Skip to main content

Understanding Amylin Receptors

  • Chapter
  • First Online:
The calcitonin gene-related peptide family

Abstract

Amylin is a 37 amino acid peptide that is co-secreted with insulin from pancreatic β-cells following nutrient ingestion, acting to inhibit gastric emptying, feeding and insulin-stimulated glycogen synthesis. Amylin is a member of the calcitonin (CT) family of peptides, which include CT, CT gene-related peptides (CGRP) and adrenomedullin (AM). The receptors for these peptides comprise the CT receptor (CTR) and the CTR-like receptor (CLR) that may be complexed with one of three receptor activity modifying proteins (RAMPs). Amylin receptors are formed when the CTR is in complex with RAMP1, RAMP2 or RAMP3, forming AMY1, AMY2 and AMY3 receptors, respectively. Each of these receptors, while binding amylin with similar affinity, has a distinct agonist and antagonist pharmacology. Analysis of RAMP chimeras and deletion constructs has provided insight into domains of RAMPs that contribute to ligand and signaling specificity. The N-terminal domain is the principle domain involved in alteration of ligand binding specificity, while the C-terminal domain contributes to the peptide signaling profile of the receptor complexes and could be directly involved in the interaction with G proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

adenylyl cyclase

AM:

adrenomedullin

AMY:

amylin receptor

AM2:

adrenomedullin 2

cAMP:

cyclic adenosine monophosphate

cDNA:

complementary DNA

CGRP:

calcitonin gene-related peptide

CHO:

chinese hamster ovary cells

CLR:

calcitonin receptor-like receptor

CNS:

central nervous system

COS:

african green monkey kidney cells

CT:

calcitonin

CTR:

calcitonin receptor

CT(a) :

calcitonin receptor a isoform

CT(b) :

calcitonin receptor b isoform

ERK:

extracellular signal-regulated protein kinase

GPCR:

G protein-coupled receptor

HEK293:

human embryonic kidney cells

IDDM:

insulin dependent diabetes mellitus or type 1 diabetes

IMD:

intermedin, also known as AM2

IP:

inositol phosphate

IP3 :

inositol 1,4,5-trisphosphate

MDCK:

mandin-darby canine kidney cells

NHERF1:

Na+/H+ exchanger regulatory factor 1

NIDDM:

non IDDM or type 2 diabetes

NSF:

N-ethylmaleimide-sensitive fusion protein

PDZ:

post-synaptic density-95/discs large/Zone occludens-1 homology

PKA:

protein kinase A

PLC:

phospholipase C

RAEC:

rabbit aortic endothelial cells

RAMP:

receptor activity modifying protein

RCP:

receptor component protein

Δ:

deletion mutant.

References

  • Armour SL, Foord S, Kenakin T, Chen WJ (1999) Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor. J Pharmacol Toxicol Methods 42:217–224

    Article  CAS  PubMed  Google Scholar 

  • Beaumont K, Kenney MA, Young AA, Rink TJ (1993) High affinity amylin binding sites in rat brain. Mol Pharmacol 44:493–497

    CAS  PubMed  Google Scholar 

  • Beaumont K, Pittner RA, Moore CX, Wolfe-Lopez D, Prickett KS, Young AA, Rink TJ (1995) Regulation of muscle glycogen metabolism by CGRP and amylin: CGRP receptors not involved. Br J Pharmacol 115:713–715

    CAS  PubMed  Google Scholar 

  • Bomberger JM, Parameswaran N, Hall CS, Aiyar N, Spielman WS (2005a) Novel function for receptor activity-modifying proteins (RAMPs) in post-endocytic receptor trafficking. J Biol Chem 280:9297–9307

    Article  CAS  PubMed  Google Scholar 

  • Bomberger JM, Spielman WS, Hall CS, Weinman EJ, Parameswaran N (2005b) Receptor activity-modifying protein (RAMP) isoform-specific regulation of adrenomedullin receptor trafficking by NHERF-1. J Biol Chem 280:23926–23935

    Article  CAS  PubMed  Google Scholar 

  • Buhlmann N, Leuthauser K, Muff R, Fischer JA, Born W (1999) A receptor activity modifying protein (RAMP)2-dependent adrenomedullin receptor is a calcitonin gene-related peptide receptor when coexpressed with human RAMP1. Endocrinology 140:2883–2890

    Article  CAS  PubMed  Google Scholar 

  • Chai SY, Christopoulos G, Cooper ME, Sexton PM (1998) Characterization of binding sites for amylin, calcitonin, and CGRP in primate kidney. Am J Physiol Renal Physiol 274:51–62

