Skip to main content

The Elastic Properties of Ferroelectric Thin Films Measured Using Nanoindentation

  • Chapter
Multifunctional Polycrystalline Ferroelectric Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 140))

  • 3055 Accesses

Abstract

Ferroelectric thin films are being used for a large number of applications such as sensors and actuators in MicroElectroMechanical Systems (MEMS) [1] and nonvolatile memories [2]. For many of their applications as actuators, they are used in the form of cantilever or membrane devices. The operation of these devices is determined by their electromechanical properties, which includes their elastic properties [3]. These properties are difficult to measure in thin film form, and often designers resort to using the properties of bulk materials with the same composition. The properties of thin films can be quite different from bulk materials because of the high texture and residual stresses in the thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spearing S. M., Material Issues in Microelectromechanical Systems; Acta mater. 48 (2000) 179-196.

    Google Scholar 

  2. Scott J. F., Ferroelectric Memories, Springer © 2000.

    Google Scholar 

  3. Wang Q.-M., Zhang Q., Xu B., Liu R., and Cross E. L., Nonlinear piezoelectric behaviour of ceramic bending mode actuators under strong electric fields, J. Appl. Phys. Vol. 86 (1999), No.6, 3352 - 3360.

    Google Scholar 

  4. Menĉík J., Mechanics of components with treaded or coated surfaces, © 1996.

    Google Scholar 

  5. Tjhen W., Tamagawa T., Ye C.-P., Hsueh C.-C., Schiller P., Polla D. L., Properties of piezoelectric thin films for micromechanical devices and systems, IEEE, 1991, 114 - 119.

    Google Scholar 

  6. Ohring M., The material science of thin films, Academic Press Inc., © 1992.

    Google Scholar 

  7. Hossain, N., Ju, J. W., Warneke, B., and Pister, K.,Characterisation of the Young's Modulus of CMOS Thin Films, Mechanical Properties of Structural Films, ASTM STP 1413, C. L. Muhlstein and S. B. Brown, Eds., American Society for Testing and Materials, West Conshohocken, PA, Online, Available: www.astm.org/STP/1413/1413_15, 1 July 2001.

  8. Schneider D., Siemroth P., Schülke T., Berthold J, Schultrich B., Schneider H. H., Ohr R., Petereit B., and Hillgers H.; Quality control of ultra-thin and super-hard coatings by laser-acoustics, Surface and Coating Technology 153 (2002) 252-260.

    Google Scholar 

  9. Fischer-Cripps A. C., Simulation of sub-micron indentation tests with spherical and Berkovich indenters; J. Mater. Res., Vol. 16, No. 7,(2001) 2149- 2157.

    Article  CAS  Google Scholar 

  10. Fischer-Cripps A. C., Study of analysis methods of depth-sensing indentation test data for spherical indenters; J. Mater. Res., Vol. 16, No. 6,(2001) 1579 - 1584.

    Article  CAS  Google Scholar 

  11. Fischer-Cripps A. C., Use of combined elastic modulus in the analysis of depth-sensing indentation data; J. Mater. Res., Vol. 16, No. 11, (2001) 3050 - 3052.

    Article  CAS  Google Scholar 

  12. Algueró M., Bushby A. J., and Reece M. J., Direct measurement of mechanical properties of (Pb,La)TiO3 ferroelectric thin films using nanoindentation techniques; J. Mater. Res., Vol. 16, No.4, (2001), 993-1002.

    Article  Google Scholar 

  13. C. Chima-Okereke, A.J. Bushby, M.J. Reece, R.W. Whatmore and Q. Zhang, Experimental, analytical, and finite element analyses of nanoindentation of multilayer PZT/Pt/SiO2 thin film systems on silicon wafers, J. Mater. Res., Vol. 21, No. 2, (2006), 409 - 419.

    Article  CAS  Google Scholar 

  14. Algueró M., Bushby A. J., and Reece M. J., Poyato R., Ricote J.,Calzada M. L., Pardo L., Stress-induced depolarisation of (Pb,La)TiO3 ferroelectric thin films by nanoindentation; Appl. Phys. Lett., Vol. 79, No. 23, (2001), 3830 - 3832.

