response of heterotrophic CO2 flux to soil warming, Global Change Biology 11, 167–181.

    Article  Google Scholar 

  • Eloranta, P. (1978) Light penetration in different types of lakes in Central Finland, Holarcic. Ecology 1, 362–366.

    Google Scholar 

  • Erlandsson, M., Buffam, I., Fölster, J., Laudon, H., Temnerud, J., Weyhenmeyer, G.A. and Bishop, K. (2008) 35 years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate, Global Change Biologydoi:10.1111/j.1365-2486.2008.01551.x.

    Google Scholar 

  • Evans, C.D., Monteith, D.T and Cooper, D.M. (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts, Environmental Pollution 137, 55–71.

    Article  CAS  Google Scholar 

  • Evans, C.D., Chapman, P.J., Clark, J.M., Monteith, D.T. and Cresser, M.S. (2006) Alternative explanations for rising dissolved organic carbon export from organic soils,Global Change Biology 12, 2044–2053.

    Article  Google Scholar 

  • Fenner, N., Freeman, C., Hughes, S. and Reynolds, B. (2001) Molecular weight spectra of dissolved organic carbon in a rewetted Welsh peatland and possible implications for water quality, Soil Use and Management 17, 106–112.

    Article  Google Scholar 

  • Fenner, N., Freeman, C. and Reynolds, B. (2005) Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies, Soil Biology and Biochemistry 37, 1814–1821.

    Article  CAS  Google Scholar 

  • Forsberg, C. and Petersen, R.C. (1990) A darkening of Swedish lakes due to increased humus inputs during the last 15 years, Verhandlungen der Internationalen Vereinigung der Limnologie 24, 289–292.

    Google Scholar 

  • Francko, D.A. and Heath, R.T. (1983) Abiotic uptake and photodependent release of phosphate from high-molecular-weight humic-iron complexes in bog lakes. In R.F. Christman and E. Gjessing (eds.), Aquatic and terrestrial humic materials, Ann Arbor Scientific Publications, Ann Arbor, pp.467–480.

    Google Scholar 

  • Freeman, C., Evans, C.D., Monteith, D.T., Reynolds, B. and Fenner, N. (2001a) Export of organic carbon from peat soils, Nature 412, 785.

    Article  CAS  Google Scholar 

  • Freeman, C., Ostle, N. and Kang, H. (2001b) An enzymic ‘latch’ on a global carbon store - a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme, Nature 409, 149.

    Article  CAS  Google Scholar 

  • Freeman, C., Fenner, N., Ostle, N.J., Kang, H., Dowrick, D.J., Reynolds, B., Lock, M.A., Sleep, D., Hughes, S. and Hudson, J. (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels, Nature 430, 195–198.

    Article  CAS  Google Scholar 

  • Fröberg, M., Berggren, D., Bergkvist, B., Bryant, C. and Mulder, J. (2006) Concentration and fluxes of dissolved organic carbon DOC in three Norway spruce stands along a climatic gradient in Sweden, Biogeochemistry 77, 1–23.

    Article  CAS  Google Scholar 

  • Gjessing, E.T. (1970) Reduction of aquatic humus in streams, Vatten 26, 14–23.

    CAS  Google Scholar 

  • Gorham, E. (1991) Northern peatlands: role in the carbon cycle and probable response to global warming, Ecological Applications 1, 182–195.

    Article  Google Scholar 

  • Hartley, I.P., Heinmeyer, A. and Ineson, P. (2007) Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response, Global Change Biology 13, 1761–1770.

    Article  Google Scholar 

  • Heikkinen, K. (1994) Organic-matter, iron and nutrient transport and nature of dissolved organic-matter in the drainage basin of a boreal humic river in northern Finland, Science of the Total Environment 152, 81–89.

    Article  CAS  Google Scholar 

  • Hessen, D.O., Gjessing, E.T., Knulst, J. and Fjeld., E. (1997) TOC fluctuations in OC concentrations in a humic lake as related to catchment acidification, season and climate, Biogeochemistry 36, 139–151.

    Article  CAS  Google Scholar 

  • Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982) Techniques of trend analysis for monthly water quality data,Water Resources Research 18, 107–121.