    Google Scholar 

  • Chen W-J, Armour S, Way J, Chen G, Watson C, Irving P, Cobb J, Kadwell S, Beaumont K, Rimele T, Kenakin T (1997) Expression cloning and receptor pharmacology of human calcitonin receptors from MCF-7 cells and their relationship to amylin receptors. Mol Pharmacol 52:1164–1175

    CAS  PubMed  Google Scholar 

  • Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, Main MJ, Foord SM, Sexton PM (1999) Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 56:235–242

    CAS  PubMed  Google Scholar 

  • Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A, Kuwasako K, Tilakaratne N, Sexton PM (2003) Novel receptor partners and function of receptor activity modifying proteins. J Biol Chem 278:3293–3297

    Article  CAS  PubMed  Google Scholar 

  • Cohen DP, Thaw CN, Varma A, Gershengorn MC, Nussenzveig DR (1997) Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity. Endocrinology 138:1400–1405

    Article  CAS  PubMed  Google Scholar 

  • Cooper GJS, Willis AC, Clark A, Turner RC, Sim RB, Reid KBM (1987) Purification and characterization of a peptide from amyloid-rich pancreases of Type 2 diabetic patients. Proc Natl Acad Sci USA 84:8628–8632

    Article  CAS  PubMed  Google Scholar 

  • Doods H, Hallermayer G, Wu D, Entzeroth M, Rudolf K, Engel W, Eberlein W (2000) Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br J Pharmacol 129:420–423

    Article  CAS  PubMed  Google Scholar 

  • Evans BM, Rosenblatt MI, Mnayer LO, Oliver KR, Dickerson IM (2000) CGRP-RCP: A novel protein required for signal transduction at CGRP and adrenomedullin receptors. J Biol Chem 275:31438–31443

    Article  CAS  PubMed  Google Scholar 

  • Findlay DM, Sexton PM (2004) Calcitonin. Growth Factors 22:217–224

    Article  CAS  PubMed  Google Scholar 

  • Fineman MS, Koda JE, Shen LZ, Strobel SA, Maggs DG, Weyer C, Kolterman OG (2002a) The human amylin analog, pramlintide, corrects postprandial hyperglucagonemia in patients with type 1 diabetes. Metabolism 51:636–641

    Article  CAS  PubMed  Google Scholar 

  • Fineman M, Weyer C, Maggs DG, Strobel S, Kolterman OG (2002b) The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with Type 2 diabetes mellitus. Horm Metab Res 34:504–508

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimmons TJ, Zhao X, Wank SA (2003) The extracellular domain of receptor activity-modifying protein 1 is sufficient for calcitonin receptor-like receptor function. J Biol Chem 278:14313–14320

    Article  CAS  PubMed  Google Scholar 

  • Fraser NJ, Wise A, Brown J, McLatchie LM, Main MJ, Foord SM (1999) The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 55:1054–1059

    CAS  PubMed  Google Scholar 

  • Gorn AH, Lin HY, Yamin M, Auron PE, Flannery MR, Tapp DR, Manning CA, Lodish HF, Krane SM, Goldring SR (1992) Cloning, characterization, and expression of a human calcitonin receptor from an ovarian carcinoma cell line. J Clin Invest 90:1726–1735

    Article  CAS  PubMed  Google Scholar 

  • Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM (2005) Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol 67:1655–1665

    Article  CAS  PubMed  Google Scholar 

  • Hay DL, Christopoulos G, Christopoulos A, Sexton PM (2006) Determinants of 1-piperidinecarboxamide, N-[2-[[5-amino-l-[[4-(4-pyridinyl)-l-piperazinyl]carbonyl]pentyl]amino]-1-[(3, 5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1, 4-dihydro-2-oxo-3(2H)-quinazolinyl) (BIBN4096BS) affinity for calcitonin gene-related peptide and amylin receptors-the role of receptor activity modifying protein 1. Mol Pharmacol 70:1984–1991

    Article  CAS  PubMed  Google Scholar 

  • Hilairet S, Foord SM, Marshall FH, Bouvier M (2001a) Protein-protein interaction and not glycosylation determines the binding selectivity of heterodimers between the calcitonin receptor-like receptor and the receptor activity-modifying proteins. J Biol Chem 276:29575–29581

    Article  CAS  PubMed  Google Scholar 

  • Hilairet S, Belanger C, Bertrand J, Laperriere A, Foord SM, Bouvier M (2001b) Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and beta -arrestin. J Biol Chem 276:42182–42190

