Optical Properties of Light-Emitting Liquid Crystals

  • Mary O’NeillEmail author
  • Stephen M. Kelly
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 169)


In recent years light-emitting liquid crystals have been developed for application in OLEDs, whilst there is increasing interest in chiral liquid crystals to produce feedback for lasers. This chapter discusses the optical properties of these materials. Fluorescence and phosphorescence is discussed with reference to issues resulting from the self-assembling properties of liquid crystals. We discuss how the inherently very large anisotropy of light-emitting semiconductors can be exploited to improve gain and feedback in thin film lasers and out coupling from OLEDs. We also summarise development in lasers based on chiral liquid crystals.


Liquid Crystal High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Nematic Liquid Crystal Liquid Crystalline Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Dos Santos, D.A., Bredas, J.L., Logdlund, M., Salaneck, W.R.: Electroluminescence in conjugated polymers. Nature 397(6715), 121–128 (1999)ADSGoogle Scholar
  2. 2.
    Park, S.H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., Heeger, A.J.: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photon. 3(5), 297–303 (2009)ADSGoogle Scholar
  3. 3.
    Chen, H.Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y., Li, G.: Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 3(11), 649–653 (2009)ADSGoogle Scholar
  4. 4.
    Liang, Y., Xu, Z., Xia, J., Tsai, S.T., Wu, Y., Li, G., Ray, C., Yu, L.: For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22(20), E135–E138 (2010)Google Scholar
  5. 5.
    Samuel, I.D.W., Turnbull, G.A.: Organic semiconductor lasers. Chem. Rev. 107(4), 1272–1295 (2007)Google Scholar
  6. 6.
    O’Neill, M., Kelly, S.M.: Ordered materials for organic electronics and photonics. Adv. Mater. 23(5), 566–584 (2011)Google Scholar
  7. 7.
    Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., Holmes, A.B.: Light-emitting diodes based on conjugated polymers. Nature 347(6293), 539–541 (1990)ADSGoogle Scholar
  8. 8.
    Tang, C.W., Vanslyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913–915 (1987)ADSGoogle Scholar
  9. 9.
    Grimsdale, A.C., Chan, K.L., Martin, R.E., Jokisz, P.G., Holmes, A.B.: Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 109(3), 897–1091 (2009)Google Scholar
  10. 10.
    Nardes, A.M., Kemerink, M., de Kok, M.M., Vinken, E., Maturova, K., Janssen, R.A.J.: Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org. Electron. 9(5), 727–734 (2008)Google Scholar
  11. 11.
    Hung, L.S., Tang, C.W., Mason, M.G.: Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70(2), 152–154 (1997)ADSGoogle Scholar
  12. 12.
    Wilson, J.S., Dhoot, A.S., Seeley, A.J.A.B., Khan, M.S., Köhler, A., Friend, R.H.: Spin-dependent exciton formation in Ï€-conjugated compounds. Nature 413(6858), 828–831 (2001)ADSGoogle Scholar
  13. 13.
    Liedtke, A., O’Neill, M., Kelly, S.M., Kitney, S.P., Van Averbeke, B., Boudard, P., Beljonne, D., Cornil, J.: Optical properties of light-emitting nematic liquid crystals: a joint experimental and theoretical study. J. Phys. Chem. B 114, 11975–11982 (2010)Google Scholar
  14. 14.
    Gierschner, J., Cornil, J., Egelhaaf, H.J.: Optical bandgaps of Ï€-conjugated organic materials at the polymer limit: experiment and theory. Adv. Mater. 19(2), 173–191 (2007)Google Scholar
  15. 15.
    Kasha, M.: Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat. Res. 20, 55–70 (1963)Google Scholar
  16. 16.
    Cornil, J.: Influence of interchain interactions in the absorption and luminescence of conjugated oligomers and polymers: a quantum-chemical characterization. J. Am. Chem. Soc. 120(6), 1289–1299 (1998)Google Scholar
  17. 17.
    Grell, M., Bradley, D.D.C., Ungar, G., Hill, J., Whitehead, K.S.: Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 32(18), 5810–5817 (1999)ADSGoogle Scholar
  18. 18.
