Synthesis of Columnar Liquid Crystals

  • Sandeep KumarEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 169)


The columnar phases of discotic liquid crystals (DLCs) have been well recognized as one-dimensional organic semiconductors due to their unique self-organising supramolecular architecture. Though more than 3,000 DLCs from about 60 different cores have been synthesized, only a few DLCs derived from discotic cores such as, triphenylene, hexaazatriphenylene, pyrene, perylene, tricycloquinazoline, porphyrin, phthalocyanine and hexabenzocoronene are experimentally studied for their electrical and photoconducting properties. This chapter presents the synthesis of these DLCs and related materials.


Suzuki Coupling Charge Transport Property Tetracarboxylic Acid Electrophilic Aromatic Substitution Liquid Crystalline Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Demus, D., Goodby, J., Gray, G.W., Spiess, H.W., Vill, V. (eds.): Handbook of Liquid Crystals. Wiley-VCH, Weinhiem (1998)Google Scholar
  2. 2.
    Kaafarani, B.R.: Discotic liquid crystals for opto-electronic applications. Chem. Mater. 23, 378–396 (2011)CrossRefGoogle Scholar
  3. 3.
    Bisoyi, H.K., Kumar, S.: Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem. Soc. Rev. 40, 306–319 (2011)CrossRefGoogle Scholar
  4. 4.
    Bisoyi, H.K., Kumar, S.: Discotic nematic liquid crystals: science and technology. Chem. Soc. Rev. 39, 264–286 (2010)CrossRefGoogle Scholar
  5. 5.
    Kumar, S.: Self-organization of disc-like molecules: chemical aspects. Chem. Soc. Rev. 35, 83–109 (2006)CrossRefGoogle Scholar
  6. 6.
    Laschat, S., Baro, A., Steinke, N., Giesselmann, F., Hagele, C., Scalia, G., Judele, R., Kapatsina, E., Sauer, S., Schreivogel, A., Tosoni, M.: Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew. Chem. Int. Ed. 46, 4832–4887 (2007)CrossRefGoogle Scholar
  7. 7.
    Sergeyev, S., Pisula, W., Geerts, Y.H.: Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007)CrossRefGoogle Scholar
  8. 8.
    Wu, J., Pisula, W., Mullen, K.: Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)CrossRefGoogle Scholar
  9. 9.
    Boden, N., Bushby, R.J., Clements, J., Movaghar, B.: Device applications of charge transport in discotic liquid crystals. J. Mater. Chem. 9, 2081–2086 (1999)CrossRefGoogle Scholar
  10. 10.
    Bushby, R.J., Lozman, O.R.: Photoconducting liquid crystals. Curr. Opin. Solid State Mater. Sci. 6, 569–578 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Bushby, R.J., Lozman, O.R.: Discotic liquid crystals 25 years on. Curr. Opin. Coll. Interface Sci. 7, 343–354 (2002)CrossRefGoogle Scholar
  12. 12.
    Ohta, K., Hatsusaka, K., Sugibayashi, M., Ariyoshi, M., Ban, K., Maeda, F., Naito, R., Nishizawa, K., van de Craats, A.M., Warman, J.M.: Discotic liquid crystalline semiconductors. Mol. Cryst. Liq. Cryst. 397, 25–45 (2003)CrossRefGoogle Scholar
  13. 13.
    Cammidge, A.N., Bushby, R.J.: Discotic liquid crystals- synthesis and structural features. In: Demus, D., Goodby, J., Gray, G.W., Spiess, H.W., Vill, V. (eds.) Handbook of Liquid Crystals, vol. 2B, pp. 693–748. Wiley-VCH, Weinheim (1998). Chapter VIIGoogle Scholar
  14. 14.
    Chandrasekhar, S.: Discotic liquid crystals. A brief review. Liq. Cryst. 14, 3–14 (1993)CrossRefGoogle Scholar
  15. 15.