    Google Scholar 

  15. Algueró M., Bushby A. J., and Reece M. J., Anelastic deformation of Pb(Zr,Ti)O3 thin films by non-180o ferroelectric domain wall movements during nanoindentation; Appl. Phys. Lett., Vol. 81, No. 3, (2002), 421 - 423.

    Google Scholar 

  16. V. Koval, M.J. Reece, A.J. Bushby Enhanced Ferroelectric Loop Asymmetry of Lead Zirconate Thin Films, J Applied Physics, 101, 0241131-8, (2007).

    Google Scholar 

  17. V. Koval, M.J. Reece and A.J. Bushby, Ferroelectric / Ferroelastic Behaviour and Piezoelectric Response of PZT Thin Films Under IndentationJ Applied Physics, 97, 074301-1 -7 (2005).

    Google Scholar 

  18. Delobelle, P. Guillon, O., Fribourg-Blanc, E., Soyer, C., Cattan, E., and Rèmiens, D., Appl. Phys. Lett., 85, 22, (2004), 5185-5187.

    CAS  Google Scholar 

  19. Delobelle, P., Fribourg-Blanc, E., and Rèmiens, D., Thin Solid Films, 515, (2006), 1385-1393.

    Article  CAS  Google Scholar 

  20. Delobelle, P., Wang, G. S., Fribourg-Blanc, E., and Rèmiens, D., Surface & Coatings Technology, 201, (2006), 3155-3162.

    Article  CAS  Google Scholar 

  21. Delobelle, P., Wang, G. S., Fribourg-Blanc, E., and Rèmiens, D., Journal of the European Ceramic Society, 27, (2007), 223-230.

    Article  CAS  Google Scholar 

  22. Bushby A. J., Nanoindentation using spherical indenters; Non-destructive testing and evaluation, Vol. 17, (2001), 213-234.

    Google Scholar 

  23. Herbert E. G., Pharr G. M., Oliver W. C., Lucas B. N., Hay J. L., On the measurement of stress-strain curves by spherical indentation; Thin Solid Films, 398 - 399 (2001) 331 - 335.

    Google Scholar 

  24. Johnson K. L., Contact Mechanics, Cambridge University Press © 1985.

    Google Scholar 

  25. Martin M., Taylor M., Fundamental relations used in nanoindentation: Critical examination based on experimental measurements; J. Mater. Res., Vol. 17, No. 9 (2002) 2227 - 2234.

    Article  CAS  Google Scholar 

  26. Fischer-Cripps A. C., Methods of correction for analysis of depth-sensing indentation test data for spherical indenter; J. Mater. Res., Vol. 16, No. 8, (2001) 2244 - 2250.

    Article  CAS  Google Scholar 

  27. Swadener J. G., and Pharr G. M., Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution; Phil. Mag. A, Vol. 81, No.2, (2001) 447-466.

    Article  CAS  Google Scholar 

  28. Conway H. D., Farnham K. A., Ku T. C., The indentation of a Transversely isotropic half space by a rigid sphere; Journal of Applied Mechanics, Vol. 34 (1967), No. 2, 491 - 492.

    Google Scholar 

  29. Ramamurty U., Sridhar S., Giannakoplous A. E., and Suresh S., An experimental study of spherical indentation on piezoelectric materials; Acta Mater., Vol. 47, No. 8, 1999, 2417-2430.

    Google Scholar 

  30. Bull S. J., Korsunsky A. M., Mechanical properties of thin carbon overcoats, Tribology International Vol. 31, No. 9, 547-551, 1998.

    Article  CAS  Google Scholar 

  31. Chen X., Vlassak J. J., Numerical study on the measurement of thin film mechanical properties by means of nanoindentation; J. Mater. Res. Vol. 16, No. 10 (2001) 2974 - 2982.

    Article  CAS  Google Scholar 

  32. Chudoba T., Schwarzer N., Richter F., Determination of elastic properties of thin films by indentation measurement with a spherical indenter; Surface and Coatings Technology 127 (2000) 9-17.

    Google Scholar 

  33. Chudoba T., Schwarzer N., Richter F., Steps towards mechanical modelling of layered systems; Surface and Coatings Technology, Vol. 154 (2002) 140-151.

