Skip to main content

Calcitonin Receptor Expression in Embryonic, Foetal and Adult Tissues: Developmental and Pathophysiological Implications

  • Chapter
  • First Online:

Abstract

It has been well established that the calcitonin receptor (CTR) mediates the actions of calcitonin in bone homeostatic mechanisms during growth and in adulthood. However, the widespread expression of CTR in embryonic, foetal and adult tissues together with functional studies implicates the activity of CTR in other physiological and pathophysiological events including wound healing, cardiovascular disease and some cancers. The development of high affinity anti-CTR antibodies has helped define the roles of CTR in organogenesis and pathogenesis, and has focused our attention on the roles of precursor cells that express CTR. These CTR-positive cells are featured in foetal development, cardiovascular disease and leukaemia. It is hypothesised that the potential to express CTR is a fundamental property of precursors and progeny of the haematopoietic lineages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AGM:

Aorta-gonado-mesonephros

ALL:

Acute lymphoblastic leukaemia

AM:

Adrenomedullin

AML:

Acute myeloblastic leukaemia

CD34:

Cluster of differentiation antigen 34

CGRP:

Calcitonin gene-related peptide

CLR:

Calcitonin receptor-like receptor

CNS:

Central nervous system

CT:

Calcitonin

hCT:

Rhuman calcitonin receptor

CTR-ir:

CTR immuno-reactivity

CVD:

Cardiovascular disease

ELISA:

Enzyme-linked immunosorbant assay

FACS:

Fluorescence activated cell sorting

Gb R:

Gamma amino butyric acid receptor

GDNF:

glial cell-derived neurotrophic factor

GFAP:

Glial fibrilliary acidic protein

GFR:

GDNF-family receptor

GPCR:

G-protein coupled receptors

HMEC:

Human microvessel endothelial cells

IF:

Immunofluorescence

IHC:

Immunohistochemistry

ISH:

In situ hybridization

[125I]-sCT:

[125I]-iodine labeled salmon calcitonin

MAb:

Monoclonal antibody

NFkappaβ:

Transcription factor

PAb:

Polyclonal antibody

PACAP:

Pituitary adenylyl cyclase activating peptide

PAC 1:

PACAP selective receptor

PCR:

Polymerase chain reaction

PNS:

Peripheral nervous system

PTH:

Parathyroid hormone

RAMP:

Receptor activity modifying protein

RANK:

Receptor activator of NFkappaβ

RANKL:

RANK ligand

RET:

(RE-arranged during Transfection) receptor tyrosine kinase

VEGFR:

Vascular epithelial growth factor receptor

VIP:

Vasoactive intestinal peptide

VPAC R:

VIP/PACAP receptor

WB:

Western blot

References

  • Adachi S, Yoshida H, Kataoka H, Nishikawa S (1997) Three distinctive steps in Peyer’s patch formation of murine embryo. Int Immunol 9(4):507–514

    Article  PubMed  CAS  Google Scholar 

  • Akeno-Stuart N, Croyle M, Knauf JA, Malaguarnera R, Vitagliano D, Santoro M et al (2007) The RET kinase inhibitor NVP-AST487 blocks growth and calcitonin gene expression through distinct mechanisms in medullary thyroid cancer cells. Cancer Res 67(14):6956–6964

    Article  PubMed  CAS  Google Scholar 

  • Albrandt K, Mull E, Brady EM, Herich J, Moore CX, Beaumont K (1993) Molecular cloning of two receptors from rat brain with high affinity for salmon calcitonin. FEBS Lett 325(3):225–232

    Article  PubMed  CAS  Google Scholar 

  • Anusaksathien O, Laplace C, Li X, Ren Y, Peng L, Goldring SR et al (2001) Tissue-specific and ubiquitous promoters direct the expression of alternatively spliced transcripts from the calcitonin receptor gene. J Biol Chem 276(25):22663–22674

    Article  PubMed  CAS  Google Scholar 

  • Becskei C, Riediger T, Zund D, Wookey P, Lutz TA (2004) Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res 1030(2):221–233

    Article  PubMed  CAS  Google Scholar 

  • Body JJ, Glibert F, Nejai S, Fernandez G, Van Langendonck A, Borkowski A (1990) Calcitonin receptors on circulating normal human lymphocytes. J Clin Endocrinol Metab 71(3):675–681

    Article  PubMed  CAS  Google Scholar 

  • Brown EM, Segre GV, Goldring SR (1996) Serpentine receptors for parathyroid hormone, calcitonin and extracellular calcium ions. Baillieres Clin Endocrinol Metab 10(1):123–161

    Article  PubMed  CAS  Google Scholar 

  • Burgess AM (1985) The effect of calcitonin on the prechordal mesoderm, neural plate and neural crest of Xenopus embryos. J Anat 140(Pt 1):49–55

