Skip to main content

Constrained States Occurring in Plants Cryo-Processing and the Role of Biological Glasses

  • Chapter
  • First Online:
Glassy, Amorphous and Nano-Crystalline Materials

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 8))

Abstract

The freezing temperatures well below 0°C [1] are common and there are several mechanisms to assure life survival. Processes associated with water freezing (particularly in conjunction with its supercooling) have been intensively studied [2–4] for many years because their significance in the bionetwork of both plants [5] and living. In human activity they play an important role in various production from a plain ice making to the complex foodstuffs freezing [6, 7] and pharmacy finishing. Even more important role they play in the viability of plants in natural overwintering and in controlled cryopreservation of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Turgor pressure or turgidity is the main pressure of the cell contents against the cell wall in plant cells. Turgor pressure is regarded as the driving force for cell extension and thus for plant growth.

References

  1. Sakai A (2004) Plant cryopreservation. In: Fuller B, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, London, pp 329–345

    Chapter  Google Scholar 

  2. Bartell LS (1997) On possible interpretations of the anomalous properties of supercooled water. J Phys Chem B 101:7573–7583

    Article  CAS  Google Scholar 

  3. Nitsch K (2009) Thermal analysis study on water freezing and supercooling. J Therm Anal Calorim 95:11–14

    Article  CAS  Google Scholar 

  4. Sestak J, Zamecnik J (2007) Can clustering of liquid water and thermal analysis be of assistance for better understanding of biological germplasm exposed to ultra-low temperatures. J Therm Anal Calorim 88:411–416

    Article  CAS  Google Scholar 

  5. Burke D, Kaufman P, Mcneil M, Albershe P (1974) Structure of plant-cell walls. 6. Survey of walls of suspension-cultured monocots. Plant Physiol 54:109–115

    Article  CAS  Google Scholar 

  6. Goff HD, Sahagian ME (1996) Glass transitions in aqueous carbohydrate solutions and their relevance to frozen food stability. Thermochim Acta 280:449–464

    Article  Google Scholar 

  7. Slade L, Levine H (1991) A food polymer science approach to structure-property relationships in aqueous food systems: non-equilibrium behavior of carbohydrate-water systems. Adv Exp Med Biol 302:29–101

    CAS  Google Scholar 

  8. Ovchinnikova K, Pollack GH (2009) Can water store charge? Langmuir 25:542–547

    Article  CAS  Google Scholar 

  9. Giovambattista N, Buldyrev SV, Stanley HE, Starr FW (2005) Clusters of mobile molecules in supercooled water. Phys Rev E 72:11202

    Article  Google Scholar 

  10. Chvoj Z, Šesták J, Tříska A (1991) Kinetic phase diagrams: non-equilibrium phase transitions. Elsevier, Amsterdam

    Google Scholar 

  11. Šesták J (2004) Heat, thermal analysis and society. Nucleus, Hradec Kralove

    Google Scholar 

  12. Ristic Z, Ashworth EN (1996) Response of xylem ray parenchyma cells of red osier dogwood (Cornus sericea L.) to field freezing stress, and to freeze-thaw cycle. J Plant Physiol 149:735–745

    Article  Google Scholar 

  13. Ashworth EN, Wisniewski ME (1991) Response of fruit tree tissues to freezing temperatures. Hortscience 26:501–504

    Google Scholar 

  14. Bilavčík A, Zámečník J (1996) Localization of endogenous ice nuclei in flowering apple shoots. Biologia 51:62

    Google Scholar 

  15. Sakai A (1982) Freezing tolerance of shoot and flower primordia of coniferous buds by extra-organ freezing. Plant Cell Physiol 23:1219–1227

    Google Scholar 

  16. Beurroies I, Denoyel R, Llewellyn P, Rouquerol J (2004) A comparison between melting-solidification and capillary condensation hysteresis in mesoporous materials: application to the interpretation of thermoporometry data. Thermochim Acta 421:11–18