    Article  CAS  PubMed  Google Scholar 

  • Houslay MD, Morris NJ, Savage A, Marker A, Bushfield M (1994) Regulation of hepatocyte adenylate cyclase by amylin and CGRP: a single receptor displaying apparent negative cooperatively towards CGRP and simple saturation kinetics for amylin, a requirement for phosphodiesterase inhibition to observe elevated hepatocyte cyclic AMP levels and the phosphorylation of Gi-2. J Cell Biochem 55:66–82

    Article  CAS  PubMed  Google Scholar 

  • Kruger DF, Gloster MA (2004) Pramlintide for the treatment of insulin-requiring diabetes mellitus: rationale and review of clinical data. Drugs 64:1419–1432

    Article  CAS  PubMed  Google Scholar 

  • Kruger DF, Gatcomb PM, Owen SK (1999) Clinical implications of amylin and amylin deficiency. Diabetes Educ 25:389–397

    Article  CAS  PubMed  Google Scholar 

  • Kuestner R, Elrod R, Grant F, Hagen F, Kuijper J, Matthewes S, O’Hara P, Sheppard P, Stroop S, Thompson D (1994) Cloning and characterization of an abundant subtype of the human calcitonin receptor. Mol Pharmacol 46:246–255

    CAS  PubMed  Google Scholar 

  • Kuwasako K, Cao Y-N, Nagoshi Y, Tsuruda T, Kitamura K, Eto T (2004) Characterization of the human calcitonin gene-related peptide receptor subtypes associated with receptor activity-modifying proteins. Mol Pharmacol 65:207–213

    Article  CAS  PubMed  Google Scholar 

  • Lin HY, Harris TL, Flannery MS, Aruffo A, Kaji EH, Gorn A, Kolakowski LF Jr, Lodish HF, Goldring SR (1991) Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science 254:1022–1024

    Article  CAS  PubMed  Google Scholar 

  • Mallee JJ, Salvatore CA, LeBourdelles B, Oliver KR, Longmore J, Koblan KS, Kane SA (2002) Receptor activity-modifying protein 1 determines the species selectivity of non-peptide CGRP receptor antagonists. J Biol Chem 277:14294–14298

    Article  CAS  PubMed  Google Scholar 

  • Martin C (2006) The physiology of amylin and insulin: maintaining the balance between glucose secretion and glucose uptake. Diabetes Educ 32:101–104

    Article  Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339

    Article  CAS  PubMed  Google Scholar 

  • Moore E, Kuestner R, Stroop S, Grant F, Matthewes S, Brady C, Sexton P, Findlay D (1995) Functionally different isoforms of the human calcitonin receptor result from alternative splicing of the gene transcript. Mol Endocrinol 9:959–968

    Article  CAS  PubMed  Google Scholar 

  • Morfis M, Tilakaratne N, Furness SG, Christopoulos G, Werry TD, Christopoulos A, Sexton PM (2008) Receptor activity-modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology 149:5423–5431

    Google Scholar 

  • Muff R, Buhlmann N, Fischer JA, Born W (1999) An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology 140:2924–2927

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Zhang ZQ, Shan L, Hisa T, Sasaki M, Tsukino R, Yokoi T, Kaname A, Kakudo K (1997) Allelic variants of human calcitonin receptor in the Japanese population. Hum Genet 99:38–41

    Article  CAS  PubMed  Google Scholar 

  • Nussenzveig DR, Thaw CN, Gershengorn MC (1994) Inhibition of inositol phosphate second messenger formation by intracellular loop one of a human calcitonin receptor. Expression and mutational analysis of synthetic receptor genes. J Biol Chem 269:28123–28129

    CAS  PubMed  Google Scholar 

  • Odegard PS, Setter SM, Iltz JL (2006) Update in the pharmacologic treatment of diabetes mellitus: Focus on pramlintide and exenatide. Diabetes Educ 32:693–712

    Article  PubMed  Google Scholar 

  • Paxinos G, Chai SY, Christopoulos G, Huang XF, Toga AW, Wang HQ, Sexton PM (2004) In vitro autoradiographic localization of calcitonin and amylin binding sites in monkey brain. J Chem Neu 27:217–236

    Article  CAS  Google Scholar 

  • Perry KJ, Quiza M, Myers DE, Morfis M, Christopoulos G, Sexton PM (1997) Characterization of amylin and calcitonin receptor binding in the mouse α-Thyroid-Stimulating hormone thyrotroph cell line. Endocrinology 138:3486–3496

    Article  CAS  PubMed  Google Scholar 

  • Pittner RA, Wolfe-Lopez D, Young AA, Beaumont K (1996) Different pharmacological characteristics in L6 and C2C12 muscle cells and intact rat skeletal muscle for amylin, CGRP and calcitonin. Br J Pharmacol 117:847–52