    PubMed  CAS  Google Scholar 

  • Campbell JH, Efendy JL, Han CL, Campbell GR (2000) Blood vessels from bone marrow. Ann N Y Acad Sci 902:224–229

    Article  PubMed  CAS  Google Scholar 

  • Campbell JH, Han CL, Campbell GR (2001) Neointimal formation by circulating bone marrow cells. Ann N Y Acad Sci 947:18–24; discussion 24–25

    Google Scholar 

  • Chance WT, Balasubramaniam A, Zhang FS, Wimalawansa SJ, Fischer JE (1991) Anorexia following the intrahypothalamic administration of amylin. Brain Res 539(2):352–354

    Article  PubMed  CAS  Google Scholar 

  • Chausmer AB, Stevens MD, Severn C (1982) Autoradiographic evidence for a calcitonin receptor on testicular Leydig cells. Science 216(4547):735–736

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Armour S, Way J, Chen G, Watson C, Irving P et al (1997) Expression cloning and receptor pharmacology of human calcitonin receptors from MCF-7 cells and their relationship to amylin receptors. Mol Pharmacol 52:1164–1175

    PubMed  CAS  Google Scholar 

  • Chigurupati S, Kulkarni T, Thomas S, Shah G (2005) Calcitonin stimulates multiple stages of angiogenesis by directly acting on endothelial cells. Cancer Res 65(18):8519–8529

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos G, Perry K, Morfis M, Tilakaratne N, Gao Y, Fraser N et al (1999) Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 56:235–242

    PubMed  CAS  Google Scholar 

  • Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A et al (2003) Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem 278(5):3293–3297

    Article  PubMed  CAS  Google Scholar 

  • Copp DH (1967) Hormonal control of hypercalcemia. Historic development of the calcitonin concept. Am J Med 43(5):648–655

    Google Scholar 

  • Copp DH, Cameron EC, Cheney BA, Davidson GF, Henze KG (1962) Evidence for calcitonin-a new hormone from the parathyroid that lowers blood calcium. Endocrinology 70:638–649

    Article  PubMed  CAS  Google Scholar 

  • Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR et al (2004) Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 164(4):509–514

    Article  PubMed  CAS  Google Scholar 

  • Daub K, Langer H, Seizer P, Stellos K, May AE, Goyal P et al (2006) Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. Faseb J 20(14):2559–2561

    Article  PubMed  CAS  Google Scholar 

  • Davey RA, Turner A, McManus JF, Chiu WS, Tjahyono F, Moore AJ, et al. (2008) The calcitonin receptor plays a physiological role to protect against hypercalcemia in mice. J Bone Miner Res 23(8):1182–1193

    Google Scholar 

  • Demer LL, Tintut Y (2008) Vascular calcification: pathobiology of a multifaceted disease. Circulation 117(22):2938–2948

    Article  PubMed  Google Scholar 

  • Ding YQ, Zhu LJ, Bagchi MK, Bagchi IC (1994) Progesterone stimulates calcitonin gene expression in the uterus during implantation. Endocrinology 135(5):2265–2274

    Article  PubMed  CAS  Google Scholar 

  • Evdokiou A, Raggatt LJ, Atkins GJ, Findlay DM (1999) Calcitonin receptor-mediated growth suppression of HEK-293 cells is accompanied by induction of p21WAF1/CIP1 and G2/M arrest. Mol Endocrinol 13(10):1738–1750

    Article  PubMed  CAS  Google Scholar 

  • Evdokiou A, Raggatt LJ, Sakai T, Findlay DM (2000) Identification of a novel calcitonin-response element in the promoter of the human p21WAF1/CIP1 gene. J Mol Endocrinol 25(2):195–206

    Article  PubMed  CAS  Google Scholar 

  • Findlay DM, deLuise M, Michelangeli VP, Ellison M, Martin TJ (1980) Properties of a calcitonin receptor and adenylate cyclase in BEN cells, a human cancer cell line. Cancer Res 40(4):1311–1317

    PubMed  CAS  Google Scholar 

  • Findlay DM, Michelangeli VP, Moseley JM, Martin TJ (1981) Calcitonin binding and degradation by two cultured human breast cancer cell lines (MCF 7 and T 47D). Biochem J 196(2):513–520

    PubMed  CAS  Google Scholar 

  • Findlay DM, Raggatt LJ, Bouralexis S, Hay S, Atkins GJ, Evdokiou A (2002) Calcitonin decreases the adherence and survival of HEK-293 cells by a caspase-independent mechanism. J Endocrinol 175(3):715–725