    Gather, M.C., Heeney, M., Zhang, W., Whitehead, K.S., Bradley, D.D.C., McCulloch, I., Campbell, A.J.: An alignable fluorene thienothiophene copolymer with deep-blue electroluminescent emission at 410 nm. Chem. Commun. 9, 1079–1081 (2008)Google Scholar
  19. 19.
    Yang, S.H., Hsu, C.S.: Liquid crystalline conjugated polymers and their applications in organic electronics. J. Polymer Sci., Part A: Polymer Chem. 47(11), 2713–2733 (2009)ADSGoogle Scholar
  20. 20.
    Geng, Y., Chen, A.C.A., Ou, J.J., Chen, S.H., Klubek, K., Vaeth, K.M., Tang, C.W.: Monodisperse glassy-nematic conjugated oligomers with chemically tunable polarized light emission. Chem. Mater. 15(23), 4352–4360 (2003)Google Scholar
  21. 21.
    Aldred, M.P., Carrasco-Orozco, M., Contoret, A.E.A., Dong, D.W., Farrar, S.R., Kelly, S.M., Kitney, S.P., Mathieson, D., O’Neill, M., Tsoi, W.C., Vlachos, P.: Organic electroluminescence using polymer networks from smectic liquid crystals. Liq. Cryst. 33(4), 459–467 (2006). doi: 10.1080/02678290500487073 Google Scholar
  22. 22.
    Tokuhisa, H., Era, M., Tsutsui, T.: Polarized electroluminescence from smectic mesophase. Appl. Phys. Lett. 72(21), 2639–2641 (1998)ADSGoogle Scholar
  23. 23.
    Droege, S., Khalifah, M.S.A., O’Neill, M., Thomas, H.E., Simmonds, H.S., Macdonald, J.E., Aldred, M.P., Vlachos, P., Kitney, S.P., Loebbert, A., Kelly, S.M.: Grazing incidence X-ray diffraction of a photoaligned nematic semiconductor. J. Phys. Chem. B 113(1), 49–53 (2009)Google Scholar
  24. 24.
    Geng, Y., Culligan, S.W., Trajkovska, A., Wallace, J.U., Chen, S.H.: Monodisperse oligofluorenes forming glassy-nematic films for polarized blue emission. Chem. Mater. 15(2), 542–549 (2003)Google Scholar
  25. 25.
    Yang, Y., Pei, Q.: Efficient blue-green and white light-emitting electrochemical cells based on poly[9,9-bis(3,6-dioxaheptyl)-fluorene-2,7-diyl]. J. Appl. Phys. 81(7), 3294–3296 (1997)ADSGoogle Scholar
  26. 26.
    Levermore, P.A., Jin, R., Wang, X., De Mello, J.C., Bradley, D.D.C.: Organic light-emitting diodes based on poly(9,9-dioctylfluorene-co- bithiophene) (F8T2). Adv. Funct. Mater. 19(6), 950–957 (2009)Google Scholar
  27. 27.
    Chua, L.L., Zaumseil, J., Chang, J.F., Ou, E.C.W., Ho, P.K.H., Sirringhaus, H., Friend, R.H.: General observation of n-type field-effect behaviour in organic semiconductors. Nature 434(7030), 194–199 (2005)ADSGoogle Scholar
  28. 28.
    Sirringhaus, H., Wilson, R.J., Friend, R.H., Inbasekaran, M., Wu, W., Woo, E.P., Grell, M., Bradley, D.D.C.: Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77(3), 406–408 (2000)ADSGoogle Scholar
  29. 29.
    Zeng, L., Yan, F., Wei, S.K.H., Culligan, S.W., Chen, S.: Synthesis and processing of monodisperse oligo(fluorene-co-bithiophene)s into oriented films by thermal and solvent annealing. Adv. Funct. Mater. 19(12), 1978–1986 (2009)Google Scholar
  30. 30.
    Chen, A.C.A., Culligan, S.W., Geng, Y., Chen, S.H., Klubek, K.P., Vaeth, K.M., Tang, C.W.: Organic polarized light-emitting diodes via förster energy transfer using monodisperse conjugated oligomers. Adv. Mater. 16(9–10), 783–788 (2004)Google Scholar
  31. 31.