    Donnio, B., Guillon, D., Deschenaux, R., Bruce, D.W.: Metallomesogens. In: McCleverty, J.A., Meyer, T.J. (eds.) Comprehensive Coordination Chemistry II, vol. 7, pp. 357–627. Elsevier, Oxford (2003)Google Scholar
  16. 16.
    Kohne, B., Praefcke, K.: Hexa-O-alkanoyl-scyllo-inositols, the first Alicyclic, saturated, discotic liquid crystals. Angew. Chem. Int. Ed. 23, 82–83 (1984)CrossRefGoogle Scholar
  17. 17.
    Keinan, E., Kumar, S., Moshenberg, R., Ghirlando, R., Wachtel, E.J.: Trisubstituted decacyclene derivatives; bridging the gap between the carbonaceous mesophase and discotic liquid crystals. Adv. Mater. 3, 251–254 (1991)CrossRefGoogle Scholar
  18. 18.
    Kumar, S.: Rufigallol-based self-assembled supramolecular architectures. Ph. Transit. 81, 113–128 (2008)CrossRefGoogle Scholar
  19. 19.
    Kumar, S.: Chemistry of Discotic Liquid Crystals: From Monomers to Polymers. CRC Press, Boca Raton (2011)Google Scholar
  20. 20.
    Kumar, S.: Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq. Cryst. 31, 1037–1059 (2004)CrossRefGoogle Scholar
  21. 21.
    Kumar, S.: Triphenylene-based discotic liquid crystal dimers, oligomers and polymers. Liq. Cryst. 32, 1089–1113 (2005)CrossRefGoogle Scholar
  22. 22.
    Buess, C.M., Lawson, D.D.: The preparation, reactions, and properties of triphenylenes. Chem. Rev. 60, 313 (1960)CrossRefGoogle Scholar
  23. 23.
    Billard, J., Dubois, J.C., Tinh, N.H., Zann, A.: Une mesophase disquotique. J. de. Chimie. 2, 535–540 (1978)Google Scholar
  24. 24.
    Destrade, C., Mondon, M.C., Malthete, J.: Hexasubstituted triphenylenes: a new mesomorphic order. J. Phys. Colloq. 40, C3-17–21 (1979)Google Scholar
  25. 25.
    Fontes, E., Heiney, P.A., de Jeu, W.H.: Liquid-crystalline and helical order in a discotic mesophase. Phys. Rev. Lett. 61, 1202–1205 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    Adam, D., Schuhmacher, P., Simmerer, J., Haussling, L., Siemensmeyer, K., Etzbach, K.H., Ringsdorf, H., Haarer, D.: Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371, 141–143 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    Kohne, V.B., Poules, W., Praefcke, K.: Erste flussigkristalline Hexakis-(alkylthio)-triphenylene. Chem. Z. 108, 113 (1984)Google Scholar
  28. 28.
    Gramsbergen, E.F., Hoving, H.J., de Jeu, W.H., Praefcke, K., Kohne, B.: X-ray investigation of discotic mesophases of alkylthio substituted triphenylenes. Liq. Cryst. 1, 397–400 (1986)CrossRefGoogle Scholar
  29. 29.
    Marguet, S., Markovitsi, D., Millie, P., Sigal, H., Kumar, S.: Influence of disorder on electronic excited states: an experimental and numerical study. J. Phys. Chem. B. 102, 4697–4710 (1998)CrossRefGoogle Scholar
  30. 30.
    Khone, R.B., Praefcke, K., Derz, T., Frischmuth, W., Gansau, C.: Uber Selen-substitution des Hexakis-(alkylseleno)-triphenylene, erste Selen-haltige diskotische Flussigkristallklasse. Chem. Z. 108, 408 (1984)Google Scholar
  31. 31.
    Lee, W.K., Heiney, P.A., Mccauley Jr., J.P., Smith III, A.B.: Fourier transform infrared absorption study of hexa(hexylthio)triphenylene: a discotic liquid crystal. Mol. Cryst. Liq. Cryst. 198, 273–284 (1991)CrossRefGoogle Scholar
  32. 32.