    Article  PubMed  CAS  Google Scholar 

  • Firsov D, Bellanger A, Marsy S, Elalouf J (1995) Quantitative RT-PCR analysis of calcitonin receptor mRNAs in the rat nephron. Am J Physiol 269:F702–F709

    PubMed  CAS  Google Scholar 

  • Fischer JA, Tobler PH, Kaufmann M, Born W, Henke H, Cooper PE et al (1981) Calcitonin: regional distribution of the hormone and its binding sites in the human brain and pituitary. Proc Natl Acad Sci U S A 78(12):7801–7805

    Article  PubMed  CAS  Google Scholar 

  • Fomchenko EI, Holland EC (2005) Stem cells and brain cancer. Exp Cell Res 306(2):323–329

    Article  PubMed  CAS  Google Scholar 

  • Foord SM, Topp SD, Abramo M, Holbrook JD (2005) New methods for researching accessory proteins. J Mol Neurosci 26(2–3):265–276

    Article  PubMed  CAS  Google Scholar 

  • Force T, Bonventre JV, Flannery MR, Gorn AH, Yamin M, Goldring SR (1992) A cloned porcine renal calcitonin receptor couples to adenylyl cyclase and phospholipase C. Am J Physiol 262(6 Pt 2):F1110–F1115

    PubMed  CAS  Google Scholar 

  • Fouchereau-Peron M, Moukhtar MS, Benson AA, Milhaud G (1981) Characterization of specific receptors for calcitonin in porcine lung. Proc Natl Acad Sci U S A 78(6):3973–3975

    Article  PubMed  CAS  Google Scholar 

  • Frendo JL, Pichaud F, Mourroux RD, Bouizar Z, Segond N, Moukhtar MS et al (1994) An isoform of the human calcitonin receptor is expressed in TT cells and in medullary carcinoma of the thyroid. FEBS Lett 342(2):214–216

    Article  PubMed  CAS  Google Scholar 

  • Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N et al (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25(10):2448–2459

    Article  PubMed  CAS  Google Scholar 

  • Gale RP, Sparkes RS, Golde DW (1978) Bone marrow origin of hepatic macrophages (Kupffer cells) in humans. Science 201(4359):937–8

    Article  PubMed  CAS  Google Scholar 

  • Gattei V, Celetti A, Cerrato A, Degan M, De Iuliis A, Rossi FM et al (1997) Expression of the RET receptor tyrosine kinase and GDNFR-alpha in normal and leukemic human hematopoietic cells and stromal cells of the bone marrow microenvironment. Blood 89(8):2925–2937

    PubMed  CAS  Google Scholar 

  • Gillespie M, Thomas R, Pu Z, Zhou H, Martin T, Findlay D (1997) Calcitonin receptors, bone sialoprotein and osteopontin are expressed in primary breast cancers. Int J Cancer 73:812–815

    Article  PubMed  CAS  Google Scholar 

  • Gorn A, Lin H, Yamin M, Auron P, Flannery M, Tapp D et al (1992) Cloning, characterization, and expression of a human calcitonin receptor from an ovarian carcinoma cell line. J Clinic Invest 90:1726–1735

    Article  CAS  Google Scholar 

  • Gorn AH, Rudolph SM, Flannery MR, Morton CC, Weremowicz S, Wang TZ, et al. (1995) Expression of two human skeletal calcitonin receptor isoforms cloned from a giant cell tumor of bone. The first intracellular domain modulates ligand binding and signal transduction. J Clin Invest 95(6):2680–2691

    Google Scholar 

  • Granholm S, Lundberg P, Lerner UH (2007) Calcitonin inhibits osteoclast formation in mouse haematopoetic cells independently of transcriptional regulation by receptor activator of NF-{kappa}B and c-Fms. J Endocrinol 195(3):415–427

    Article  PubMed  CAS  Google Scholar 

  • Granholm S, Lundberg P, Lerner UH (2008) Expression of the calcitonin receptor, calcitonin receptor-like receptor, and receptor activity modifying proteins during osteoclast differentiation. J Cell Biochem 104(3):920–933

    Article  PubMed  CAS  Google Scholar 

  • Hanna FW, Smith DM, Johnston CF, Akinsanya KO, Jackson ML, Morgan DG et al (1995) Expression of a novel receptor for the calcitonin peptide family and a salmon calcitonin-like peptide in the alpha-thyrotropin thyrotroph cell line. Endocrinol 136(6):2377–2382

    Article  CAS  Google Scholar 

  • Hattersley G, Chalmers TJ (1989) Calcitonin receptors as markers for osteoclast differentiation: correlation between generation of bone resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures. Endocrinology 125:1606–1612

    Article  PubMed  CAS  Google Scholar 

  • Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM (2005) Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol 67(5):1655–1665