    Chen, A.C.A., Wallace, J.U., Wei, S.K.H., Zeng, L., Chen, S.H., Blanton, T.N.: Light-emitting organic materials with variable charge injection and transport properties. Chem. Mater. 18(1), 204–213 (2006)Google Scholar
  32. 32.
    Culligan, S.W., Geng, Y., Chen, S.H., Klubek, K., Vaeth, K.M., Tang, C.W.: Strongly polarized and efficient blue organic light-emitting diodes using monodisperse glassy nematic oligo(fluorene)s. Adv. Mater. 15(14), 1176–1180 (2003)Google Scholar
  33. 33.
    Liedtke A.: Liquid crystals for light emitting diodes. University of Hull, UK (2009)Google Scholar
  34. 34.
    Wallace, J.U., Chen, S.H.: Fluorene-based conjugated oligomers for organic photonics and electronics. Adv. Polym. Sci. 212, 145–186 (2008)Google Scholar
  35. 35.
    Aldred, M.P., Eastwood, A.J., Kelly, S.M., Vlachos, P., Contoret, A.E.A., Farrar, S.R., Mansoor, B., O’Neill, M., Tsoi, W.C.: Light-emitting fluorene photoreactive liquid crystals for organic electroluminescence. Chem. Mater. 16(24), 4928–4936 (2004). doi: 10.1021/cm0351893 Google Scholar
  36. 36.
    Contoret, A.E.A., Farrar, S.R., Jackson, P.O., Khan, S.M., May, L., O’Neill, M., Nicholls, J.E., Kelly, S.M., Richards, G.J.: Polarized electroluminescence from an anisotropic nematic network on a non-contact photoalignment layer. Adv. Mater. 12(13), 971–974 (2000)Google Scholar
  37. 37.
    Contoret, A.E.A., Farrar, S.R., O’Neill, M., Nicholls, J.E.: The photopolymerization and cross-linking of electroluminescent liquid crystals containing methacrylate and diene photopolymerizable end groups for multilayer organic light-emitting diodes. Chem. Mater. 14(4), 1477–1487 (2002). doi: 10.1021/cm011111f Google Scholar
  38. 38.
    Woon, K.L., Contoret, A.E.A., Farrar, S.R., Liedtke, A., O’Neill, M., Vlachos, P., Aldred, M.P., Kelly, S.M.: Material and device properties of highly birefringent nematic glasses and polymer networks for organic electroluminescence. J. Soc. Inf. Disp. 14(6), 557–563 (2006)Google Scholar
  39. 39.
    Woon, K.L., Liedtke, A., O’Neill, M., Aldred, M.P., Kitney, S.P., Vlachos, P., Bruneau, A., Kelly, S.M.: Photopolymerization studies of a light-emitting liquid crystal with methacrylate reactive groups for electroluminescence. In: Proceedings of SPIE – The International Society for Optical Engineering, Bellingham, USA, p. 70500E (2008)Google Scholar
  40. 40.
    Lüssem, G., Wendorff, J.H.: Liquid crystalline materials for light-emitting diodes. Polym. Adv. Technol. 9(7), 443–460 (1998)Google Scholar
  41. 41.
    Stapff, I.H., Stumpflen, V., Wendorff, J.H., Spohn, D.B., Mobius, D.: Preliminary communication multilayer light emitting diodes based on columnar discotics. Liq. Cryst. 23(4), 613–617 (1997)Google Scholar
  42. 42.
    Seguy, I., Destruel, P., Bock, H.: All-columnar bilayer light-emitting diode. Synth. Met. 111, 15–18 (2000)Google Scholar
  43. 43.
    Seguy, I., Jolinat, P., Destruel, P., Farenc, J., Mamy, R., Bock, H., Ip, J., Nguyen, T.P.: Red organic light emitting device made from triphenylene hexaester and perylene tetraester. J. Appl. Phys. 89(10), 5442–5448 (2001)ADSGoogle Scholar
  44. 44.
    Hassheider, T., Benning, S.A., Kitzerow, H.S., Achard, M.F., Bock, H.: Color-tuned electroluminescence from columnar liquid crystalline alkyl arenecarboxylates. Angew. Chem. Int. Ed. 40(11), 2060–2063 (2001)Google Scholar
  45. 45.