    Idziak, S.H.J., Heiney, P.A., Mccauley Jr., J.P., Carroll, P., Smith III, A.B.: Phase diagram of hexa-N-alkylthiotriphenylenes. Mol. Cryst. Liq. Cryst. 237, 271–275 (1993)CrossRefGoogle Scholar
  33. 33.
    Vauchier, C., Zann, A., Le Barny, P., Dubois, J.C., Billard, J.: Orientation of discotic mesophases. Mol. Cryst. Liq. Cryst. 66, 103–114 (1981)CrossRefGoogle Scholar
  34. 34.
    Destrade, C., Tinh, N.H., Gasparoux, H., Malthete, J., Levelut, A.M.: Disc-like mesogens: a classification. Mol. Cryst. Liq. Cryst. 71, 111–135 (1981)CrossRefGoogle Scholar
  35. 35.
    Matheson, I.M., Musgrave, O.C., Webster, C.J.: Oxidation of Veratrole by quinines. Chem. Commun. (Lond) 1965, 278–279 (1965)Google Scholar
  36. 36.
    Scholl, R., Mansfeld, J.: Meso-Benzdianthron (Helianthron), meso-Naphthodianthron, und ein neuer Weg zum Flavanthren. Ber. Dtsch. Chem. Ges. 43, 1734–1746 (1910)CrossRefGoogle Scholar
  37. 37.
    King, B.T., Kroulik, J., Robertson, C.R., Rempala, P., Hilton, C.L., Korinek, J.D., Gortari, L.M.: Controlling the Scholl reaction. J. Org. Chem. 72, 2279–2288 (2007)CrossRefGoogle Scholar
  38. 38.
    Voisin, E., Williams, V.E.: Do catechol derivatives electropolymerize? Macromolecules 41, 2994–2997 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Boden, N., Borner, R.C., Bushby, R.J., Cammidge, A.N., Jesudason, M.V.: The synthesis of triphenylene-based discotic mesogens new and improved routes. Liq. Cryst. 15, 851–858 (1993)CrossRefGoogle Scholar
  40. 40.
    Boden, N., Bushby, R.J., Cammidge, A.N.: A quick-and-easy route to unsymmetrically substituted derivatives of triphenylene: preparation of polymeric discotic liquid crystals. J. Chem. Soc. Chem. Commun. 1994, 465–466 (1994)CrossRefGoogle Scholar
  41. 41.
    Boden, N., Borner, R.C., Bushby, R.J., Cammidge, A.N., Jesudason, M.V.: The synthesis of triphenylene-based discotic mesogens new and improved routes. Liq. Cryst. 33, 1443–1448 (2006)Google Scholar
  42. 42.
    Borner, R.C., Bushby, R.J., Cammidge, A.N., Boden, N., Jesudason, M.V.: Ferric chloride/methanol in the preparation of triphenylene-based discotic liquid crystals. Liq. Cryst. 33, 1439–1442 (2006)CrossRefGoogle Scholar
  43. 43.
    Kumar, S., Manickam, M.: Oxidative trimerization of o-dialkoxybenzenes to hexaalkoxytriphenylenes: molybdenum(v) chloride as a novel reagent. Chem. Commun. 1997, 1615–1666 (1997)CrossRefGoogle Scholar
  44. 44.
    Kumar, S., Varshney, S.K.: Vanadium oxytrichloride, a novel reagent for the oxidative trimerization of o-dialkoxybenzenes to hexaalkoxytriphenylenes. Liq. Cryst. 26, 1841–1843 (1999)CrossRefGoogle Scholar
  45. 45.
    Kumar, S., Varshney, S.K.: Synthesis of triphenylene and dibenzopyrene derivatives; vanadium oxytrichloride a novel reagent. Synthesis 2001, 305–311 (2001)CrossRefGoogle Scholar
  46. 46.