    Article  Google Scholar 

  • Hogg, E.H., Lieffers, V.J. and Wein, R.W. (1992) Potential carbon losses from peat profiles: effects of temperature, drought cycles and fire, Ecological Applications 2, 298–306.

    Article  Google Scholar 

  • Holden, J., Chapman, P.J. and Labadz, J.C. (2004) Artificial drainage of peatlands: hydrological process and wetland restoration, Progress in Physical Geography 28, 95–123.

    Article  Google Scholar 

  • Hongve, D. (1999) Production of dissolved organic carbon in forested catchments, Journal of Hydrology 224, 91–99.

    Article  CAS  Google Scholar 

  • Hongve, D., Riise, G. and Kristiansen, J.F. (2004) Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water – a result of increased precipitation? Aquatic Sciences 66, 231–238.

    Article  CAS  Google Scholar 

  • Hörnström, E., Ekström, C. and Duraini, M.O. (1984) Effects of pH and different levels of aluminium on lake plankton in the Swedish west coast area, Report Institute of Freshwater Research Drottningholm 61, 115–127.

    Google Scholar 

  • Hudson, J.J., Dillon, P.J. and Somers, K.M. (2003) Long-term patterns in dissolved organic carbon in boreal lakes: the role of incident radiation, precipitation, air temperature, southern oscillation and acid deposition, Hydrology and Earth System Sciences 7, 390–398.

    Article  CAS  Google Scholar 

  • Jansson, M., Bergström, A.-K., Blomqvist, P. and Drakare, S. (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes, Ecology 81, 3250–3255.

    Article  Google Scholar 

  • Jarvis, P. and Linder, S. (2000) Botany: constraints to growth of boreal forests, Nature 405, 904–905.

    Article  CAS  Google Scholar 

  • Jensen, K.D., Beier, C., Michelsen, A. and Emmett, B.A. (2003) Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions, Applied Soil Ecology 24,165–176.

    Article  Google Scholar 

  • Johannessen, M. (1980) Aluminium, a buffer in acidic waters? In Drabløs and A. Tollan (eds.), Ecological impact of acid precipitation, Proc. int. conf. ecol. impact acid precip., Oslo, Norway, pp.222–223.

    Google Scholar 

  • Jones, R.I. (1992) The influence of humic substances on lacustrine planktonic food chains, Hydrobiologia 229, 73–91.

    Article  CAS  Google Scholar 

  • Jones, R.I. (1998) Phytoplankton, primary production and nutrient cycling. In D.O. Hessen and L.J. Tranvik (eds.), Aquatic humic substances: ecology and biogeochemistry, Springer-Verlag, Berlin Heidelberg, pp. 145–175.

    Google Scholar 

  • Jones, R.I. and Arvola, L. (1984) Light penetration and some related characteristics in small forest lakes in southern Finland, Verhandlungen der Internationalen Vereinigung der Limnologie 22, 811–816.

    Google Scholar 

  • Jonsson, A., Algesten, G., Bergström, A.-K., Bishop, K., Sobek, S., Tranvik, L.J. and Jansson, M. (2006) Integrating aquatic carbon fluxes in a boreal catchment carbon budget, Journal of Hydrology 334, 141–150.

    Article  Google Scholar 

  • Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B. and Matzner, E. (2000) Controls on the dynamics of dissolved organic matter in soils: a review, Soil Science 165, 277–304.

    Article  CAS  Google Scholar 

  • Kankaala, P., Arvola, L., Tulonen, T. and Ojala, A. (1996) Carbon budget for the pelagic food web of the euphotic zone in a boreal lake (Lake Pääjärvi), Canadian Journal of Fisheries and Aquatic Sciences 53, 1663–1674.

    Article  Google Scholar 

  • Kirschbaum, M.U.F. (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage, Soil Biology and Biochemistry 27, 753–760.

    Article  CAS  Google Scholar 

  • Köhler, S., Buffam, I., Jonsson, A. and Bishop, K. (2002) Photochemical and microbial processing of streams and soil water dissolved organic matter in a boreal forested catchment in northern Sweden, Aquatic Sciences 64, 269–281.

