Skip to main content

Multifrequency EPR Spectroscopy: A Toolkit for the Characterization of Mono- and Di-nuclear Metal Ion Centers in Complex Biological Systems

  • Chapter
  • First Online:
Structure and Function
  • 768 Accesses

Abstract

Metalloenzymes are ubiquitous in nature containing complex metal ion cofactors intimately involved in the enzymes’ biological function. The application of multifrequency continuous wave and orientation selective pulsed EPR in conjunction with computer simulation and density functional theory calculations has proven to be a powerful toolkit for the geometric and electronic structural characterization of these metal ion cofactors in the resting enzyme, enzyme-substrate and -product complexes, which in turn provides a detailed understanding of the enzymes’ catalytic mechanism. In this chapter, a brief description of the multifrequency EPR toolkit used to structurally (geometric and electronic) characterize metal ion binding sites in complex biological systems and its application in the structural characterization of (i) molybdenum containing enzymes and model complexes, (ii) mono- and di-nuclear copper(II) cyclic peptide complexes (marine and synthetic analogues) and (iii) dinuclear metal ion centers in purple acid phosphatases will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frausto da Silva J.J.R., Williams R.J.P. (Eds.), The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, Oxford University Press, Oxford, UK, 1991, 2001.

    Google Scholar 

  2. Sigel H. (Ed.), Metal Ions in Biological Systems, Marcel Dekker, New York, 1973.

    Google Scholar 

  3. Bertini I., Gray H.B., Stiefel E.I., Valentine J.S. (Eds.), Biological Inorganic Chemistry: Structure and Reactivity, University Books, Sausalito, California, USA, 2007.

    Google Scholar 

  4. Pilbrow J.R., Transition Ion Electron Paramagnetic Resonance, Clarendon Press, Oxford, UK, 1990.

    Google Scholar 

  5. Hanson G.R., Berliner L.J. (Eds.), High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine, Biological Magnetic Resonance, Vol. 28, Springer, New York, USA, 2009.

    Google Scholar 

  6. Hanson G.R., Berliner L.J. (Eds.), Metals in Biology: Applications of High Resolution EPR to Metalloenzymes, Vol. 29, Springer, New York, USA, 2010.

    Google Scholar 

  7. Mabbs F.E., Collison D.C., Electron Paramagnetic Resonance of Transition Metal Compounds, Elsevier, Amsterdam, Netherlands, 1992.

    Google Scholar 

  8. Weil J.A., Bolton J.R., Wertz J.E., Electron Paramagnetic Resonance, Elementary Theory and Practical Applications, Wiley Interscience, USA, 2007.

    Google Scholar 

  9. Benson, S., Ph.D. Thesis, The University of Queensland, Brisbane, Queensland, Australia, 2009.

    Google Scholar 

  10. Abragam A., Bleaney B., Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, UK, 1970.

    Google Scholar 

  11. Hanson G.R., Noble C.J., Benson S., Molecular Sophe, An Integrated Approach to the Structural Characterization of Metalloproteins, The Next Generation of Computer Simulation Software. In: Hanson G.R., Berliner L.J. (Eds.), High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine, Biological Magnetic Resonance, Vol. 28, 105–174, Springer, New York, USA, 2009.

    Google Scholar 

  12. Bencini A., Gatteschi D., EPR of Exchange Coupled Systems, Springer, Berlin, Germany, 1990.

    Google Scholar 

  13. Smith T.D., Pilbrow J.R., Coord. Chem. Rev., 1974, 13, 173–278.

    Article  CAS  Google Scholar 

  14. Basosi R., Antholine W.E., Hyde J.S., Multifrequency EPR of Copper: Biological Applications. In: Berliner L.J., Reuben J. (Eds.), EMR of Paramagnetic Molecules, 13 Biological Magnetic Resonance, Vol. 13, 103–150, Plenum Press, New York, USA, 1993.

    Google Scholar 

  15. Hoffman B.M., deRose V.J., Doan P.E., Gurbiel R.J., Houseman A.L.P., Tesler J., Metalloenzyme Active-Site Structure and Function through Multifrequency CW and Pulsed ENDOR. In: Berliner L.J., Reuben J. (Eds.), EMR of Paramagnetic Molecules, Biological Magnetic Resonance, Vol. 13, 151–218, Plenum Press, New York, USA, 1993.