    Musgrave, O.C.: Oxidation of alkyl aryl ethers. Chem. Rev. 69, 499–531 (1969)CrossRefGoogle Scholar
  47. 47.
    Borner, R.C., Jackson, R.F.W.: A flexible and rational synthesis of substituted triphenylenes by palladium-catalysed cross-coupling of arylzinc halides. J. Chem. Soc. Chem. Commun. 1994, 845–846 (1994)CrossRefGoogle Scholar
  48. 48.
    Perez, D., Guitian, E.: Selected strategies for the synthesis of triphenylenes. Chem. Soc. Rev. 33, 274–283 (2004)CrossRefGoogle Scholar
  49. 49.
    Kumar, S., Naidu, J.J.: First rational synthesis of dibenzo[fg, op]naphthacene discotics. Liq. Cryst. 28, 1435–1437 (2001)CrossRefGoogle Scholar
  50. 50.
    Rose, B., Meier, H.: Liquid crystals in the series of 2,3,6,7-tetraalkoxytriphenylenes. Z. Naturforsch. 53B, 1031–1034 (1998)Google Scholar
  51. 51.
    Meier, H., Rose, B.: Dehydrotriphenylenes for the generation of bent molecular ribbons. J. Prakt. Chem. 340, 536–543 (1998)CrossRefGoogle Scholar
  52. 52.
    Brenna, E., Fuganti, C., Serra, S.: New route to o-terphenyls: application to the synthesis of 6,7,10,11-tetramethoxy-2-(methoxycarbonyl)triphenylene. J. Chem. Soc. Perkin Trans. 1 1998, 901–904 (1998)CrossRefGoogle Scholar
  53. 53.
    Cammidge, A.N., Gopee, H.: Structural factors controlling the transition between columnar-hexagonal and helical mesophase in triphenylene liquid crystals. J. Mater. Chem. 11, 2773–2783 (2001)CrossRefGoogle Scholar
  54. 54.
    Cammidge, A.N., Gopee, H.: Mixed alkyl-alkoxy triphenylenes. Mol. Cryst. Liq. Cryst. 397, 117–128 (2003)CrossRefGoogle Scholar
  55. 55.
    Cammidge, A.N.: The effect of size and shape variation in discotic liquid crystals based on triphenylene cores. Phil. Trans. Soc. A 364, 2697–2708 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    Cammidge, A.N., Chausson, C., Gopee, H., Li, J., Hughes, D.L.: Probing the structural factors influencing columnar mesophase formation and stability in triphenylene discotics. Chem. Commun. 2009, 7375–7377 (2009)CrossRefGoogle Scholar
  57. 57.
    Kumar, S., Naidu, J.J.: Novel hexasubstituted triphenylene discotic liquid crystals having three different types of peripheral substituent. Liq. Cryst. 29, 899–906 (2002)CrossRefGoogle Scholar
  58. 58.
    Breslow, R., Jaun, B., Kluttz, R.Q., Xia, C.Z.: Ground state Pi-electron triplet molecules of potential use in the synthesis of organic ferromagnets. Tetrahedron 38, 863–867 (1982)CrossRefGoogle Scholar
  59. 59.
    Rego, J.A., Kumar, S., Ringsdorf, H.: Synthesis and characterization of fluorescent, low-symmetry triphenylene discotic liquid crystals: tailoring of mesomorphic and optical properties. Chem. Mater. 8, 1402–1409 (1996)CrossRefGoogle Scholar
  60. 60.
    Boden, N., Bushby, R.J., Cammidge, A.N., Headdock, G.: Novel discotic liquid crystals created by electrophilic aromatic substitution. J. Mater. Chem. 5, 2275–2281 (1995)CrossRefGoogle Scholar
  61. 61.
    Boden, N., Bushby, R.J., Cammidge, A.N.: Preliminary communications functionalization of discotic liquid crystals by direct substitution into the discogen ring α-nitration of triphenylene-based discogens. Liq. Cryst. 18, 673–676 (1995)CrossRefGoogle Scholar
  62. 62.
