Skip to main content

Extreme Precipitation Estimation Using Satellite-Based PERSIANN-CCS Algorithm

  • Chapter
  • First Online:

Abstract

The need for frequent observations of precipitation is critical to many hydrological applications. The recently developed high resolution satellite-based precipitation algorithms that generate precipitation estimates at sub-daily scale provide a great potential for such purpose. This chapter describes the concept of developing high resolution Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). Evaluation of PERSIANN-CCS precipitation is demonstrated through the extreme precipitation events from two hurricanes: Ernesto in 2006 and Katrina in 2005. Finally, the global near real-time precipitation data service through the UNESCO G-WADI data server is introduced. The query functions for viewing and accessing the data are included in the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Atlas, D., D. Rosenfeld, and D. B. Wolff, 1990: Climatologically turned reflectivity-rainrate relationship and links to area-time integrals. Journal of Applied Meteorology, 29, 1120–1135.

    Article  Google Scholar 

  • Ba, M. B. and A. Gruber, 2001: GOES multispectral rainfall algorithm (GMSRA). Journal of Applied Meteorology, 40, 1500–1514.

    Article  Google Scholar 

  • Behrangi, A., K. Hsu, B. Imam, S. Sorooshian, and R. J. Kuligowski, 2009a: Evaluating the utility of multi-spectral information in delineating the areal extent of precipitation. Journal of Hydrometeorology, In 10, 684–700.

    Article  Google Scholar 

  • Behrangi, A., K. L. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and R. J. Kuligowski, 2009b: PERSIANN-MSA: A precipitation estimation method from satellite-based multi-spectral analysis. Journal of Hydrometeorology, In press.

    Google Scholar 

  • Bellerby, T., M. Todd, D. Kniveton, and C. Kidd, 2000: Rainfall estimation from a combination of TRMM Precipitation Radar and GOES multi-spectral satellite imagery through the use of an artificial neural network. Journal of Applied Meteorology, 39, 2115–2128.

    Article  Google Scholar 

  • Bellerby, T., 2004: A feature-based approach to satellite precipitation monitoring using geostationary IR imagery. Journal of Hydrometeorology, 5, 910–921.

    Article  Google Scholar 

  • Bellerby, T., K. Hsu, and S. Sorooshian, 2009: LMODEL: A satellite precipitation algorithm using cloud development modeling and model updating. Part 1: Model development and calibration. Journal of Hydrometeorology, In press.

    Google Scholar 

  • Capacci, D. and B. J. Conway, 2005: Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks. Meteorological Applications, 12, 291–305.

    Article  Google Scholar 

  • Cheng, M., R. Brown, and C. G. Collier, 1993: Delineation of precipitation areas using Meteosat infrared and visible data in the region of the United Kingdom. Journal of Applied Meteorology, 32, 884–898.

    Article  Google Scholar 

  • Desbois, M., G. Seze, and G. Szejwach, 1982: Automatic Classification of Clouds on METEOSAT imagery: Application to high-level clouds. Journal of Applied Meteorology, 21, 401–412.

    Article  Google Scholar 

  • Dobrin, B. P., T. Viero, and M. Gabbouj, 1994: Fast watershed algorithms: analysis and extensions. Nonlinear Image Processing V, 2180, 209–220, SPIE.

    Google Scholar 

  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sikdar, 1978: Rain estimation from geosynchronous satellite imagery – visible and infrared studies. Monthly Weather Review, 106, 1153–1171.

    Article  Google Scholar 

  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36, (9), 1176–1190.

    Article  Google Scholar 

  • Hsu, K., H. Gupta, X. Gao, and S. Sorooshian, 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resources Research, 35, 1605–1618.

    Article  Google Scholar 

  • Hsu, K., Y. Hong, and S. Sorooshian, 2007: Rainfall estimation using a cloud patch classification map. Measurement of Precipitation from Space: EURAINSAT and Future. Edited by V. Levizzani, P. Bauer, and F. J. Turk, Springer Publishing Company, 745 pages, Hardcover, ISBN#978–1-4240–5834-9, pp. 329–343.

    Chapter  Google Scholar 

  • Hsu, K., T. Bellerby, and S. : Sorooshian, 2009. LMODEL: A Satellite Precipitation Algorithm Using Cloud Development Modeling and Model Updating. Part 2: Model Updating. In press.

    Google Scholar 

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8, 38–55.