    Google Scholar 

  16. Drew S.C., Hill J.P., Lane I., Hanson G.R., Gable R.W., Young C.G. Inorg. Chem., 2007, 46, 2373–2387.

    Article  CAS  Google Scholar 

  17. Hanson G.R., Wilson G.L., Bailey T.D., Pilbrow J.R., Wedd A.G. J. Am. Chem. Soc., 1987, 109, 2609–2616.

    Article  CAS  Google Scholar 

  18. Mobius K., Savitsky A.N., High-Field EPR Spectroscopy on Proteins and Their Model Systems, Royal Society of Chemistry, United Kingdom, 2009.

    Google Scholar 

  19. Grinberg O.Y., Berliner L.J. (Eds.), Very High Frequency (VHF) ESR/EPR, Biological Magnetic Resonance, Vol. 22, Springer, New York, USA, 2004.

    Google Scholar 

  20. Schweiger A., Jeschke G., Principles of Pulse Electron Paramagnetic Resonance, Oxford University Press, Oxford, UK, 2001.

    Google Scholar 

  21. Harmer J., Mitrikas G., Schweiger A., Advanced Pulse EPR Methods for the Structural Characterization of Metalloproteins. In: Hanson G.R., Berliner L.J. (Eds.), High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine, Biological Magnetic Resonance, Vol. 28, 13–61, Springer, New York, USA, 2009.

    Google Scholar 

  22. Gaffney B., EPR of Mononuclear Non-Heme Iron Proteins. In: Hanson G.R., Berliner L.J. (Eds.), High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine, Biological Magnetic Resonance, Vol. 28, 233–268, Springer, New York, USA, 2009.

    Google Scholar 

  23. Ovchinnikov I.V., Konstantinov V.N., J. Magn. Res., 1978, 32, 179–190.

    CAS  Google Scholar 

  24. Froncisz W., Hyde J.S., J. Chem. Phys., 1980, 73, 3123–3131.

    Article  CAS  Google Scholar 

  25. Hyde J.S., Froncisz W., Ann. Rev. Biophys. Bioeng., 1982, 11, 391–417.

    Article  CAS  Google Scholar 

  26. Wilson G.L., Greenwood R.J., Pilbrow J.R., Spence J.T., Wedd A.G., J. Am. Chem. Soc. 1991, 113, 6803–6812.

    Article  CAS  Google Scholar 

  27. Wilson G.L., Kony M., Tiekink E.R.T., Pilbrow J.R., Spence J.T., Wedd A.G., J. Am. Chem. Soc., 1988, 110, 6923–6925.

    Article  CAS  Google Scholar 

  28. Comba P., Gahan L.R., Haberhauer G., Hanson G.R., Noble C.J., Seibold S., van den Brenk A.L., Chem. Eur. J., 2008, 14, 4393–4403.

    Article  CAS  Google Scholar 

  29. Neese F., Spin Hamiltonian Parameters from First Principle Calculations: Theory and Application. In: Hanson G.R., Berliner L.J. (Eds.), High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine, Biological Magnetic Resonance, Vol. 28, 175–229, Springer, New York, USA, 2009.

    Google Scholar 

  30. Pilbrow, J.R., J. Magn. Reson., 1984, 58, 186–203.

    CAS  Google Scholar 

  31. Sinclair G.R., Ph.D. Thesis, Monash University, Clayton, Victoria, Australia, 1988.

    Google Scholar 

  32. Pilbrow J.R., Sinclair G.R., Hutton D.R., Troup G.R., J. Mag. Reson., 1983, 52, 386–399.

    CAS  Google Scholar 

  33. Wang D., Hanson G.R., Appl. Magn. Reson., 1996, 11, 401–415.

    Article  CAS  Google Scholar 

  34. Hanson G.R., Gates K.E., Noble C.J., Mitchell A., Benson S., Griffin M., Burrage K., XSophe - Sophe - XeprView A Computer Simulation Software Suite for the Analysis of Continuous Wave EPR Spectra. In: Shiotani M., Lund A. (Eds.), EPR of Free Radicals in Solids: Trends in Methods and Applications, pp. 197–237, Kluwer Press, Dordrecht, Netherlands, 2003.

    Google Scholar 

  35. Hanson G.R., Gates K.E., Noble C.J., Griffin M., Mitchell A., Benson, S., J. Inorg. Biochem., 2004, 98, 903–916.

    Article  CAS  Google Scholar 

  36. Griffin M., Muys A., Noble C., Wang D., Eldershaw C., Gates K.E., Burrage K., Hanson G.R., Mol. Phys. Rep., 1999, 26, 60–84.