    Boden, N., Bushby, R.J., Cammidge, A.N.: Functionalisation of triphenylene based discotic liquid crystals. Mol. Cryst. Liq. Cryst. 260, 307–313 (1995)CrossRefGoogle Scholar
  63. 63.
    Kumar, S., Manickam, M.: Nitration of triphenylene discotics: synthesis of mononitro-, dinitro- and trinitro-hexaalkoxy triphenylenes. Mol. Cryst. Liq. Cryst. 309, 291–295 (1998)CrossRefGoogle Scholar
  64. 64.
    Kumar, S., Manickam, M., Balagurusamy, V.S.K., Schonherr, H.: Electrophilic aromatic substitution in triphenylene discotics: synthesis of alkoxynitrotriphenylenes. Liq. Cryst. 26, 1455–1466 (1999)CrossRefGoogle Scholar
  65. 65.
    Bushby, R.J., Boden, N., Kilner, C.A., Lozman, O.R., Lu, Z., Liu, Q., Thornton-Pett, M.A.: Helical geometry and liquid crystalline properties of 2,3,6,7,10,11-hexaalkoxy-1-nitrotriphenylenes. J. Mater. Chem. 13, 470–474 (2003)CrossRefGoogle Scholar
  66. 66.
    Schonherr, H., Manickam, M., Kumar, S.: Surface morphology and molecular ordering in thin films of polymerizable triphenylene discotic liquid crystals on HOPG revealed by atomic force microscopy. Langmuir 18, 7082–7085 (2002)CrossRefGoogle Scholar
  67. 67.
    Boden, N., Bushby, R.J., Cammidge, A.N., Duckworth, S., Headdock, G.: α-halogenation of triphenylene-based discotic liquid crystals: towards a chiral nucleus. J. Mater. Chem. 7, 601–605 (1997)Google Scholar
  68. 68.
    Henderson, P., Ringsdorf, H., Schuhmacher, P.: Synthesis of functionalized triphenylenes and dibenzopyrenes precursor molecules for polymeric discotic liquid crystals. Liq. Cryst. 18, 191–195 (1995)CrossRefGoogle Scholar
  69. 69.
    Boden, N., Bushby, R.J., Cammidge, A.N., El-Mansoury, A., Martin, P.S., Lu, Z.: The creation of long-lasting glassy columnar discotic liquid crystals using ‘dimeric’ discogens. J. Mater. Chem. 9, 1391–1402 (1999)CrossRefGoogle Scholar
  70. 70.
    Rose, A., Lugmair, C.G., Swager, T.M.: Excited-state lifetime modulation in triphenylene-based conjugated polymers. J. Am. Chem. Soc. 123, 11298–11299 (2001)CrossRefGoogle Scholar
  71. 71.
    Bushby, R.J., Lu, Z.: Isopropoxy as a masked hydroxy group in aryl oxidative coupling reactions. Synthesis 2001, 763–767 (2001)CrossRefGoogle Scholar
  72. 72.
    Kumar, S., Lakshmi, B.: A convenient and economic method for the synthesis of monohydroxy-pentaalkoxy- and hexaalkoxytriphenylene discotics. Tetrahedron Lett. 46, 2603–2605 (2005)CrossRefGoogle Scholar
  73. 73.
    Kumar, S., Manickam, M.: Synthesis of functionalized triphenylenes by selective ether cleavages with B-bromocatecholboron. Synthesis 1998, 1119–1122 (1998)CrossRefGoogle Scholar
  74. 74.
    Pal, S.K., Bisoyi, H.K., Kumar, S.: Synthesis of monohydroxy-functionalized triphenylene discotics: green chemistry approach. Tetrahedron 63, 6874–6878 (2007)CrossRefGoogle Scholar
  75. 75.
