Humic Substances in Municipal Refuse Disposed of in a Landfill

Composition, Functions, Fate
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Disposal of municipal waste in a landfill can create environmental and hygienic problems due to leakage water, odour and other nuisances until the disposed material becomes biologically and chemically stabilized. The stabilization process includes both mineralization and transformation of the waste organic matter, which may include humification of organic substances. Humic-like substances (HS) have been isolated from fresh municipal waste, and especially from that one aged for several months in a landfill. The amounts and structural composition of waste-related HS resembled those from a low-in-quality soil such as podzol. The HS have been found capable of forming Cu2+ and Fe3+ and other metal complexes. In laboratory experiments, however, the HS extracted from landfilled waste underwent strong microbial decomposition, especially if serving as sole sources of carbon or nitrogen for soil microorganisms. Indirectly, the experimental data reported here find their verification also in a more recent research results obtained by other authors.

Keywords

municipal refuse landfill microbial activity humic substances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adani F, Spagnol M (2008) Humic acid formation in artificial soils amended with compost at different stages of organic matter evolution. J Environ Qual 37: 1608–1616.CrossRefGoogle Scholar
  2. 2.
    Chen Y, Senesi N, Schnitzer M (1977) Information provided on humic substances by E4/E6 ratios. Soil Sci Soc Am J 41: 352–358.Google Scholar
  3. 3.
    Council directive 1999/31/EC of 26 April 1999 on the landfill of waste. http://europa.eu/scadplus/leg/en/lvb/121208.htm
  4. 4.
    Felde von D, Doedens H (1999) Full-scale experience with mechanical-biological pre-treatment of municipal solid waste and landfilling. Waste Manag Res 17: 520–526.Google Scholar
  5. 5.
    Filip Z (1983) Beurteilung von Stabilisierungsvorgängen im deponierten Hausmüll mit der Hilfe eines Respirationstestes. Forum Staedte-Hyg 34: 139–143.Google Scholar
  6. 6.
    Filip Z (1995) Einfluß chemischer Kontaminanten (insbesondere Schwelmetalle) auf die Bodenmikroorganismen und ihre ökologisch bedeutenden Aktivitäten. UWSF — Z Umweltchem Ökotox 7: 92–102.CrossRefGoogle Scholar
  7. 7.
    Filip Z, Berthelin J (2001) Analytical determination of microbial utilization and transformation of humic acids extracted from municipal refuse. Fresenius J Anal Chem 371: 675–681.CrossRefGoogle Scholar
  8. 8.
    Filip Z, Cheshire MW, Goodman BA, McPhail DB (1985) The occurrence of copper, iron, zinc and other elements and the nature of some copper and iron complexes in humic substances from municipal refuse disposed of in a landfill. Sci Total Environ 44: 1–16.CrossRefGoogle Scholar
  9. 9.
    Filip Z, Claus H, Dippel G (1998) Abbau von Huminstoffen durch Bodenmikroorganismen – eine Übersicht. Z Pflanzenernähr Bodenk 161: 606–612.Google Scholar
  10. 10.
    Filip Z, Dizer H, Berthelin J (1999) Bacterial toxicity testing of humic acid-like substances from a municipal refuse disposed of in a landfill. Humic Subst Environ 1: 15–19.Google Scholar
  11. 11.
    Filip Z, Haider K, Martin JP (1972) Influence of clay minerals on the formation of humic substances by Epicoccum nigrum and Stachybotrys chartarum. Soil Biol Biochem 4: 147–154.CrossRefGoogle Scholar
  12. 12.
    Filip Z, Küster E (1979) Microbial activity and the turnover of organic matter in a municipal refuse disposed of in a landfill. European J Appl Microbiol Biotechnol 7: 371–379.CrossRefGoogle Scholar
  13. 13.
    Filip Z, Pecher W, Berthelin J (2000) Mirobial utilization and transformation of humic acidlike substances extracted from a mixture of municipal refuse and sewage sludge disposed of in a landfill. Environ Pollution 109: 83–89.CrossRefGoogle Scholar