    Article  CAS  Google Scholar 

  17. Malone SR, Ashworth EN (1991) Freezing stress response in woody tissues observed using low-temperature scanning electron-microscopy and freeze substitution techniques. Plant Physiol 95:871–881

    Article  CAS  Google Scholar 

  18. Warmund MR, George MF, Cumbie BG (1988) Supercooling in darrow blackberry buds. J Am Soc Hortic Sci 113:418–422

    Google Scholar 

  19. Sakai A, Kobayashi S, Oiyama I (1991) Survival by vitrification of nucellar cells of navel orange (Citrus-sinensis var brasiliensis Tanaka) cooled to 196-degrees-C. J Plant Physiol 137:465–470

    Article  Google Scholar 

  20. Sakai A (1979) Freezing avoidance mechanism of primordial shoots of conifer buds. Plant Cell Physiol 20:1381–1390

    Google Scholar 

  21. Chalkerscott L (1992) Disruption of an ice-nucleation barrier in cold hardy azalea buds by sublethal heat-stress. Ann Bot 70:409–418

    Google Scholar 

  22. Kang SK, Motosugi H, Yonemori K, Sugiura A (1998) Supercooling characteristics of some deciduous fruit trees as related to water movement within the bud. J Hortic Sci Biotech 73:165–172

    Article  Google Scholar 

  23. Hirsh AG, Williams RJ, Meryman HT (1985) A novel method of natural cryoprotection – intracellular glass-formation in deeply frozen populus. Plant Physiol 79:41–56

    Article  CAS  Google Scholar 

  24. Bilavčík A, Faltus M, Zámečník J (2005) Nové teoretické poznatky o vlivu ultranízkých teplot na rostliny (in Czech) In: Sborník příspěvků a laboratorních postupů z workshopu “Metody kryoprezervace vegetativně množených rostlin”. VÚRV Praha-Ruzyně, pp 8–15

    Google Scholar 

  25. Minaev VS, Timoshenkov SP, Chernykh SP (2004) Polymorphous-crystalloid nature of vitreous and liquid H2O. J Optoelectron Adv M 6:103–112

    CAS  Google Scholar 

  26. Sun WQ (1997) Glassy state and seed storage stability: the WLF kinetics of seed viability loss at T>Tg and the plasticization effect of water on storage stability. Ann Bot 79:291–297

    Article  Google Scholar 

  27. Šesták J (2005) Science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, Amsterdam

    Google Scholar 

  28. Šesták J (2000) Miracle of reinforced states of matter: glasses as innovative materials for the third millennium. J Therm Anal Calorim 61:305–323

    Article  Google Scholar 

  29. Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228

    Article  CAS  Google Scholar 

  30. Sikora A, Dupanov VO, Kratochvil J, Zamecnik J (2007) Transitions in aqueous solutions of sucrose at subzero temperatures. J Macromol Sci B Phy 46:71–85

    Article  CAS  Google Scholar 

  31. Chang L, Milton N, Rigsbee D, Mishra DS, Tang X, Thomas LC, Pikala MJ (2006) Using modulated DSC water to investigate the origin of multiple thermal transitions in frozen 10% sucrose solutions. Thermochim Acta 444:141–147

    Article  CAS  Google Scholar 

  32. Shamblin SL, Tang XL, Chang LQ, Hancock BC, Pikal MJ (1999) Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem B 103:4113–4121

    Article  CAS  Google Scholar 

  33. Zámečník J, Bilavčík A, Faltus M, Šesták J (2003) Water state in plants at low and ultra-low temperatures. Cryo Lett 24:412

    Google Scholar 

  34. Paul H, Daigny G, Sangwan-Norreel BS (2000) Cryopreservation of apple (Malus x domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19:768–774