    Baldo, M.A., O’Brien, D.F., You, Y., Shoustikov, A., Sibley, S., Thompson, M.E., Forrest, S.R.: Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395(6698), 151–154 (1998)ADSGoogle Scholar
  46. 46.
    D’Andrade, B.W., Forrest, S.R.: White organic light-emitting devices for solid-state lighting. Adv. Mater. 16(18), 1585–1595 (2004)Google Scholar
  47. 47.
    Xiao, L., Chen, Z., Qu, B., Luo, J., Kong, S., Gong, Q., Kido, J.: Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 23(8), 926–952 (2011)Google Scholar
  48. 48.
    Kozhevnikov, V.N., Donnio, B., Bruce, D.W.: Phosphorescent, terdentate, liquid-crystalline complexes of platinum(II): stimulus-dependent emission. Angew. Chem. Int. Ed. 47(33), 6286–6289 (2008)Google Scholar
  49. 49.
    Thomas Iii, S.W., Yagi, S., Swager, T.M.: Towards chemosensing phosphorescent conjugated polymers: cyclometalated platinum(II) poly(phenylene)s. J. Mater. Chem. 15(27–28), 2829–2835 (2005)Google Scholar
  50. 50.
    Venkatesan, K., Kouwer, P.H.J., Yagi, S., Mèuller, P., Swager, T.M.: Columnar mesophases from half-discoid platinum cyclometalated metallomesogens. J. Mater. Chem. 18(4), 400–407 (2008)Google Scholar
  51. 51.
    Santoro, A., Whitwood, A.C., Williams, J.A.G., Kozhevnikov, V.N., Bruce, D.W.: Synthesis, mesomorphism, and luminescent properties of calamitic 2-phenylpyridines and their complexes with platinum(II). Chem. Mater. 21(16), 3871–3882 (2009)Google Scholar
  52. 52.
    Liu, S.H., Lin, M.S., Chen, L.Y., Hong, Y.H., Tsai, C.H., Wu, C.C., Poloek, A., Chi, Y., Chen, C.A., Chen, S.H., Hsu, H.F.: Polarized phosphorescent organic light-emitting devices adopting mesogenic host-guest systems. Org. Electron. Phys. Mater. Appl. 12(1), 15–21 (2011)Google Scholar
  53. 53.
    Kim, J.S., Ho, P.K.H., Greenham, N.C., Friend, R.H.: Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations. J. Appl. Phys. 88(2), 1073–1081 (2000)ADSGoogle Scholar
  54. 54.
    Ramsdale, C.M., Greenham, N.C.: Ellipsometric determination of anisotropic optical constants in electroluminescent conjugated polymers. Adv. Mater. 14(3), 212–215 (2002). doi:10.1002/1521-4095(20020205)14:3<212::aid-adma212>;2-vGoogle Scholar
  55. 55.
    Winfield, J.M., Donley, C.L., Kim, J.S.: Anisotropic optical constants of electroluminescent conjugated polymer thin films determined by variable-angle spectroscopic ellipsometry. J. Appl. Phys. 102(6), 06305 (2007)Google Scholar
  56. 56.
    Lee, T.W., Park, O.O., Kim, Y.C.: Control of emission outcoupling in liquid-crystalline fluorescent polymer films. Org. Electron. Phys. Mater. Appl. 8(4), 317–324 (2007)MathSciNetGoogle Scholar
  57. 57.
    Rabek, J.F.: Mechanisms of Photophysical Process and Photochemical Reactions in Polymers: Theory and Applications. Wiley, Chichester (1987)Google Scholar
  58. 58.
    Lee, T.W., Park, O.O., Cho, H.N., Kim, D.Y., Kim, Y.C.: Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends. J. Appl. Phys. 93(3), 1367–1370 (2003)ADSGoogle Scholar
  59. 59.
    Schartel, B., Wachtendorf, V., Grell, M., Bradley, D.D.C., Hennecke, M.: Polarized fluorescence and orientational order parameters of a liquid-crystalline conjugated polymer. Phys. Rev. B. Condens. Matter Mater. Phys. 60(1), 277–283 (1999)ADSGoogle Scholar
  60. 60.