    Article  Google Scholar 

  • Kortelainen, P. and Mannio, J. (1990) Organic acidity in Finnish lakes. In Kauppi, P. Anttila and K. Kenttämies (eds.), Acidification in Finland, Springer-Verlag, Berlin Heidelberg, pp. 849–863.

    Google Scholar 

  • Kortelainen, P. (1999a) Source of aquatic organic carbon. In Keskitalo and P. Eloranta (eds.), Limnology of humic waters, Backhuys, Leiden. pp. 43–45.

    Google Scholar 

  • Kortelainen, P. (1999b) Acidity and buffer capacity. In Keskitalo and P. Eloranta (eds.), Limnology of humic waters, Backhuys Publishers, Leiden, The Netherlands, pp. 95–115.

    Google Scholar 

  • Knorr, W., Prentice, I.C., House, J.I. and Holland, E.A. (2005) Long-term sensitivity of soil carbon to warming, Nature 433, 298–301.

    Article  CAS  Google Scholar 

  • Krug, E.C. and Frink, C.R. (1983) Acid-rain on acid soils: a new perspective, Science 221, 520–525.

    Article  CAS  Google Scholar 

  • Lanzante, J.R. (1996) Resistant, robust & non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data, International Journal of Climatology 16, 1197–1226.

    Article  Google Scholar 

  • Laudon, H., Köhler, S. and Buffam, I. (2004) Seasonal dependency in DOC export from seven boreal catchments in northern Sweden, Aquatic Sciences 66, 223–230.

    Article  Google Scholar 

  • Lloyd-Hughes, B. and Saunders, M.A. (2002) A drought climatology for Europe, International Journal of Climatology 22, 1571–1592.

    Article  Google Scholar 

  • Löfgren, S., Forsius, M. and Andersen, T. (2003) Climate induced water color increase in Nordic lakes and streams due to humus. Nordic Council of Ministers, Brochure, Copenhagen, Denmark, 12 pp.

    Google Scholar 

  • Lydersen, E. (1998) Humus and acidification. In D.O. Hessen and L.J. Tranvik (eds.), Aquatic humic substances: ecology and biogeochemistry, Springer-Verlag, Berlin Heidelberg, pp. 63–92.

    Google Scholar 

  • Mitchell, G.N. and McDonald, A.T. (1992) Discoloration of water by peat following induced drought and rainfall simulation, Water Research 26, 321–326.

    Article  CAS  Google Scholar 

  • Montanerella, L., Jones, R.J.A. and Hiederer, R. (2006) The distribution of peat soil in Europe, Mire and Peat 1, 2–10.

    Google Scholar 

  • Monteith, D., Stoddard, J.L., Evans, C.D., de Wit, H.A., Forsius, M., Høgåsen, T., Winander, A., Skjelkvåle, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopácek, J. and Vesely, J. (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry, Nature 450, doi:10.1083/natare06316.

    Google Scholar 

  • Moore, K., (2007) Climate change impacts on the catchment contribution to lake water quantity and quality. Doctoral thesis, Uppsala University, Sweden.

    Google Scholar 

  • Naden, P.S. and McDonald A.T. (1989)Statistical modelling of water colour in the uplands: the Upper Midd catchment 1979–1987, Environmental Pollution 601, 141–163.

    Article  Google Scholar 

  • Neal, C. and Hill, S. (1994) Dissolved inorganic and organic carbon in moorland and forest streams: Plynlimon, Mid-Wales, Journal of Hydrology 153, 231–243.

    Article  CAS  Google Scholar 

  • Nõges, P., Kägu, M. and Nõges, T. (2007) Role of climate and agricultural practice in determining the matter discharge into large shallow Lake Võrtsjärv, Estonia, Hydrobiologia DOI 10.1007/s10750-006-0504-6.

    Google Scholar 

  • NORDTEST (2003) Increase in colour and in the amounts of organic matter in surface waters, Position paper 009. NORDTEST, Espoo, Finland, p. 11.

    Google Scholar 

  • Roulet, N. and Moore, T.R. (2006) Environmental chemistry – browning the waters, Nature 444, 283–284.