    Ochse, A., Kettner, A., Kopitzke, J., Wendorff, J.H., Bassler, H.: Transient photoconduction in discotic liquid crystals. Phys. Chem. Chem. Phys. 1, 1757–1760 (1999)CrossRefGoogle Scholar
  76. 76.
    Bleyl, I., Erdelen, C., Etzbach, K.H., Paulus, W., Schmidt, H.W., Siemensmeyer, K., Haarer, D.: Photopolymerization and transport properties of liquid crystalline triphenylenes. Mol. Cryst. Liq. Cryst. 299, 149–155 (1997)CrossRefGoogle Scholar
  77. 77.
    Zamir, S., Poupko, R., Luz, Z., Hueser, B., Boeffel, C., Zimmermann, H.: Molecular ordering and dynamics in the columnar mesophase of a new dimeric discotic liquid crystal as studied by X-ray diffraction and deuterium NMR. J. Am. Chem. Soc. 116, 1973–1980 (1994)CrossRefGoogle Scholar
  78. 78.
    Adam, D., Schuhmacher, P., Simmerer, J., Haussling, L., Paulus, W., Siemensmeyer, K., Etzbach, K.H., Ringsdorf, H., Haarer, D.: Photoconductivity in the columnar phases of a glassy discotic twin. Adv. Mater. 7, 276–280 (1995)CrossRefGoogle Scholar
  79. 79.
    Boden, N., Bushby, R.J., Cammidge, A.N., Martin, P.S.: Glass-forming discotic liquid-crystalline oligomers. J. Mater. Chem. 5, 1857–1860 (1995)CrossRefGoogle Scholar
  80. 80.
    Kumar, S., Schuhmacher, P., Henderson, P., Rego, J., Ringsdorf, H.: Synthesis of new functionalized discotic liquid crystals for photoconducting applications. Mol. Cryst. Liq. Cryst. 288, 211–222 (1996)CrossRefGoogle Scholar
  81. 81.
    Bacher, A., Bleyl, I., Erdelen, C.H., Haarer, D., Paulus, W., Schmidt, H.W.: Low molecular weight and polymeric triphenylenes as hole transport materials in organic two-layer LEDs. Adv. Mater. 9, 1031–1035 (1997)CrossRefGoogle Scholar
  82. 82.
    van de Craats, A.M., Siebbeles, L.D.A., Bleyl, I., Haarer, D., Berlin, Y.A., Zharikov, A.A., Warman, J.M.: Mechanism of charge transport along columnar stacks of a triphenylene Dimer. J. Phys. Chem. B. 102, 9625–9634 (1998)CrossRefGoogle Scholar
  83. 83.
    Kumar, S., Manickam, M., Schonherr, H.: First examples of functionalized triphenylene discotic dimers: molecular engineering of advanced materials. Liq. Cryst. 26, 1567–1571 (1999)CrossRefGoogle Scholar
  84. 84.
    Manickam, M., Smith, A., Belloni, M., Shelley, E.J., Ashton, P.R., Spencer, N., Preece, J.A.: Introduction of bis-discotic and bis-calamitic mesogenic addends to C 60. Liq. Cryst. 29, 497–504 (2002)CrossRefGoogle Scholar
  85. 85.
    Kranig, W., Huser, B., Spiess, H.W., Kreuder, W., Ringsdorf, H., Zimmermann, H.: Phase behavior of discotic liquid crystalline polymers and related model compounds. Adv. Mater. 2, 36–40 (1990)CrossRefGoogle Scholar
  86. 86.
    Paraschiv, I., Giesbers, M., van Lagen, B., Grozema, F.C., Abellon, R.D., Siebbeles, L.D.A., Marcelis, A.T.M., Zuilhof, H., Sudholter, E.J.R.: H-bond-stabilized triphenylene-based columnar discotic liquid crystals. Chem. Mater. 18, 968–974 (2006)CrossRefGoogle Scholar
  87. 87.