    Knaapila, M., Stepanyan, R., Lyons, B.P., Torkkeli, M., Hase, T.P.A., Serimaa, R., Güntner, R., Seeck, O.H., Scherf, U., Monkman, A.P.: The influence of the molecular weight on the thermotropic alignment and self-organized structure formation of branched side chain hairy-rod polyfluorene in thin films. Macromolecules 38(7), 2744–2753 (2005)ADSGoogle Scholar
  61. 61.
    Woon, K.L., O’Neill, M., Vlachos, P., Aldred, M.P., Kelly, S.M.: Highly birefringent nematic and chiral nematic liquid crystals. Liq. Cryst. 32(9), 1191–1194 (2005). doi: 10.1080/02678290500286863 Google Scholar
  62. 62.
    Heliotis, G., Xia, R., Whitehead, K.S., Turnbull, G.A., Samuel, I.D.W., Bradley, D.D.C.: Investigation of amplified spontaneous emission in oriented films of a liquid crystalline conjugated polymer. Synth. Met. 139(3), 727–730 (2003)Google Scholar
  63. 63.
    Xia, R., Campoy-Quiles, M., Heliotis, G., Stavrinou, P., Whitehead, K.S., Bradley, D.D.C.: Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films. Synth. Met. 155(2), 274–278 (2005)Google Scholar
  64. 64.
    Song, M.H., Wenger, B., Friend, R.H.: Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer. J. Appl. Phys. 104(3), 033107 (2008)ADSGoogle Scholar
  65. 65.
    McGehee, M.D., Diaz-Garcia, M.A., Hide, F., Gupta, R., Miller, E.K., Moses, D., Heeger, A.J.: Semiconducting polymer distributed feedback lasers. Appl. Phys. Lett. 72(13), 1536–1538 (1998)ADSGoogle Scholar
  66. 66.
    Ziebarth, J.M., Saafir, A.K., Fan, S., McGehee, M.D.: Extracting light from polymer light-emitting diodes using stamped Bragg gratings. Adv. Funct. Mater. 14(5), 451–456 (2004)Google Scholar
  67. 67.
    Gather, M.C., Ventsch, F., Meerholz, K.: Embedding organic light-emitting diodes into channel waveguide structures. Adv. Mater. 20(10), 1966–1971 (2008). doi: 10.1002/adma.200702837 Google Scholar
  68. 68.
    Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996)ADSGoogle Scholar
  69. 69.
    Meier, M., Dodabalapur, A., Rogers, J.A., Slusher, R.E., Mekis, A., Timko, A., Murray, C.A., Ruel, R., Nalamasu, O.: Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding. J. Appl. Phys. 86(7), 3502–3507 (1999)ADSGoogle Scholar
  70. 70.
    Lawrence, J.R., Turnbull, G.A., Samuel, I.D.W.: Polymer laser fabricated by a simple micromolding process. Appl. Phys. Lett. 82(23), 4023–4025 (2003)ADSGoogle Scholar
  71. 71.
    Liedtke, A., Chunhong, L., O’Neill, M., Dyer, P.E., Kitney, S.P., Kelly, S.M.: One-step photoembossing for submicrometer surface relief structures in liquid crystal semiconductors. ACS Nano 4(6), 3248–3253 (2010). doi: 10.1021/nn100012g Google Scholar
  72. 72.
    Hikmet, R.A.M., Lub, J.: Anisotropic networks and gels obtained by photopolymerisation in the liquid crystalline state: synthesis and applications. Prog. Polym. Sci. (Oxford) 21(6), 1165–1209 (1996)Google Scholar
  73. 73.
    Kelly, S.M.: Anisotropic networks, elastomers and gels. Liq. Cryst. 24(1), 71–82 (1998)Google Scholar
  74. 74.
    Hikmet, R.A.M., Lub, J., Broer, D.J.: Anisotropic networks formed by photopolymerization of liquid-crystalline molecules. Adv. Mater. 3(7–8), 392–394 (1991)Google Scholar
  75. 75.
    Broer, D.J., Boven, J., Mol, G.N., Challa, G.: In-situ photopolymerization of oriented liquid-crystalline acrylates. Makromol. Chem. 190, 2255–2268 (1989)Google Scholar
  76. 76.