    Article  PubMed  CAS  Google Scholar 

  • Hebden C, Smalt R, Chambers T, Pondel MD (2000) Multiple promoters regulate human calcitonin receptor gene expression. Biochem Biophys Res Commun 272(3):738–743

    Article  PubMed  CAS  Google Scholar 

  • Heuckeroth RO, Pachnis V (2006) Getting to the guts of enteric nervous system development. Development 133(12):2287–2290

    Article  PubMed  CAS  Google Scholar 

  • Hirsch PF, Gauthier GF, Munson PL (1963) Thyroid hypocalcemic principle and recurrent laryngeal nerve injury as factors affecting the response to parathyroidectomy in rats. Endocrinology 73:244–252

    Article  PubMed  CAS  Google Scholar 

  • Hirsch PF, Voelkel EF, Munson PL (1964) Thyrocalcitonin: hypocalcaemic hypophosphataemic principle of the thyroid gland. Science 146:412–413

    Article  PubMed  CAS  Google Scholar 

  • Hoshiya H, Meguro M, Kashiwagi A, Okita C, Oshimura M (2003) Calcr, a brain-specific imprinted mouse calcitonin receptor gene in the imprinted cluster of the proximal region of chromosome 6. J Hum Genet 48(4):208–211

    Article  PubMed  CAS  Google Scholar 

  • Jagger C, Gallagher A, Chambers T, Pondel M (1999) The porcine calcitonin receptor promoter directs expression of a linked reporter gene in a tissue and developmental specific manner in transgenic mice. Endocrinology 140:492–499

    Article  PubMed  CAS  Google Scholar 

  • Jagger C, Chambers T, Pondel M (2000) Transgenic mice reveal novel sites of calcitonin receptor gene expression during development. Biochem Biophys Res Commun 274:124–129

    Article  PubMed  CAS  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  PubMed  CAS  Google Scholar 

  • Kikumoto K, Katafuchi T, Minamino N (2003) Specificity of porcine calcitonin receptor and calcitonin receptor-like receptor in the presence of receptor-activity-modifying proteins. Hypertens Res 26(Suppl):S15–S23

    Google Scholar 

  • Kim MS, Day CJ, Selinger CI, Magno CL, Stephens SR, Morrison NA (2006) MCP-1-induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NFkappaB ligand for bone resorption. J Biol Chem 281(2):1274–1285

    Article  PubMed  CAS  Google Scholar 

  • Kovacs C, Chafe L, Woodland M, McDonald K, Fudge N, Wookey P (2002) Calcitropic gene expression in the murine placenta suggests a role for the intraplacental yolk sac in maternal-fetal calcium exchange. Am J Physiol 282:E721–E732

    CAS  Google Scholar 

  • Kuestner RE, Elrod RD, Grant FJ, Hagen FS, Kuijper JL, Matthewes SL et al (1994) Cloning and characterization of an abundant subtype of the human calcitonin receptor. Mol Pharmacol 46(2):246–255

    PubMed  CAS  Google Scholar 

  • Kumar MA, Foster GV, Macintyre I (1963) Further evidence for calcitonin. A rapid-acting hormone which lowers plasma-calcium. Lancet 2(7306):480–482

    Google Scholar 

  • Lin HY, Harris TL, Flannery MS, Aruffo A, Kaji EH, Gorn A et al (1991) Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science 254(5034):1022–1024

    Article  PubMed  CAS  Google Scholar 

  • Lutz TA, Del Prete E, Scharrer E (1994) Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol Behav 55(5):891–895

    Article  PubMed  CAS  Google Scholar 

  • Lutz TA, Geary N, Szabady MM, Del Prete E, Scharrer E (1995) Amylin decreases meal size in rats. Physiol Behav 58(6):1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Macintyre I, Foster GV, Kumar MA (1964) Calcium metabolism. Calcitonin. Proc R Soc Med 57:865–866

    CAS  Google Scholar 

  • Marx SJ, Woodward CJ, Aurbach GD (1972) Calcitonin receptors of kidney and bone. Science 178(64):999–1001

    Article  PubMed  CAS  Google Scholar 

  • Marx SJ, Aurbach GD, Gavin JR 3rd, Buell DW (1974) Calcitonin receptors on cultured human lymphocytes. J Biol Chem 249(21):6812–6816

    PubMed  CAS  Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N et al (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393(6683):333–339

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 3(4):292–303

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE, Miyamoto T, Christensen J, Domen J, Cupedo T, Weissman IL et al (2001) The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3- cells, as well as macrophages. J Immunol 166(11):6593–6601

    PubMed  CAS  Google Scholar 

  • Moore EE, Kuestner RE, Stroop SD, Grant FJ, Matthewes SL, Brady CL et al (1995) Functionally different isoforms of the human calcitonin receptor result from alternative splicing of the gene transcript. Mol Endocrinol 9(8):959–968