    Article  CAS  Google Scholar 

  • Salonen, K., Arvola, L. and Rask, M. (1984) Autumnal and vernal circulation of small forest lakes in Southern Finland, Verhandlungen der Internationalen Vereinigung der Limnologie 22, 103–107.

    Google Scholar 

  • Schindler, D.W., Curtis, P.J. Bayley, S.E., Parker, B.R., Beaty, K.G. and Stainton, M.P. (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes, Biogeochemistry 36, 9–28.

    Article  CAS  Google Scholar 

  • Scott, M.J., Jones, M.N., Woof, C., Simon, B. and Tipping, E. (2001) The molecular properties of humic substances isolated from a UK upland peat system: a temporal investigation, Environment International 27, 449–462.

    Article  CAS  Google Scholar 

  • Sharp, E.L., Parsons, S.A. and Jefferson, B. (2006) Seasonal variations in natural organic matter and its impact on coagulation in water treatment, Science of the Total Environment 3, 183–194.

    Article  CAS  Google Scholar 

  • Skjelkvåle, B.L., Stoddard, J.K. and Andersen, T. (2001) Trends in surface water acidification in Europe and North America 1989–1998, Water Soil and Air Pollution 130, 787–792.

    Article  Google Scholar 

  • Skjelkvåle, B.L., Stoddard, J.L., Jeffries, D., Tørseth, K., Høgåsen, T., Bowman, J., Mannio, J., Monteith, D., Mosello, R., Rogora, M., Rzychon, D., Vesely, J., Wieting, J., Wilander, A. and Worsztynowicz, A. (2005) Regional scale evidence for improvements in surface water chemistry 1990–2001, Environmental Pollution 137, 165–176.

    Article  CAS  Google Scholar 

  • Sobek, S., Tranvik, L.J., Prairie, Y.T., Kortelainen, P. and Cole, J.J. (2007) Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes, Limnology and Oceanography 52, 1208–1219.

    Article  CAS  Google Scholar 

  • Thurman, E.M. (1985) Organic geochemistry of natural waters, Kluwer Academic Publishers Group, Dordrecht, Germany.

    Google Scholar 

  • Tilja, M. (2003) Water colour trends in Lake Mälaren, Master-Thesis. Linkopings University, Sweden, p. 20.

    Google Scholar 

  • Tipping, E. and Hurley, M.A. (1988) A model of solid–solution interactions in acid organic soils, based on the complexation properties of humic substances, Journal of Soil Science 39, 505–519.

    Article  CAS  Google Scholar 

  • Tipping, E. Woof, C., Rigg, E., Harrison, A.F., Ineson, P., Taylor, K., Benham, D., Poskitt, J., Rowland, A.P., Bol, R. and Harkness, D.D. (1999) Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment, Environment International 25, 83–95.

    Article  CAS  Google Scholar 

  • Tranvik, L.J. (1992) Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop, Hydrobiologia 229, 107–114.

    Article  CAS  Google Scholar 

  • Tranvik, L.J. and Jansson, M. (2002) Terrestrial export of organic carbon, Nature 415, 861–862.

    Article  CAS  Google Scholar 

  • Tulonen, T., Salonen, K. and Arvola, L. (1992) Effect of different molecular weight fractions of dissolved organic matter on the growth of bacteria, algae and protozoa from a highly humic lake, Hydrobiologia 229, 239–252.

    Article  CAS  Google Scholar 

  • Vähätalo, A.V., Salonen, K., Münster, U., Järvinen, M. and Wetzel, R.G. (2003) Photochemical transformation of allochthonous organic matter provides bioavailable nutrients in a humic lake, Archiv für Hydrobiologie 156, 278–314.

    Google Scholar 

  • Vogt, R.D. and Muniz, I.P. (1997) Soil and stream water chemistry in a pristine and boggy site in mid-Norway, Hydrobiologia 348, 19–38.

    Article  CAS  Google Scholar 

  • Vuorenmaa, J., Forsius, M. and Mannio, J. (2006) Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003, Science of the Total Environment 365, 47–65.