    CAS  Google Scholar 

  37. Heichel M., Höfer P., Kamlowski A., Griffin M., Muys A., Noble C., Wang D., Hanson G.R., Eldershaw C., Gates K.E., Burrage K., Bruker Report, 2000, 148, 6–9.

    Google Scholar 

  38. Hanson G.R., XSophe Release Notes, 1.1.3, pp. 1–68, Bruker Biospin, Germany, 2003.

    Google Scholar 

  39. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery Jr. J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 03, Revision B.03, Gaussian Inc., Wallingford CT, USA, 2004.

    Google Scholar 

  40. Amsterdam Density Functional, Scientific Computing and Modelling, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2007.

    Google Scholar 

  41. Comba P., Martin B., Modeling of Macrocyclic Ligand Complexes, Macrocyclic Chemistry. In: Gloe K. (Ed.), Current Trends and Future Perspectives, pp. 303–325, Springer, New York, USA, 2005.

    Google Scholar 

  42. Bernhardt P.V., Comba P., Hambley T.W., Massoud S.S., Stebler S., Inorg. Chem., 1992, 31, 2644–2651.

    Article  CAS  Google Scholar 

  43. Comba P., Hilfenhaus P., J. Chem. Soc., Dalton Trans., 1995, 3269–3274.

    Google Scholar 

  44. Comba P., Hambley T.W., Hilfenhaus P., Richens D.T., J. Chem. Soc. Dalton Trans., 1996, 533–539.

    Google Scholar 

  45. Comba P., Lampeka Y.D., Prik‘hodko A., Rajaraman G., Inorg. Chem., 2006, 45, 3632–3638.

    Article  CAS  Google Scholar 

  46. Bernhardt P.V, Comba P., Fairlie D.P., Gahan L.R., Hanson G.R., Lötzbeyer L., Chem. Eur. J., 2002, 8, 1527–1536.

    Google Scholar 

  47. Comba P., Cusack R., Fairlie D.P., Gahan L.R., Hanson G.R., Kazmaier U., Ramlow A., Inorg. Chem., 1998, 37, 6721–6727.

    Article  CAS  Google Scholar 

  48. Jeener J., Adv. Magn. Res., 1982, 11, 1–51.

    Google Scholar 

  49. Drew S.C., Young C.G., Hanson G.R., Inorg. Chem., 2007, 46, 2388–2397.

    Article  CAS  Google Scholar 

  50. Hille R., Chem. Rev., 1996, 96, 2757–2816.

    Google Scholar 

  51. Kisker C., Schindelin H., Rees D.C., Ann. Rev. Biochem., 1997, 66, 233–267.

    Article  CAS  Google Scholar 

  52. Rajagopalan K.V., Johnson J.L. J. Biol. Chem., 1992, 267, 10199–10202.

    Google Scholar 

  53. Rajagopalan K.V., Adv. Enzymol. Rel. Areas Mol. Biol., 1991, 64, 215–290.

    CAS  Google Scholar 

  54. Johnson J.L., The molybdenum cofactor common to nitrate reductase, xanthine dehydrogenase and sulfite oxidase. In: Coughlan M.P. (Ed.), Molybdenum and Molybdenum-containing Enzymes, pp. 345–383, Pergamon Press, New York, USA, 1980.

    Google Scholar 

  55. Kramer S.P., Johnson J.L., Ribeiro A.A., Millington D.S., Rajagopalan K.V., J. Biol. Chem., 1987, 262, 16357–16363.

    Google Scholar 

  56. Romao M.J., Archer M., Moura I., Moura J.J.G., LeGall J., Engh R., Schneider M., Hof P., Huber R., Science, 1995, 270, 1170–1176.

    Article  CAS  Google Scholar 

  57. Enroth C., Eger B.T., Okamoto K., Nishino T., Nishino T., Pai E.F., Proc. Nat. Acad. Sci. USA, 2000, 97, 10723–10728.

    Google Scholar 

  58. Huber R., Hof P., Duarte R.O., Moura J.J.G., Liu M., LeGall J., Hille R., Archer M., Romao M.J., Proc. Natl. Acad. Sci. USA, 1996, 93, 8846–8851.

    Article  CAS  Google Scholar 

  59. Kisker C., Schindelin H., Pacheco A., Wehbi W.A., Garret R.M., Rajagopalan K.V., Enemark J.H., Rees D.C., Cell, 1997, 91, 973–983.