    Article  PubMed  CAS  Google Scholar 

  • Moran J, Hunziker W, Fischer JA (1978) Calcitonin and calcium ionophores: cyclic AMP responses in cells of a human lymphoid line. Proc Natl Acad Sci U S A 75(8):3984–3988

    Article  PubMed  CAS  Google Scholar 

  • Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 304(1):81–90

    Article  PubMed  CAS  Google Scholar 

  • Mould R, Pondel MD (2003) Calcitonin receptor gene expression in K562 chronic myelogenous leukemic cells. Cancer Cell Int 3(1):6

    Article  PubMed  Google Scholar 

  • Muff R, Buhlmann N, Fischer JA, Born W (1999) Amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1or-3. Endocrinology 140(6):2924–2927

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto H, Soeda Y, Takami S, Minami M, Satoh M (2000) Localization of calcitonin receptor mRNA in the mouse brain: coexistence with serotonin transporter mRNA. Mol Brain Res 76:93–102

    Article  PubMed  CAS  Google Scholar 

  • Nakamuta H, Orlowski RC, Epand RM (1990) Evidence for calcitonin receptor heterogeneity: binding studies with nonhelical analogs. Endocrinology 127(1):163–169

    Article  PubMed  CAS  Google Scholar 

  • Nakayama S, Iida K, Tsuzuki T, Iwashita T, Murakami H, Asai N et al (1999) Implication of expression of GDNF/Ret signalling components in differentiation of bone marrow haemopoietic cells. Br J Haematol 105(1):50–57

    Article  PubMed  CAS  Google Scholar 

  • Nakhla AM, Mather JP, Jane OA, Bardin CW (1989) The action of calcitonin on the TM4 Sertoli cell line and on rat Sertoli cell-enriched cultures. J Androl 10(4):321–331

    PubMed  CAS  Google Scholar 

  • Nanno M, Matsumoto S, Koike R, Miyasaka M, Kawaguchi M, Masuda T et al (1994) Development of intestinal intraepithelial T lymphocytes is independent of Peyer’s patches and lymph nodes in aly mutant mice. J Immunol 153(5):2014–2020

    PubMed  CAS  Google Scholar 

  • Nekrep N, Wang J, Miyatsuka T, German MS (2008) Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135(12):2151–2160

    Article  PubMed  CAS  Google Scholar 

  • Nicholson GC, Moseley JM, Sexton PM, Mendelsohn FA, Martin TJ (1986) Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J Clin Invest 78(2):355–360

    Google Scholar 

  • Nicholson GC, Horton MA, Sexton PM, D’Santos CS, Moseley JM, Kemp BE et al (1987) Calcitonin receptors of human osteoclastoma. Horm Metab Res 19(11):585–589

    Article  PubMed  CAS  Google Scholar 

  • Nicholson GC, D’Santos CS, Evans T, Moseley JM, Kemp BE, Michelangeli VP et al (1988) Human placental calcitonin receptors. Biochem J 250(3):877–882

    PubMed  CAS  Google Scholar 

  • Nussenzveig DR, Thaw CN, Gershengorn MC (1994) Inhibition of inositol phosphate second messenger formation by intracellular loop one of a human calcitonin receptor. Expression and mutational analysis of synthetic receptor genes. J Biol Chem 269(45):28123–28129

    Google Scholar 

  • Nussenzveig DR, Mathew S, Gershengorn MC (1995) Alternative splicing of a 48-nucleotide exon generates two isoforms of the human calcitonin receptor. Endocrinology 136(5):2047–2051

    Article  PubMed  CAS  Google Scholar 

  • Nygaard S, Kuestner R, Moore E, Stroop S (1997) Phosphorylation of the human calcitonin receptor by multiple kinases is localized to the C-terminus. J Bone Miner Res 12:1681–1690

    Article  PubMed  CAS  Google Scholar 

  • Ozbilgin MK, Kirmaz C, Yuksel H, Kurtman C, Kaya M (2006) Calcitonin expression of high endothelial venules during lymphocyte migration in human pharyngeal tonsil. Lymphology 39(4):174–180

    PubMed  CAS  Google Scholar 

  • Paxinos G, Chai SY, Christopoulos G, Huang XF, Toga AW, Wang HQ et al (2004) In vitro autoradiographic localization of calcitonin and amylin binding sites in monkey brain. J Chem Neuroanat 27(4):217–36

    Article  PubMed  CAS  Google Scholar 

  • Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95(3):952–958

    PubMed  CAS  Google Scholar 

  • Perry KJ, Quiza M, Myers DE, Morfis M, Christopoulos G, Sexton PM (1997) Characterization of amylin and calcitonin receptor binding in the mouse alpha-thyroid-stimulating hormone thyrotroph cell line. Endocrinology 138(8):3486–3496