    Article  CAS  Google Scholar 

  35. Couchman PR, Karasz FE (1978) Classical thermodynamic discussion of effect of composition on glass-transition temperatures. Macromolecules 11:117–119

    Article  CAS  Google Scholar 

  36. Zanotto ED, Countinho FAB (2004) How many non-crystalline solids can be made from all the elements of the periodic table. J Non-Cryst Solids 347:285–288

    Article  Google Scholar 

  37. Debenedetti PG (1996) Metastable liquids: concepts and principles. Cambridge University Press, Chichester

    Google Scholar 

  38. Zarzycki J (1991) Glasses and the vitreous state. Cambridge University Press, Cambridge

    Google Scholar 

  39. Pate JS, Atkins CA, Hamel K, McNeil DL, Layzell DB (1979) Transport of organic solutes in phloem and xylem of a nodulated legume. Plant Physiol 63:1082–1088

    Article  Google Scholar 

  40. Choi Y, Okos MR (1987) Effects of temperature and composition on the thermal properties of foods. In: Maguer M, Jelen P (eds) Food engineering and process applications. Elsevier Applied Science, New York, pp 93–102

    Google Scholar 

  41. Pate JS, Sharkey PJ, Lewis OAM (1975) Xylem to phloem transfer of solutes in fruiting shoots of legumes, studied by a phloem bleeding technique. Planta 122:11–26

    Article  CAS  Google Scholar 

  42. Martinez D, Arroyo-Garcia R, Revilla MA (1999) Cryopreservation of in vitro grown shoot-tips of Olea europaea L-var. Arbequina Cryo-Lett 20:29–36

    Google Scholar 

  43. Taylor MJ (1987) Physico-chemical principles in low temperature biology. In: Grout BWW, Morris GJ (eds) The effects of low temperature on biological systems. Edward Arnold, London, pp 3–70

    Google Scholar 

  44. Khalloufi S, El-Maslouhi Y, Ratti C (2000) Mathematical model for prediction of glass transition temperature of fruit powders. J Food Sci 65:842–848

    Article  CAS  Google Scholar 

  45. Sun WQ, Davidson P, Chan HSO (1998) Protein stability in the amorphous carbohydrate matrix: relevance to anhydrobiosis. Biochim Biophys Acta: Gen Sub 1425:245–254

    Article  CAS  Google Scholar 

  46. Leprince O, Waltersvertucci C (1995) A calorimetric study of the glass-transition behaviors in sxes of bean-seeds with relevance to storage stability. Plant Physiol 109:1471–1481

    CAS  Google Scholar 

  47. Wolkers WF, Hoekstra FA (1997) Heat stability of proteins in desiccation-tolerant cattail (Typha latifolia L) pollen – A Fourier transform infrared spectroscopic study. Comp Biochem Phys A 117:349–355

    Article  Google Scholar 

  48. Matveev YI (1997) Determination of the temperatures of transition into the state of viscous flow, denaturation, and the onset of intensive destruction of proteins with various structures. Polym Sci Series A 39:476–484

    Google Scholar 

  49. Makeen MA, Noor NM, Dussert S, Clyde MM (2005) Cryopreservation of whole seeds and excised embryonic axes of Citrus suhuiensis cv. limau langkat in accordance to their desiccation sensitivity. Cryo Lett 26:259–268

    Google Scholar 

  50. Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory practice. Crit Rev Plant Sci 27:141–219

    Article  CAS  Google Scholar 

  51. Sakai A (1960) Survival of the Twig of Woody plants at -196 degrees-C. Nature 185:393–394

    Article  Google Scholar 

  52. Sakai A (1966) Survival of plant tissue at super-low temperatures. 4. Cell survival with rapid cooling and rewarming. Plant Physiol 41:1050–1054

    Article  CAS  Google Scholar 

  53. Forsline PL, Towill LE, Waddell JW, Stushnoff C, Lamboy WF, McFerson JR (1998) Recovery and longevity of cryopreserved dormant apple buds. J Am Soc Hortic Sci 123:365–370