    Kelly, S.M.: Anisotropic networks. J. Mater. Chem. 5(12), 2047–2061 (1995)Google Scholar
  77. 77.
    Trout, T.J., Schmieg, J.J., Gambogi, W.J., Weber, A.M.: Optical photopolymers: design and applications. Adv. Mater. 10(15), 1219–1224 (1998)Google Scholar
  78. 78.
    De Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Clarendon, Oxford (1993)Google Scholar
  79. 79.
    Kopp, V.I., Fan, B., Vithana, H.K.M., Genack, A.Z.: Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett. 23(21), 1707–1709 (1998)ADSGoogle Scholar
  80. 80.
    Muňoz, F.A., Palffy-Muhoray, P., Taheri, B.: Ultraviolet lasing in cholesteric liquid crystals. Opt. Lett. 26(11), 804–806 (2001)ADSGoogle Scholar
  81. 81.
    Schmidtke, J., Stille, W.: Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment. Eur. Phys. J. B 31(2), 179–194 (2003)ADSGoogle Scholar
  82. 82.
    Woon, K.L., O’Neill, M., Richards, G.J., Aldred, M.P., Kelly, S.M.: Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: Experiment and theory. Phys. Rev. E 71(4), doi:04170610.1103/PhysRevE.71.041706 (2005)Google Scholar
  83. 83.
    Woon, K.L., O’Neill, M., Richards, G.J., Aldred, M.P., Kelly, S.M., Fox, A.M.: Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye. Adv. Mater. 15(18), 1555–1558 (2003). doi: 10.1002/adma.200304960 Google Scholar
  84. 84.
    Schmidtke, J., Stille, W., Finkelmann, H.: Defect mode emission of a dye doped cholesteric polymer network. Phys. Rev. Lett. 90(8), 083902 (2003)ADSGoogle Scholar
  85. 85.
    Jeong, S.M., Ha, N.Y., Takanishi, Y., Ishikawa, K., Takezoe, H., Nishimura, S., Suzaki, G.: Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer. Appl. Phys. Lett. 90(26), 211106 (2007)Google Scholar
  86. 86.
    Kopp, V.I., Zhang, Z.Q., Genack, A.Z.: Lasing in chiral photonic structures. Prog. Quantum Electron. 27(6), 369–416 (2003)ADSGoogle Scholar
  87. 87.
    Palffy-Muhoray, P., Cao, W., Moreira, M., Taheri, B., Munoz, A., Lacey, D., Sambles, J.R., Gleeson, H.F., Pivnenko, M.N.: Photonics and lasing in liquid crystal materials. Philos. Trans. R. Soc. A: Math, Phys. Eng. Sci. 364(1847), 2747–2761 (2006)ADSGoogle Scholar
  88. 88.
    Ford, A.D., Morris, S.M., Coles, H.J.: Photonics and lasing in liquid crystals. Mater. Today 9(7–8), 36–42 (2006)Google Scholar
  89. 89.
    Coles, H., Morris, S.: Liquid-crystal lasers. Nat. Photon. 4(10), 676–685 (2010)ADSGoogle Scholar
  90. 90.
    Ozaki, M., Kasano, M., Ganzke, D., Haase, W., Yoshino, K.: Mirrorless lasing in a dye-doped ferroelectric liquid crystal. Adv. Mater. 14(4), 306–309 (2002)Google Scholar
  91. 91.
    Cao, W., Muňoz, A., Palffy-Muhoray, P., Taheri, B.: Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat. Mater. 1(2), 111–113 (2002)ADSGoogle Scholar
  92. 92.
    Hwang, J., Song, M.H., Park, B., Nishimura, S., Toyooka, T., Wu, J.W., Takanishi, Y., Ishikawa, K., Takezoe, H.: Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions. Nat. Mater. 4(5), 383–387 (2005)ADSGoogle Scholar
  93. 93.
    Kasano, M., Ozaki, M., Yoshino, K., Ganzke, D., Haase, W.: Electrically tunable waveguide laser based on ferroelectric liquid crystal. Appl. Phys. Lett. 82(23), 4026–4028 (2003)ADSGoogle Scholar
  94. 94.