    Article  CAS  Google Scholar 

  • Wallin, M. and Weyhenmeyer, G. (2002) Mälaren has become brownish (in Swedish with English Summary), Sötvatten 2002, pp.10–15.

    Google Scholar 

  • Watts, C.D., Naden, P.S., Machell, J. and Banks, J. (2001) Long term variation in water colour from Yorkshire catchments, Science of the Total Environment 278, 57–72.

    Article  CAS  Google Scholar 

  • Weider, R.K. and Yavitt, J.B. (1994) Peatlands and global climate change: insights from comparative studies of sites along a latitudinal gradient, Wetlands 14, 229–238.

    Article  Google Scholar 

  • Weyhenmeyer, G.A., Meili, M and Livingstone, D.M. (2004a) Nonlinear temperature response of lake ice breakup, Geophysical Research Letters 31, L07203, doi: 10.1029/2004GL019530.

    Google Scholar 

  • Weyhenmeyer, G.A., Willén, E. and Sonesten, L. (2004b) Effects of an extreme precipitation event on lake water chemistry and phytoplankton in the Swedish Lake Mälaren, Boreal Environment Research 9, 409–420.

    CAS  Google Scholar 

  • Weyhenmeyer, G.A. (2008) Water chemical changes along a latitudinal gradient in relation to climate and atmospheric deposition, Climatic Change 88, 199–208.

    Article  CAS  Google Scholar 

  • World Health Organisation (2005) Trihalomethanes in drinking water, WHO/SDE/WSH/05.08/64. World Health Organisation, Geneva. 35 pp.

    Google Scholar 

  • Worrall, F., Burt, T.P., Jaeben, R.Y., Warburton, J. and Shedden, R. (2002) The release of dissolved organic carbon from upland peat,Hydrological Processes 16, 3487–3504.

    Article  Google Scholar 

  • Worrall, F. and Burt, T. (2004) Time series analysis of long-term river dissolved organic carbon records, Hydrological Processes 18, 893–911.

    Article  Google Scholar 

  • Worrall, F., Harriman, R., Evans, C.D., Watts, C.D., Adamson, J.K., Neal, C., Tipping, E., Burt, T., Grieve, I., Monteith, D., Naden, P.S., Nisbet, T., Reynolds, B. and Stevens, P. (2004) Trends in dissolved organic carbon in UK rivers and lakes, Biochemistry 30, 369–402.

    Google Scholar 

  • Worrall, F., Burt, T. and Adamson, J. (2005) Fluxes of dissolved carbon dioxide and inorganic carbon from an upland peat catchment: implications for soil respiration, Biogeochemistry 73, 515–539.

    Article  Google Scholar 

  • Worrall, F., Burt, T. and Adamson, A. (2006) Long-term changes in hydrological pathways in an upland peat catchment – recovery from severe drought? Journal of Hydrology 321, 5–20.

    Article  Google Scholar 

  • Wright, R.F., Lotse, E. and Semb, A. (1993) RAIN project: results after 8 years of experimentally reduced acid deposition to a whole catchment, Canadian Journal of Fisheries and Aquatic Sciences 50, 258–268.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dublin City Council (Ireland) for use of monitoring data from Poulaphuca Reservoir and Met Éireann (Ireland) for providing meteorological data; the Swedish Meteorological and Hydrological Institute for providing meteorological data and the Department of Environmental Assessment (Sweden), financed by the Swedish Environmental Protection Agency, for use of water monitoring data; Marine Institute staff for assistance with monitoring at Lough Feeagh (Burrishoole catchment), Ireland; G.A. Weyhenmeyer (research fellow of the Royal Swedish Academy of Sciences) was part funded by a grant from the Knut and Alice Wallenberg foundation research; T. Nõges (Estonia) was part funded by Target funding project SF0170011508 and Estonian Science Foundation grant 7600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor Jennings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jennings, E. et al. (2009). Impacts of Climate on the Flux of Dissolved Organic Carbon from Catchments. In: George, G. (eds) The Impact of Climate Change on European Lakes. Aquatic Ecology Series, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2945-4_12

Download citation

Publish with us

Policies and ethics