    Article  PubMed  CAS  Google Scholar 

  • Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC et al (2005) Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11(3):261–262

    Article  PubMed  CAS  Google Scholar 

  • Pondel MD, Jagger C, Hebden C, Partington G, Mould R (2002) Transcriptional regulation of the calcitonin receptor gene. Biochem Soc Trans 30(4):423–427

    Article  PubMed  CAS  Google Scholar 

  • Pondel MD, Partington GA, Mould R (2003) Tissue-specific activity of the proximal human calcitonin receptor promoter is mediated by Sp1 and an epigenetic phenomenon. FEBS Lett 554(3):433–438

    Article  PubMed  CAS  Google Scholar 

  • Quinn J, Morfis M, Lam M, Elliott J, Kartsogiannis V, Williams E et al (1999) Calcitonin receptor antibodies in the identification of osteoclasts. Bone 25:1–8

    Article  PubMed  CAS  Google Scholar 

  • Riediger T, Schmid HA, Lutz T, Simon E (2001) Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP. Am J Physiol Regul Integr Comp Physiol 281(6):R1833–R1843

    PubMed  CAS  Google Scholar 

  • Samokhvalov IM, Samokhvalova NI, Nishikawa S (2007) Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446(7139):1056–1061

    Article  PubMed  CAS  Google Scholar 

  • Sangiorgi G, Rumberger JA, Severson A, Edwards WD, Gregoire J, Fitzpatrick LA et al (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31(1):126–133

    Article  PubMed  CAS  Google Scholar 

  • Segre GV, Goldring SR (1993) Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagonlike peptide 1, growth hormone-releasing hormone, and glucagon belong to a newly discovered G-protein-linked receptor. Trends Endocrinol Metab 4(10):309–314

    Article  PubMed  CAS  Google Scholar 

  • Sexton P, Adam W, Moseley J, Martin T, Mendelsohn F (1987) Localization and characterization of renal calcitonin receptors by in vitro autoradiography. Kidney Int 32:862–868

    Article  PubMed  CAS  Google Scholar 

  • Sexton PM, McKenzie JS, Mendelsohn FAO (1988) Evidence for a new subclass of calcitonin/calcitonin gene-related peptide binding sites in rat brain. Neurochem Int 12:323–335

    Article  PubMed  CAS  Google Scholar 

  • Sexton PM, Paxinos G, Huang XF, Mendelsohn FA (1994) In vitro autoradiographic localization of calcitonin binding sites in human medulla oblongata. J Comp Neurol 341(4):449–463

    Article  PubMed  CAS  Google Scholar 

  • Sexton PM, Morfis M, Tilakaratne N, Hay DL, Udawela M, Christopoulos G et al (2006) Complexing receptor pharmacology: modulation of family B G protein-coupled receptor function by RAMPs. Ann N Y Acad Sci 1070:90–104

    Article  PubMed  CAS  Google Scholar 

  • Shen Z, Crotti TN, Flannery MR, Matsuzaki K, Goldring SR, McHugh KP (2007) A novel promoter regulates calcitonin receptor gene expression in human osteoclasts. Biochim Biophys Acta 1769(11–12):659–667

    PubMed  CAS  Google Scholar 

  • Sheward W, Lutz E, Harmar A (1994) The expression of the calcitonin receptor gene in the brain and pituitary gland. Neurosci Lett 181:31–34

    Article  PubMed  CAS  Google Scholar 

  • Silvestris F, Cafforio P, De Matteo M, Quatraro C, Dammacco F (2008) Expression and function of the calcitonin receptor by myeloma cells in their osteoclast-like activity in vitro. Leuk Res 32(4):611–623

    Article  PubMed  CAS  Google Scholar 

  • Sorensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH et al (2007) Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 25(1):36–45

    Article  PubMed  CAS  Google Scholar 

  • Spampinato S, Falcucci B, Cacciaguerra S, Campana G, Murari G (1999) Characterization of a putative calcitonin receptor in IMR 32 human neuroblastoma cells. Neurosci Lett 273(3):167–170

    Article  PubMed  CAS  Google Scholar 

  • Stroop SD, Kuestner RE, Serwold TF, Chen L, Moore EE (1995) Chimeric human calcitonin and glucagon receptors reveal two dissociable calcitonin interaction sites. Biochemistry 34(3):1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Buma Y, Taniguchi M (1991) Identification of the ret proto-oncogene products in neuroblastoma and leukemia cells. Oncogene 6(2):297–301