    Google Scholar 

  54. Sakai A, Nishiyama Y (1978) Cryopreservation of winter vegetative buds of hardy fruit-trees in liquid-nitrogen. Hortscience 13:225–227

    Google Scholar 

  55. Sugawara Y, Sakai A (1974) Survival of suspension-cultured sycamore cells cooled to temperature of liquid-nitrogen. Plant Physiol 54:722–724

    Article  CAS  Google Scholar 

  56. Tao DL, Li PH (1986) Classification of plant-cell cryoprotectants. J Theor Biol 123:305–310

    Article  CAS  Google Scholar 

  57. Reed BB, Uchendu E (2008) Controlled rate cooling. Plant cryopreservation: a practical guide., pp 77–92

    Book  Google Scholar 

  58. Iljin WS (1933) Über den Kältetod der Pflanzen und seine Ursachen. Protoplasma 20:105–124

    Article  Google Scholar 

  59. Levitt L (1980) Responses of plants to environmental stresses. Academic, New York

    Google Scholar 

  60. Morris GJ, McGrath JJ (1981) Intracellular ice nucleation and gas bubble formation in Spirogyra. Cryo Lett 2:341–352

    Google Scholar 

  61. Vertucci CW (1989) Effects of cooling rate on seeds exposed to liquid-nitrogen temperatures. Plant Physiol 90:1478–1485

    Article  CAS  Google Scholar 

  62. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nuclear cells of navel orange (citrus sinensis osb. var. brasiliensis tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  Google Scholar 

  63. Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus-Officinalis L) embryogenic suspension cells and subsequent plant-regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  64. Seuferheld MJ, Fitzpatrickm J, Walsh T, Stushnoff C (1991) Cryopreservation of dormant buds from cold tender taxa using a modified vitrification procedure. Cryobiology 28:576

    Google Scholar 

  65. Slade L, Levine H (1991) Beyond water activity – recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30:115–360

    Article  CAS  Google Scholar 

  66. Devireddy RV, Raha D, Bischof JC (1998) Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter. Cryobiology 36:124–155

    Article  CAS  Google Scholar 

  67. Cabral AA, Fredericci C, Zanotto ED (1997) A test of the Hruby parameter to estimate glass-forming ability. J Non-Crystal Solids 219:182–186

    Article  CAS  Google Scholar 

  68. Sun WQ (2008) Stability of frozen and dehydrated cells and membranes in the amorphous carbohydrate matrices: The Williams-Landel-Ferry kinetics. Cryo Lett 19:105–114

    Google Scholar 

  69. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    Article  CAS  Google Scholar 

  70. Angell CA, Bressel RD, Green JL, Kanno H, Oguni M, Sare EJ (1994) Liquid fragility and the glass-transition in water and aqueous-solutions. J Food Eng 22:115–142

    Article  Google Scholar 

  71. Bergman R, Swenson J, Borjesson L, Jacobsson P (2000) Dielectric study of supercooled 2D water in vermiculite clay. J Chem Phys 113:357–363

    Article  CAS  Google Scholar 

  72. Angell CA, Poole PH, Shao J (1994) Glass-forming liquids, anomalous liquids, and polyamorphism in liquids and biopolymers. Nuovo Cimento D 16:993–1025

    Article  Google Scholar 

  73. Sakai A, Hirai D, Niino T (2008) Development of PVS-based vitrification and encapsulation-vitrification protocols. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 33–59

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by MSMT grant 0002700604

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiří Zámečník or Jaroslav Šesták .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zámečník, J., Šesták, J. (2011). Constrained States Occurring in Plants Cryo-Processing and the Role of Biological Glasses. In: Šesták, J., Mareš, J., Hubík, P. (eds) Glassy, Amorphous and Nano-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2882-2_18

Download citation

Publish with us

Policies and ethics