    Article  Google Scholar 

  • Hong, Y., K. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. Journal of Applied Meteorology, 43, 1834–1852.

    Article  Google Scholar 

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503.

    Article  Google Scholar 

  • Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. Journal of Hydrometeorology, 4, 1088–1104.

    Article  Google Scholar 

  • Kohonen, T., 1995: Self-Organizing Map. Springer-Verlag, New York

    Google Scholar 

  • Kurino, T., 1997: A satellite infrared technique for estimating “deep/shallow” precipitation. Satellite Data Applications: Weather and Climate, 19, 511–514.

    Google Scholar 

  • Marzano, F. S., M. Palmacci, D. Cimini, G. Giuliani, and F. J. Turk, 2004: Multivariate statistical integration of Satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale. IEEE Transactions on Geoscience and Remote Sensing, 42, 1018–1032.

    Article  Google Scholar 

  • National Weather Service, NOAA, 2006: Service Assessment: Hurricane Katrina, August 23–31, 2005.

    Google Scholar 

  • Nicholson, S. E., B. Some, J. McCollum, E. Nelkin, D. Klotter, Y. Berte, B. M. Diallo, I. Gaye, G. Kpabeba, O. Ndiaye, J. N. Noukpozounkou, M. M. Tanu, A. Thiam, A. A. Toure, and A. K. Traore, 2003a: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Journal of Applied Meteorology, 42, Part I, 1337–1354.

    Article  Google Scholar 

  • Nicholson, S. E., B. Some, J. McCollum, E. Nelkin, D. Klotter, Y. Berte, B. M. Diallo, I. Gaye, G. Kpabeba, O. Ndiaye, J. N. Noukpozounkou, M. M. Tanu, A. Thiam, A. A. Toure, and A. K. Traore, 2003b: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Journal of Applied Meteorology, 42, Part II, 1355–1368.

    Article  Google Scholar 

  • Osullivan, F., C. H. Wash, M. Stewart, and C. E. Motell, 1990: Rain estimation from infrared and visible GOES satellite data. Journal of Applied Meteorology, 29, 209–223.

    Article  Google Scholar 

  • Sorooshian, S., K. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81, 2035–2046.

    Article  Google Scholar 

  • Todd, M., C. Kidd, D. R. Kniveton, and T. J. Bellerby, 2001: A combined satellite infrared and passive microwave technique for the estimation of small scale rainfall. Journal of Atmospheric and Oceanic Technology, 18, 742–755.

    Article  Google Scholar 

  • Turk, F. J. and S. D. Miller, 2005: Toward improving estimates of remotely-sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Transactions on Geoscience and Remote Sensing, 43, 1059–1069.

    Article  Google Scholar 

  • Ushio, T., T. Kubota, S. Shige, K. Okamoto, K. Aonashi, T. Inoue, N. Takahashi, T. Iguchi, M. Kachi, R. Oki, T. Morimoto, and Z. Kawasaki, 2008: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. Journal of Meteorology Society Japan, 87A, 137–151.

    Article  Google Scholar 

  • Vincent, L. and P. Soille, 1991: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, (6), 583–598.

    Article  Google Scholar 

  • Vincent, G., R. A. Scofield, and W. P. Mensel, 1998: The operational GOES infrared rainfall estimation technique. Bulletin of the American Meteorological Society, 79, 1883–1898.

    Google Scholar 

  • Xu, L., X. Gao, S. Sorooshian, and P. A. Arkin, 1999: A microwave infrared threshold technique to improve the GOES precipitation index. Journal of Applied Meteorology, 38, 569–579.

    Article  Google Scholar 

Download references

Acknowledgement

Partial support for this research is from NASA-EOS (Grant NA56GPO185), NASA-PMM (Grant NNG04GC74G), NASA NEWS (Grant NNX06AF93G) and NSF STC for “Sustainability of Semi-Arid Hydrology and Riparian Areas” (SAHRA) (Grant EAR-9876800). Authors appreciate the satellite data processing from Dan Braithwaite and manuscript editing from Diane Hohnbaum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Lin Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hsu, KL., Behrangi, A., Imam, B., Sorooshian, S. (2010). Extreme Precipitation Estimation Using Satellite-Based PERSIANN-CCS Algorithm. In: Gebremichael, M., Hossain, F. (eds) Satellite Rainfall Applications for Surface Hydrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2915-7_4

Download citation

Publish with us

Policies and ethics