    CAS  PubMed  Google Scholar 

  • Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM (2002) International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54:233–246

    Article  CAS  PubMed  Google Scholar 

  • Purdue BW, Tilakaratne N, Sexton PM (2002) Molecular pharmacology of the calcitonin receptor. Receptors Channels 8:243–255

    Article  CAS  PubMed  Google Scholar 

  • Raggatt LJ, Evdokiou A, Findlay DM (2000) Sustained activation of Erk1/2 MAPK and cell growth suppression by the insert-negative, but not the insert-positive isoform of the human calcitonin receptor. J Endocrinol 167:93–105

    Article  CAS  PubMed  Google Scholar 

  • Sexton PM, McKenzie JS, Mendelsohn FAO (1988) Evidence for a new subclass of calcitonin/ calcitonin gene-related peptide binding site in rat brain. Neurochem Int 12:323–335

    Article  CAS  PubMed  Google Scholar 

  • Sexton PM, Houssami S, Hilton JM, O’Keeffe LM, Center RJ, Gillespie MT, Darcy P, Findlay DM (1993) Identification of brain isoforms of the rat calcitonin receptor. Mol Endocrinol 7:815–821

    Article  CAS  PubMed  Google Scholar 

  • Sexton PM, Paxinos G, Kenney MA, Wookey PJ, Beaumont K (1994) In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 62:553–567

    Article  CAS  PubMed  Google Scholar 

  • Sexton PM, Findlay DM, Martin TJ (1999) Calcitonin. Curr Med Chem 6:1067–1093

    CAS  PubMed  Google Scholar 

  • Tilakaratne N, Christopoulos G, Zumpe ET, Foord SM, Sexton PM (2000) Amylin receptor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J Pharmacol Exp Ther 294:61–72

    CAS  PubMed  Google Scholar 

  • Udawela M, Christopoulos G, Morfis M, Christopoulos A, Ye S, Tilakaratne N, Sexton PM (2006a) A critical role for the short intracellular C terminus in receptor activity-modifying protein function. Mol Pharmacol 70:1750–1760

    Article  CAS  PubMed  Google Scholar 

  • Udawela M, Christopoulos G, Tilakaratne N, Christopoulos A, Albiston A, Sexton PM (2006b) Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors. Mol Pharmacol 69:1984–1989

    Article  CAS  PubMed  Google Scholar 

  • Udawela M, Christopoulos G, Morfis M, Tilakaratne N, Christopoulos A, Sexton PM (2008) The effects of C-terminal truncation of receptor activity modifying proteins on the induction of amylin receptor phenotype from human CTb receptors. Regul Pept 145:65–71

    Article  CAS  PubMed  Google Scholar 

  • Van Rossum D, Menard DP, Fournier A, St Pierre S, Quirion R (1994) Autoradiographic distribution and receptor binding profile of [125I]Bolton Hunter-rat amylin binding sites in the rat brain. J Pharmacol Exp Ther 270:779–787

    PubMed  Google Scholar 

  • Wookey PJ, Tikellis C, Du HC, Qin HF, Sexton PM, Cooper ME (1996) Amylin binding in rat renal cortex, stimulation of adenylyl cyclase, and activation of plasma renin. Am J Physiol Renal Physiol 270:289–294

    Google Scholar 

  • Young A (2005) Amylin: physiology and pharmacology. Elsevier Inc. San Diego, USA.

    Google Scholar 

  • Zhu GC, Dudley DT, Altiel AR (1991) Amylin increases cyclic AMP formation in L6 myocytes through calcitonin gene-related peptide receptors. Biochem Biophys Res Commun 177:771–776

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U, Fluehmann B, Born W, Fischer J, Muff R (1997) Coexistence of novel amylin-binding sites with calcitonin receptors in human breast carcinoma MCF-7 cells. J Endocrinol 155:423–431

    Article  CAS  PubMed  Google Scholar 

  • Zumpe ET, Tilakaratne N, Fraser NJ, Christopoulos G, Foord SM, Sexton PM (2000) Multiple RAMP domains are required for generation of amylin receptor phenotype from the calcitonin receptor gene product. Biochem Biophys Res Commun 267:368–372

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Just .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Just, R., Simms, J., Furness, S.G.B., Christopoulos, A., Sexton, P.M. (2010). Understanding Amylin Receptors. In: Hay, D., Dickerson, I. (eds) The calcitonin gene-related peptide family. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2909-6_3

Download citation

Publish with us

Policies and ethics