    Google Scholar 

  60. RCSB protein data bank can be accessed via the web address: http://www.rcsb.org/pdb/home/home. do.

  61. Li H.-K., Temple C., Rajagopalan K.V., Schindelin H., J. Am. Chem. Soc., 2000, 122, 7673–7680.

    Article  CAS  Google Scholar 

  62. Bennett B., Benson, N., McEwan, A.G., Eur. J. Biochem., 1994, 225, 321–331.

    Article  CAS  Google Scholar 

  63. Lane I., Ph.D. Thesis. The University of Queensland, Brisbane, Queensland, Australia, 2004.

    Google Scholar 

  64. Lane I., Drew S.C., Noble C.J., McEwan A.G., Pilbrow J.R., Hanson G.R., 2009, submitted.

    Google Scholar 

  65. Lane I., Noble C.J., Ridge J., Benson N., McEwan A.G., Hanson G.R., 2009, in preparation.

    Google Scholar 

  66. Dowerah D., Spence J.T., Singh R., Wedd A.G., Wilson G.L., Farchione F., Enemark J.H., Kristofzski J., Bruck M., J. Am. Chem. Soc., 1987, 109, 5655–5665.

    Article  CAS  Google Scholar 

  67. Steifel E.I., Eisenberg R., Rosenberg R.C., Gray H.B., J. Am. Chem. Soc., 1966, 88, 2956–2966.

    Google Scholar 

  68. Cervilla A., Llopis E., Marco D., Pérez F., Inorg. Chem., 2001, 40, 6525–6528.

    Google Scholar 

  69. Smith P.D., Cooney J.A., McInnes E.J.L., Beddoes R.L., Collison D., Harben S.M., Helliwell M., Mabbs F.E., Mandel A., Powell A.K., Garner C.D., J. Chem. Soc. Dalton Trans., 2001, 3108–3114.

    Google Scholar 

  70. Yadav H.S., Armstrong E.M., Beddoes R.L., Collison D., Garner C.D., J. Chem. Soc. Chem. Commun. 1994, 605–606.

    Google Scholar 

  71. McAlpine A.S., McEwan A.G., Bailey S., J. Mol. Biol., 1998, 275, 613–623.

    Google Scholar 

  72. Vallee B.L., William R.J.P., Proc. Natl. Acad. Sci. USA, 1968, 59, 498–505.

    Google Scholar 

  73. Williams R.J.P., Eur. J. Biochem., 1995, 234, 363–381.

    Google Scholar 

  74. Ishida T., In Y., Shinozaki F., Doi M., Yamamoto D., Hamada Y., Shioiri T., Kamigauchi M., Sugiwra M., J. Org. Chem., 1995, 60, 3944–3952.

    Google Scholar 

  75. McDonald L.A., Foster M.P., Phillips D.R., Ireland C.M., Lee A.Y., Clardy J., J. Org. Chem., 1992, 57, 4616–4624.

    Google Scholar 

  76. Schmitz F.J., Ksebati M.B., Chang J.S., Wang J.L., Hossain M.B., van der Helm D., J. Org. Chem., 1989, 54, 3463–3472.

    Google Scholar 

  77. Haberhauer G., Pinter A., Oeser T., Rominger F., Eur. J. Org. Chem., 2007, 1779–1792.

    Google Scholar 

  78. Haberhauer G., Rominger F., Tet. Lett., 2002, 43, 6335–6338.

    Google Scholar 

  79. Haberhauer G., Rominger F., Eur. J. Org. Chem., 2003, 3209–3218.

    Google Scholar 

  80. Schmidt E.W., Nelson J.T., Rasko D.A., Sudek S., Eisen J.A., Haygood M.G., Ravel J., Proc. Natl. Acad. Sci., 2005, 102, 7315–7320.

    Google Scholar 

  81. Degnan B.M., Hawkins C.J., Lavin M.F., McCaffrey E.J., Parry D.L., Watters D.J., J. Med. Chem., 1989, 32, 1354–1359.

    Google Scholar 

  82. van den Brenk A.L., Fairlie D.P., Hanson G.R., Gahan L.R., Hawkins C.J., Jones A., Inorg. Chem., 1994, 33, 2280–2289.

    Google Scholar 

  83. van den Brenk A.L., Byriel K.A., Fairlie D.P., Gahan L.R., Hanson G.R., Hawkins C.J., Jones A., Kennard C. H. L., Moubaraki B., Murray K.S., Inorg. Chem., 1994, 33, 3549–3557.