  14. 14.
    Filip Z, Smed-Hildmann R (1988) Microbial activity in sanitary landfills — a possible source of the humic substances in groundwater? Wat Sci Tech 20: 55–59.Google Scholar
  15. 15.
    Fresenius W, Schneider W, Gorbach H, Poth W (1979) Analyse von Müll, Klärschlamm, Sickerwasser und Gas von Abfalldeponien. In: Collins H.-J. (ed.) Wasser- und Stoffhaushalt in Abfalldeponien und deren Wirkung auf Gewässer. Bericht eines interdisziplinäres Forschungsvorhaben; Müll and Abfall 11, Erich Schmidt Verlag, Berlin, 53–60.Google Scholar
  16. 16.
    Frimmel FH, Abbt-Braun G, Heumann KG, Hock B, Lüdemann HD, Spiteller M (eds) (2002) Refractory Organic Substances in the Environment. Wiley, Weinheim.Google Scholar
  17. 17.
    Fuentes M, Baigorri R, Gonzales-Gaitano G, Garcia-Mina JM (2007) The complementary use of 1H NMR, 13C NMR, FTIR and size exclusion chromatography to investigate the principal structural changes associated with composting of organic materials with diverse origin. Org Geochem 38: 2012–2023.CrossRefGoogle Scholar
  18. 18.
    Haider K, Martin JP, Filip Z (1975) Humus biochemistry. In: Paul EA, McLaren AD (eds.) Soil Biochemistry, vol. 4, Dekker, New York.Google Scholar
  19. 19.
    Kerndorff H, Schnitzer M (1979) Humic and fulvic acids as indicators of soil and water pollution. Water Air Soil Pollut 12: 319–329.CrossRefGoogle Scholar
  20. 20.
    Laine-Ylijoki J, Syrjä JJ, Wahlström M (2004) Biodegradability testing of the municipal solid waste reject. NT Techn Report 560, Nordic Innov. Centre, Oslo.Google Scholar
  21. 21.
    Mondini C, Sanchez-Monedero MA, Sinicco T, Leita L (2006) Evaluation of extracted organic carbon and microbial biomass as stability parameters in ligno-cellulosic waste composts. J Environ Qual 35: 2313–2320.CrossRefGoogle Scholar
  22. 22.
    Montoneri E, Boffa V, Quagliotto PL, Mendichi R, Chierotti MR, Gobetto R, Medana C (2008) Humic acid-like matter isolated from green urban wastes. Part I: Structure and surfactant properties. BioResources 3: 123–144.Google Scholar
  23. 23.
    Montoneri E, Savarino P, Bottigliengo S, Musso G, Boffa V, Prevot AB, Fabbri D, Pramauro E (2008) Humic acid-like matter isolated from green urban wastes. Part II: Performance in chemical and environmental technologies. BioResources 3: 217–233.Google Scholar
  24. 24.
    Newman RH, Theng BKG, Filip Z (1987) Carbon-13 nuclear magnetic resonance spectro-scopic characterisation of humic substances from municipal refuse decomposing in a landfill. Sci Total Environ 6: 69–84.Google Scholar
  25. 25.
    Seibel F, Heidenreich S, Frimmel FH (1996) Interaction of humic substances with poly-cyclic aromatic hydrocarbons (PAHs) during the biodegradation of PAHs. ActaHydrochim Hydrobiol 24: 260–266.CrossRefGoogle Scholar
  26. 26.
    Spillmann P, Collins H-J (1986) Zentrale Versuchsanlage und Versuchsdurchführung. In: Spillmann P (ed.) Wasser- und Stoffhaushalt von Abfalldeponien und deren Wirkungen auf Gewässer, VCH, Weinheim.Google Scholar
  27. 27.
    Tang P, Zhao Y, Liu D (2008) A laboratory study on stabilization criteria of semi-aerobic landfill. Waste Manag Res 26: 566–572.CrossRefGoogle Scholar
  28. 28.
    Wu L, Ma LQ (2002) Realtionship between compost stability and extractable organic carbon. J Environ Qual 31: 1323–1328.CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Chen Q, Huang R (2001) Monitoring and long-term prediction of refuse compositions and settlement in large-scale landfill. Waste Manag Res 19: 160–168.CrossRefGoogle Scholar
  30. 30.
    Zhao Y, Song L, Huang R, Song L (2007) Recycling of aged refuse from a closed landfill. Waste Manag Res 25: 130–138.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Biochemistry and MicrobiologyInstitute of Chemical TechnologyFernwaldGermany
  2. 2.Department of Biochemistry and MicrobiologyInstitute of Chemical TechnologyPrague 6Czech Republic

Personalised recommendations