    Ozaki, M., Kasano, M., Kitasho, T., Ganzke, D., Haase, W., Yoshino, K.: Electro-tunable liquid-crystal laser. Adv. Mater. 15(12), 974–977 (2003)Google Scholar
  95. 95.
    Funamoto, K., Ozaki, M., Yoshino, K.: Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal. Jpn. J. Appl. Phys, Part 2: Lett. 42(12 B), L1523–L1525 (2003)Google Scholar
  96. 96.
    Shibaev, P.V., Madsen, J., Genack, A.Z.: Lasing and narrowing of spontaneous emission from responsive cholesteric films. Chem. Mater. 16(8), 1397–1399 (2004)Google Scholar
  97. 97.
    Chanishvili, A., Chilaya, G., Petriashvili, G., Barberi, R., Bartolino, R., Cipparrone, G., Mazzulla, A., Oriol, L.: Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies. Adv. Mater. 16(9–10), 791–795 (2004)Google Scholar
  98. 98.
    Ilchishin, I.P., Yaroshchuk, O.V., Gryshchenko, S.V., Shaydiuk, E.A.: Influence of the light induced molecular transformations on the helix pitch and lasing spectra of cholesteric liquid crystals. In: Proceedings of SPIE – The International Society for Optical Engineering, Bellingham, USA, pp. 229–234 (2004)Google Scholar
  99. 99.
    Shibaev, P.V., Sanford, R.L., Chiappetta, D., Milner, V., Genack, A., Bobrovsky, A.: Light controllable tuning and switching of lasing in chiral liquid crystals. Opt. Express 13(7), 2358–2363 (2005)ADSGoogle Scholar
  100. 100.
    Chilaya, G., Chanishvili, A., Petriashvili, G., Barberi, R., Bartolino, R., Cipparrone, G., Mazzulla, A., Shibaev, P.V.: Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes. Adv. Mater. 19(4), 565–568 (2007)Google Scholar
  101. 101.
    Fuh, A.Y.G., Lin, T.H., Liu, J.H., Wu, F.C.: Lasing in chiral photonic liquid crystals and associated frequency tuning. Opt. Express 12(9), 1857–1863 (2004)ADSGoogle Scholar
  102. 102.
    Finkelmann, H., Kim, S.T., Muňoz, A., Palffy-Muhoray, P., Taheri, B.: Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 13(14), 1069–1072 (2001)Google Scholar
  103. 103.
    Hirota, Y., Ji, Y., Serra, F., Tajbakhsh, A.R., Terentjev, E.M.: Effect of crosslinking on the photonic bandgap in deformable cholesteric elastomers. Opt. Express 16(8), 5320–5331 (2008)ADSGoogle Scholar
  104. 104.
    Huang, Y., Chen, L.P., Doyle, C., Zhou, Y., Wu, S.T.: Spatially tunable laser emission in dye-doped cholesteric polymer films. Appl. Phys. Lett. 89(11) (2006). 111106Google Scholar
  105. 105.
    Manabe, T., Sonoyama, K., Takanishi, Y., Ishikawa, K., Takezoe, H.: Toward practical application of cholesteric liquid crystals to tunable lasers. J. Mater. Chem. 18(25), 3040–3043 (2008)Google Scholar
  106. 106.
    Chanishvili, A., Chilaya, G., Petriashvili, G., Barberi, R., Bartolino, R., Cipparrone, G., Mazzulla, A., Gimenez, R., Oriol, L., Pinol, M.: Widely tunable ultraviolet-visible liquid crystal laser. Appl. Phys. Lett. 86(5), 1–3 (2005)Google Scholar
  107. 107.
    Ha, N.Y., Ohtsuka, Y., Jeong, S.M., Nishimura, S., Suzaki, G., Takanishi, Y., Ishikawa, K., Takezoe, H.: Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals. Nat. Mater. 7(1), 43–47 (2008)ADSGoogle Scholar
  108. 108.
    Ha, N.Y., Takanishi, Y., Ishikawa, K., Takezoe, H.: Simultaneous RGB reflections from single-pitched cholesteric liquid crystal films with Fibonaccian defects. Opt. Express 15(3), 1024–1029 (2007)ADSGoogle Scholar
  109. 109.