    PubMed  CAS  Google Scholar 

  • Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901

    Article  PubMed  CAS  Google Scholar 

  • Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5(1):30–34

    Article  PubMed  CAS  Google Scholar 

  • Thomas S, Chigurupati S, Anbalagan M, Shah G (2006) Calcitonin increases tumorigenicity of prostate cancer cells: evidence for the role of protein kinase A and urokinase-type plasminogen receptor. Mol Endocrinol 20(8):1894–1911

    Article  PubMed  CAS  Google Scholar 

  • Thomas S, Chiriva-Internati M, Shah GV (2007a) Calcitonin receptor-stimulated migration of prostate cancer cells is mediated by urokinase receptor-integrin signaling. Clin Exp Metastasis 24(5):363–377

    Article  PubMed  CAS  Google Scholar 

  • Thomas S, Muralidharan A, Shah GV (2007b) Knock-down of calcitonin receptor expression induces apoptosis and growth arrest of prostate cancer cells. Int J Oncol 31(6):1425–1437

    PubMed  CAS  Google Scholar 

  • Tikellis C, Xuereb L, Casley D, Brasier G, Cooper ME, Wookey PJ (2003) Calcitonin receptor isoforms expressed in the developing rat kidney. Kidney Int 63:416–426

    Article  PubMed  CAS  Google Scholar 

  • Tober J, Koniski A, McGrath KE, Vemishetti R, Emerson R, de Mesy-Bentley KK et al (2007) The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood 109(4):1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Tobon-Arroyave SI, Franco-Gonzalez LM, Isaza-Guzman DM, Florez-Moreno GA, Bravo-Vasquez T, Castaneda-Pelaez DA et al (2005) Immunohistochemical expression of RANK, GRalpha and CTR in central giant cell granuloma of the jaws. Oral Oncol 41(5):480–488

    Article  PubMed  CAS  Google Scholar 

  • Tolcos M, Tikellis C, Rees S, Cooper M, Wookey P (2003) Ontogeny of calcitonin receptor mRNA and protein in the developing central nervous system of the rat. J Comp Neurol 456(1):29–38

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Leal V, Bruno R, Derfuss T, Krumbholz M, Hohlfeld R, Meinl E (2005) Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells. J Immunol 175(4):2301–2308

    PubMed  CAS  Google Scholar 

  • Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D et al (2007) Tyrosine kinase receptor RET is a key regulator of Peyer’s patch organogenesis. Nature 446(7135):547–551

    Article  PubMed  CAS  Google Scholar 

  • Vered M, Buchner A, Dayan D (2006) Immunohistochemical expression of glucocorticoid and calcitonin receptors as a tool for selecting therapeutic approach in central giant cell granuloma of the jawbones. Int J Oral Maxillofac Surg 35(8):756–760

    Article  PubMed  CAS  Google Scholar 

  • Visser M, Hofstra RM, Stulp RP, Wu Y, Buys CH, Willemze R et al (1997) Absence of mutations in the RET gene in acute myeloid leukemia. Ann Hematol 75(3):87–90

    Article  PubMed  CAS  Google Scholar 

  • Wada S, Udagawa N, Nagata N, Martin TJ, Findlay DM (1996) Physiological levels of calcitonin regulate the mouse osteoclast calcitonin receptor by a protein kinase Alpha-mediated mechanism. Endocrinology 137(1):312–320

    Article  PubMed  CAS  Google Scholar 

  • Wada S, Udagawa N, Akatsu T, Nagata N, Martin TJ, Findlay DM (1997) Regulation by calcitonin and glucocorticoids of calcitonin receptor gene expression in mouse osteoclasts. Endocrinology 138(2):521–529

    Article  PubMed  CAS  Google Scholar 

  • Wada S, Yasuda S, Nagai T, Maeda T, Kitahama S, Suda S et al (2001) Regulation of calcitonin receptor by glucocorticoid in human osteoclast-like cells prepared in vitro using receptor activator of nuclear factor-kappaB ligand and macrophage colony-stimulating factor. Endocrinology 142(4):1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Rout UK, Bagchi IC, Armant DR (1998) Expression of calcitonin receptors in mouse preimplantation embryos and their function in the regulation of blastocyst differentiation by calcitonins. Development 125:4293–4302

    PubMed  CAS  Google Scholar 

  • Wang X, Nakamura M, Mori I, Takeda K, Nakamura Y, Utsunomiya H et al (2004) Calcitonin receptor gene and breast cancer: quantitative analysis with laser capture microdissection. Breast Cancer Res Treat 83(2):109–117

    Article  PubMed  CAS  Google Scholar 

  • Whitfield JF, MacManus JP, Franks DJ, Braceland BM, Gillan DJ (1972) Calcium-mediated effects of calcitonin on cyclic AMP formation and lymphoblast proliferation in thymocyte populations exposed to prostaglandin E 1. J Cell Physiol 80(3):315–328