    Google Scholar 

  84. van den Brenk A.L., Tyndall J.D.A., Cusack R.M., Jones A., Fairlie D.P., Gahan L.R., Hanson G.R., J., Inorg. Biochem., 2004, 98, 1857–1866.

    Google Scholar 

  85. Grondahl L., Sokolenko N., Abberate G., Fairlie D.P., Hanson G.R., Gahan L.R., J. Chem. Soc., Dalton Trans., 1999, 1227–1234.

    Google Scholar 

  86. Latifi R., Bagherzadeh M., Milne B.F., Jaspars M., De Visser S.P., J. Inorg. Biochem., 2008, 102, 2171–2178.

    Google Scholar 

  87. Parry, D.L., Ph.D. Thesis, The University of Queensland, Brisbane, Queensland, Australia, 1998.

    Google Scholar 

  88. van den Brenk A.L., Ph.D. Thesis, The University of Queensland, Brisbane, Queensland, Australia, 1994.

    Google Scholar 

  89. Ishida T., Inoue M., Hamada Y., Kato S., Shiori T., J. Chem. Soc. Chem. Commun., 1987, 370–371.

    Google Scholar 

  90. Ishida T., Tanaka M., Nabae M., Inoue M., J. Org. Chem., 1988, 53, 107–112.

    Google Scholar 

  91. Schmitz F.J., Ksebati M.B., Chang J.S., Wang J.L., Hossain M.B., van der Helm D., Engel M.H., Serban A., Silfer J., J. Org. Chem., 1989, 54, 3463.

    Google Scholar 

  92. Wipf P., Venkatraman S., Miller C.P., Geib S.J., Angew. Chem., 1994, 106, 1554–1556.

    Google Scholar 

  93. Sigel H., Martin R.B., Chem. Rev., 1982, 82, 385–426.

    Google Scholar 

  94. Atanasov M., Comba P., Martin B., Mueller V., Rajaraman G., Rohwer H., Wunderlich S., J. Comp. Chem., 2006, 27, 1263–1277.

    Google Scholar 

  95. Wilcox D.E., Chem. Rev., 1996, 96, 2435–2458.

    Google Scholar 

  96. Dismukes, G.C., Chem. Rev., 1996, 96, 2909–2926.

    Google Scholar 

  97. Barford D., Das A.K., Egloff M.P., Ann. Rev. Biophys. Biomol. Struct., 1998, 27, 133–164.

    Google Scholar 

  98. Lowther W.T., Matthews B.W., Biochim. Biophys. Acta, 2000, 1477, 157–167.

    Google Scholar 

  99. Crowder M.W., Spencer J., Vila A.J., Acc. Chem. Res., 2006, 39, 721–728.

    Google Scholar 

  100. Mitić N., Smith S.J., Neves A., Guddat L.W., Gahan L.R., Schenk G., Chem. Rev., 2006, 106, 3338–3363.

    Google Scholar 

  101. Schenk G., Boutchard C.L., Carrington L.E, Noble C.J., Moubaraki B., Murray K.S., de Jersey J., Hanson G.R., Hamilton S.E., J. Biol. Chem., 2001, 276, 19084–19088.

    Google Scholar 

  102. Schenk, G., Gahan L.R., Carrington L.E., Mitić N., Valizadeh M., Hamilton S.E., de Jersey J., Guddat L.W., Proc. Natl. Acad. Sci. USA, 2005, 102, 273–278.

    Google Scholar 

  103. Merkx M., Averill B.A., Biochemistry, 1998, 37, 8490–8497.

    Google Scholar 

  104. Beck J.L., Keough D.T., deJersey J., Zerner B., Biochim. Biophys. Acta, 1984, 791, 357–363.

    Google Scholar 

  105. Keough D.T., Dionysius D.A., deJersey J., Zerner B., Biochem. Biophys. Res. Comm., 1980, 94, 600–605.

    Google Scholar 

  106. Davis J.C., Averill B.A., Proc. Natl. Acad. Sci. USA, 1982, 79, 4623–4627.

    Google Scholar 

  107. Beck J.L., McArthur M.J., de Jersey J., Zerner B., Inorg. Chim. Acta, 1998, 153, 39–44.

    Google Scholar 

  108. Merkx M., Averill B.A., J. Am. Chem. Soc., 1999, 121, 6683–6689.

    Google Scholar 

  109. Twitchett M.B., Schenk G., Aquino M.A.S., Yui D.T.Y., Lau T.C., Sykes A.G., Inorg. Chem., 2002, 41, 5787–5794.

    Google Scholar 

  110. Smith S.J., Casellato A., Hadler K.S., Mitić N., Riley M.J., Bortoluzzi A.J., Szpoganicz B., Schenk G., Neves A., Gahan L.R., J. Biol. Inorg. Chem., 2007, 12, 1207–1220.