    Ha, N.Y., Jeong, S.M., Nishimura, S., Suzaki, G., Ishikawa, K., Takezoe, H.: Simultaneous red, green, and blue lasing emissions in a single-pitched cholesteric liquid-crystal system. Adv. Mater. 20(13), 2503–2507 (2008)Google Scholar
  110. 110.
    Hands, P.J.W., Morris, S.M., Wilkinson, T.D., Coles, H.J.: Two-dimensional liquid crystal laser array. Opt. Lett. 33(5), 515–517 (2008)ADSGoogle Scholar
  111. 111.
    Morris, S.M., Hands, P.J.W., Findeisen-Tandel, S., Cole, R.H., Wilkinson, T.D., Coles, H.J.: Polychromatic liquid crystal laser arrays towards display applications. Opt. Express 16(23), 18827–18837 (2008)ADSGoogle Scholar
  112. 112.
    Chanishvili, A., Chilaya, G., Petriashvili, G., Barberi, R., Bartolino, R., Cipparrone, G., Mazzulla, A.: Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser. Appl. Phys. Lett. 85(16), 3378–3380 (2004)ADSGoogle Scholar
  113. 113.
    Gardiner, D.J., Morris, S.M., Hands, P.J.W., Mowatt, C., Rutledge, R., Wilkinson, T.D., Coles, H.J.: Paintable band-edge liquid crystal lasers. Opt. Express 19(3), 2432–2439 (2011)ADSGoogle Scholar
  114. 114.
    Wei, S.K.H., Chen, S.H., Dolgaleva, K., Lukishova, S.G., Boyd, R.W.: Robust organic lasers comprising glassy-cholesteric pentafluorene doped with a red-emitting oligofluorene. Appl. Phys. Lett. 94(4) (2009)Google Scholar
  115. 115.
    Shibaev, P.V., Kopp, V., Genack, A., Hanelt, E.: Lasing from chiral photonic band gap materials based on cholesteric glasses. Liq. Cryst. 30(12), 1391–1400 (2003)Google Scholar
  116. 116.
    Schmidtke, J., Stille, W., Finkelmann, H., Kim, S.T.: Laser emission in a dye doped cholesteric polymer network. Adv. Mater. 14(10), 746–749 (2002). 693Google Scholar
  117. 117.
    Matsui, T., Ozaki, R., Funamoto, K., Ozaki, M., Yoshino, K.: Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal. Appl. Phys. Lett. 81(20), 3741–3743 (2002)ADSGoogle Scholar
  118. 118.
    Yokoyama, S., Mashiko, S., Kikuchi, H., Uchida, K., Nagamura, T.: Laser emission from a polymer-stabilized liquid-crystalline blue phase. Adv. Mater. 18(1), 48–51 (2006)Google Scholar
  119. 119.
    Mowatt, C., Morris, S.M., Song, M.H., Wilkinson, T.D., Friend, R.H., Coles, H.J.: Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium. J. Appl. Phys. 107(4), 043101 (2010)ADSGoogle Scholar
  120. 120.
    Amemiya, K., Shin, K.C., Takanishi, Y., Ishikawa, K., Azumi, R., Takezoe, H.: Lasing in cholesteric liquid crystals doped with oligothiophene derivatives. Jpn. J. Appl. Phys, Part 1: Regul. Pap. Short Notes Rev. Pap. 43(9 A), 6084–6087 (2004)Google Scholar
  121. 121.
    Shin, K.C., Araoka, F., Park, B., Takanishi, Y., Ishikawa, K., Zhu, Z., Swager, T.M., Takezoe, H.: Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals. Jpn. J. Appl. Phys, Part 1: Regul. Pap. Short Notes Rev. Pap. 43(2), 631–636 (2004)Google Scholar
  122. 122.
    Uchimura, M., Watanabe, Y., Araoka, F., Watanabe, J., Takezoe, H., Konishi, G.I.: Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers. Adv. Mater. 22(40), 4473–4478 (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Physics and MathematicsUniversity of HullHullUK
  2. 2.Department of ChemistryUniversity of HullHullUK

Personalised recommendations