    Article  PubMed  CAS  Google Scholar 

  • Wookey PJ (2009) A review of calcitonin receptor expression in embryonic foetal and adult tissues, with an hypothesis on the connection between expression of calcitonin receptor during foetal development and disease. The Open Zoology Journal 2:77–85

    PubMed  CAS  Google Scholar 

  • Wookey PJ, Tikellis C, Du H-C, Qin H-F, Sexton PM, Cooper ME (1996) Amylin binding in rat renal cortex, stimulation of adenylyl cyclase and activation of plasma renin. Am J Physiol 270:F289–F294

    PubMed  CAS  Google Scholar 

  • Wookey PJ, Lutz TA, Andrikopoulos S (2006) Amylin in the periphery II: An updated mini-review. ScientificWorldJournal 6:1642–1655

    Article  PubMed  CAS  Google Scholar 

  • Wookey P, Zulli A, Furness J, Schwarer A, Hare D, Leung A (2007) Calcitonin receptor (CTR) expression by blast cell populations. In: 6th International symposia on the CGRP family: CGRP, adrenomedullin, amylin, intermedin and calcitonin. La Jolla, California, USA

    Google Scholar 

  • Wookey P, Zulli A, Buxton B, Hare D (2008) Calcitonin receptor immunoreactivity associated with specific cell types in diseased radial and internal mammary arteries. Histopathol 52:605–612

    Article  CAS  Google Scholar 

  • Wookey PJ, Zulli A, Hare DL (2009) The elevated expression of calcitonin recaptor by cell recruited into the endithelial layer and neo-intima of atheroscle rotic plaque. Histochem Cell Biol. Published online 5th April

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Burzon D, di Sant’Agnese P, Schoen S, Deftos L, Gershagen S et al (1996) Calcitonin receptor mRNA expression in human prostate. Urology 47:376–381

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Zhang Z, Davison F, Hu Y (2003) Circulating progenitor cells regenerate endothelium of vein graft atherosclerosis, which is diminished in ApoE-deficient mice. Circ Res 93(8):e76–e86

    Article  PubMed  CAS  Google Scholar 

  • Yamin M, Gorn AH, Flannery MR, Jenkins NA, Gilbert DJ, Copeland NG et al (1994) Cloning and characterization of a mouse brain calcitonin receptor complementary deoxyribonucleic acid and mapping of the calcitonin receptor gene. Endocrinology 135(6):2635–43

    Article  PubMed  CAS  Google Scholar 

  • Yao H, Liu B, Wang X, Lan Y, Hou N, Yang X et al (2007) Identification of high proliferative potential precursors with hemangioblastic activity in the mouse aorta-gonad- mesonephros region. Stem Cells 25(6):1423–1430

    Article  PubMed  Google Scholar 

  • Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D (1997) Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7(3):335–344

    Article  PubMed  CAS  Google Scholar 

  • Young HM, Newgreen D (2001) Enteric neural crest-derived cells: origin, identification, migration, and differentiation. Anat Rec 262(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Young HM, Hearn CJ, Ciampoli D, Southwell BR, Brunet JF, Newgreen DF (1998) A single rostrocaudal colonization of the rodent intestine by enteric neuron precursors is revealed by the expression of Phox2b, Ret, and p75 and by explants grown under the kidney capsule or in organ culture. Dev Biol 202(1):67–84

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M, Pazianas M, Shankar VS, Bax BE, Bax CM, Bevis PJ et al (1993) Osteoclast function and its control. Exp Physiol 78(6):721–739

    PubMed  CAS  Google Scholar 

  • Zambidis ET, Sinka L, Tavian M, Jokubaitis V, Park TS, Simmons P et al (2007) Emergence of human angiohematopoietic cells in normal development and from cultured embryonic stem cells. Ann N Y Acad Sci 1106:223–232

    Article  PubMed  CAS  Google Scholar 

  • Zulli A, Hare DL, Buxton BF, Black MJ (2004) High dietary methionine plus cholesterol exacerbates atherosclerosis formation in the left main coronary artery of rabbits. Atherosclerosis 176(1):83–89

    Article  PubMed  CAS  Google Scholar 

  • Zulli A, Buxton BF, Black MJ, Hare DL (2005) CD34 Class III positive cells are present in atherosclerotic plaques of the rabbit model of atherosclerosis. Histochem Cell Biol 124(6):517–522

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.J. Wookey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Wookey, P. et al. (2010). Calcitonin Receptor Expression in Embryonic, Foetal and Adult Tissues: Developmental and Pathophysiological Implications. In: Hay, D., Dickerson, I. (eds) The calcitonin gene-related peptide family. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2909-6_13

Download citation

Publish with us

Policies and ethics