    Google Scholar 

  111. Mitić N., Noble C.J., Gahan L.R., Hanson G.R., Schenk G., J. Am. Chem. Soc., 2009, 131, 8173–8179.

    Google Scholar 

  112. Savitzky A., Golay M.A.J., Anal. Chem., 1994, 36, 1627–1639.

    Google Scholar 

  113. Octave is open source software and can be downloaded from http://www.gnu.org/software/octave/.

  114. Mitani M., Wakamatsu Y., Katsurada T., Yoshioka Y., J. Phys. Chem., 2006, A110, 13895–13914.

    Google Scholar 

  115. Liu S.B., Perera L., Pedersen L.G., Mol. Phys., 2007, 105, 2893–2898.

    Google Scholar 

  116. Rüegg M., Ludi A., Reider K., Inorg. Chem., 1970, 10, 773–1777.

    Google Scholar 

  117. Wieghardt K., Bossek U., Nuber B., Weiss J., Bonvoisin J., Corbella M., Vitols S.E., Girerd J.J., J. Am. Chem. Soc., 1998, 110, 7398–7411.

    Google Scholar 

  118. Tétard D. Rabion A., Verlhac J.-B., Guilhem J., J. Chem. Soc. Chem. Commun., 1995, 531–532.

    Google Scholar 

  119. Khangulov S.V., Pessiki P.J., Barynin V.V., Ash D.E., Dismukes G.C., Biochemistry, 1995, 34, 2015–2025.

    Google Scholar 

  120. Cama E., Pethe S., Boucher J-L., Han S., Emig F.A., Ash D.E., Viola, R.E., Mansuy D., Christianson D.W., Biochemistry, 2004, 43, 8987–8999.

    Google Scholar 

  121. Oddie G.W., Schenk G., Angel N.Z., Walsh N., Guddat L.W., de Jersey J., Cassady A.I., Hamilton S.E., Hume D.A., Bone, 2000, 27, 575–584.

    Google Scholar 

  122. Recent advances in commercial instrumentation (Bruker Biospin) allows the simultaneous measurement of higher order (1–5) harmonics.

    Google Scholar 

  123. Della Lunga G., Pogni R., Basosi R., J. Magn. Res. A. 1995, 114, 174–178.

    Google Scholar 

  124. Basosi R., Lunga G.D., Pogni R., Appl. Magn. Res., 1996, 11, 437–442.

    Google Scholar 

  125. Basosi R., Gaggelli E., Gaggelli N., Pogni R., Valensin G., Inorg. Chim. Acta, 1998, 275–276, 274–278.

    Google Scholar 

Download references

Acknowledgments

I would like to thank my many collaborators and students involved in the various research areas described above, whom without their involvement would not have lead to the significant advances described herein. Specifically Dr. Christopher Noble whom has and continues to have a signifcant involvement in the development of computer simulation software and its application to the characterization of metal ions in biological systems. Assoc. Profs. Lawrence Gahan and Gerhard Schenk for their long standing collaboration on the characterization of transition metal ion complexes, copper(II) cyclic peptide complexes and purple acid phosphatase. Prof. Alastair McEwan, Dr. Simon Drew, Dr. Ian Lane and Assoc. Prof. Charles Young for their keen intersest and collaboration in molybdenum bioinorganic chemistry. Prof. Peter Comba and the many exchange students from the University of Heidelberg whom over the last decade, have been involved in the geometric and electronic structural characterization of mono- and di-nuclear copper(II) cyclic peptide complexes. Drs. Lutz Lötzbeyer, Anne Ramlow, Björn Seibold and Ms. Nina Dovalil, Marta Zajaczkowski and Lena Daumann have had extremely productive visits to the University of Quuensland and I am sure they also enjoyed visiting Australia and I wish them well in their future ventures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme R. Hanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hanson, G.R. (2010). Multifrequency EPR Spectroscopy: A Toolkit for the Characterization of Mono- and Di-nuclear Metal Ion Centers in Complex Biological Systems. In: Comba, P. (eds) Structure and Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2888-4_6

Download citation

Publish with us

Policies and ethics