    CAS  Google Scholar 

  34. Saha R., Nix W. D., Effects of substrate on the determination of thin film mechanical properties by nanoindentation; Acta Mater., Vol. 50 (2002), 23 - 38.

    Google Scholar 

  35. Tsui T. Y., Vlassak J., Nix W. D., Indentation plastic displacement field; Part I. The case of soft films on hard substrates; J. Mater. Res., Vol. 14, No. 6, (1999) 2196 - 2203.

    Google Scholar 

  36. Kouitat-Njiwa R., Jürgen von Stebut, Boundary element numerical analysis of elastic indentation of a sphere into a bi-layer material, International Journal of Mechanical Sciences, Vol. 45, (2003) 317 - 324.

    Article  Google Scholar 

  37. Menčík J., Munz D., Quandt E., Weppelmann E.R., and Swain M.V., Determination of elastic modulus of thin layers using nanoindentation; J. Mater. Res., Vol. 12, No. 9, Sep 1997, 2475-2484.

    Article  Google Scholar 

  38. Kim M. T., Influence of substrates on the elastic reaction of films for the microindentation tests; Thin Solid Films, Vol. 283, (1996), 12 - 16.

    CAS  Google Scholar 

  39. Hsueh C-H., and Miranda P., Master curves for Hertzian indentation on coating/substrate systems, J. Mater. Res., Vol.19, No.1, (2004), 94-100.

    Google Scholar 

  40. Kim J. - K., Kim N. - K., Park B. - O., Effects of ultrasound on microstructure and electrical properties of Pb (Zr0.5 Ti0.5) O3 thin films prepared by sol-gel method; Materials Letters 39 (1999) 280 - 286.

    Google Scholar 

  41. Algueró M., Bushby A. J., Hvizdos P., Reece M. J., Whatmore R. W., Zhang Q., Mechanical and electromechanical properties of PZT sol-gel thin films measured by nanoindentation, Integrated Ferroelectrics, Vol. 41, (2001), Part ¼, 53 - 62.

    Google Scholar 

  42. Brantely W.A., Calculated elastic constants for stress problems associated with semiconductor devices, J.Appl.Phys. Vol.44, no.1 pp 534-535, 1973.

    Article  Google Scholar 

  43. Lide D. R. (Editor-in-Chief), Handbook of chemistry and physics, *1st edition, 2000- 2001, CRC Press.

    Google Scholar 

  44. Jaffe B., Cook W. R., Jaffe H., Piezoelectric Ceramics.

    Google Scholar 

  45. Berlincourt D. A., Cmolik C., Jaffe H., Proceedings of IRE, 48, 200 - 209, 1960.

    Google Scholar 

  46. Damjanovic D., Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics; Rep. Prog. Phys. 61 (1998) 1267-1324.

    Article  CAS  Google Scholar 

  47. Heifets E. and Cohen R. E., Ab initio study of elastic properties of Pb(Zr,Ti)O3, Fundamental Physics of Ferroelectrics, AIP Conference Proceedings(NY) 626, (2002), p150-159.

    Google Scholar 

  48. Auld B. A., Acoustic fields and waves in solids, Vol. 1, 1973.

    Google Scholar 

  49. Marshall, J.M. & Corkovic, S. & Zhang, Q. & Whatmore, R.W. & Chima-Okereke, C. & Roberts, W.L. & Bushby, A.J. & Reece, M.J. (2006) "The electromechanical properties of highly 100.oriented Pb(Zr0.52Ti0.48)O3, PZT.thin films", Integrated Ferroelectrics, vol. 80, page 77-85.

    Google Scholar 

  50. Hill, R., Proc. Phys. Soc., A55, p349-354, 1952

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chima-Okereke .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Chima-Okereke, C., Roberts, W.L., Bushby, A.J., Reece, M.J. (2011). The Elastic Properties of Ferroelectric Thin Films Measured Using Nanoindentation. In: Multifunctional Polycrystalline Ferroelectric Materials. Springer Series in Materials Science, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2875-4_11

Download citation

Publish with us

Policies and ethics