    Paraschiv, I., de Lange, K., Giesbers, M., van Lagen, B., Grozema, F.C., Abellon, R.D., Siebbeles, L.D.A., Sudholter, E.J.R., Zuilhof, H., Marcelis, A.T.M.: Hydrogen-bond stabilized columnar discotic benzenetrisamides with pendant triphenylene groups. J. Mater. Chem. 18, 5475–5481 (2008)CrossRefGoogle Scholar
  88. 88.
    Kohne, B., Praefcke, K.: Eine neue und einfache synthese des dipyrazino[2,3-f:2′,3′-h]-chinoxalin-ringsystems. Leibigs. Ann. Chem. 1985, 522–528 (1985)CrossRefGoogle Scholar
  89. 89.
    Rogers, D.Z.: Improved synthesis of 1,4,5,8,9,12-hexaazatriphenylene. J. Org. Chem. 51, 3904–3905 (1986)CrossRefGoogle Scholar
  90. 90.
    Arikainen, E.O., Boden, N., Bushby, R.J., Lozman, O.R., Vinter, J.G., Wood, A.: Complimentary polytopic interactions. Angew. Chem. Int. Ed. 39, 2333–2336 (2000)CrossRefGoogle Scholar
  91. 91.
    Lozman, O.R., Bushby, R.J., Vinter, J.G.: Complementary polytopic interactions (CPI) as revealed by molecular modelling using the XED force field. J. Chem. Soc. Perkin Trans. 2 2, 1446–1452 (2001)Google Scholar
  92. 92.
    Boden, N., Bushby, R.J., Headdock, G., Lozman, O.R., Wood, A.: Syntheses of new ‘large core’ discogens based on the triphenylene, azatriphenylene and hexabenztrinaphthylene nuclei. Liq. Cryst. 28, 139–144 (2001)CrossRefGoogle Scholar
  93. 93.
    Kanakarajan, K., Czarnik, A.W.: Syntheses of some hexacarboxylic acid derivatives of hexaazatriphenylene. J. Heterocycl. Chem. 25, 1869–1872 (1988)CrossRefGoogle Scholar
  94. 94.
    Gearba, R.I., Lehmann, M., Levin, J., Ivanov, D.A., Koch, M.H.J., Barbera, J., Debije, M.G., Piris, J., Geerts, Y.H.: Tailoring discotic mesophases: columnar order enforced with hydrogen bonds. Adv. Mater. 15, 1614–1618 (2003)CrossRefGoogle Scholar
  95. 95.
    Pu, L.: Fluorescence of organic molecules in chiral recognition. Chem. Rev. 104, 1687–1716 (2004)CrossRefGoogle Scholar
  96. 96.
    Martinez-Manez, R., Sancenon, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003)CrossRefGoogle Scholar
  97. 97.
    Daub, J., Engl, R., Kurzawa, J., Miller, S.E., Schneider, S., Stockmann, A., Wasielewski, M.R.: Competition between conformational relaxation and Intramolecular electron transfer within phenothiazine−pyrene dyads. J. Phys. Chem. A 105, 5655–5665 (2001)CrossRefGoogle Scholar
  98. 98.
    Baker, L.A., Crooks, R.M.: Photophysical properties of pyrene-functionalized poly(propylene imine) dendrimers. Macromolecules 33, 9034–9039 (2000)ADSCrossRefGoogle Scholar
  99. 99.
    Modrakowski, C., Flores, S.C., Beinhoff, M., Schluter, A.D.: Synthesis of pyrene containing building blocks for dendrimer synthesis. Synthesis 2001, 2143–2155 (2001)CrossRefGoogle Scholar
  100. 100.
    Chaiken, R.F., Kearns, D.R.: Intrinsic photoconduction in pyrene crystals. J. Chem. Phys. 49, 2846–2850 (1968)ADSCrossRefGoogle Scholar
  101. 101.
    Holroyd, R.A., Preses, J.M., Boettcher, E.H., Schmidt, W.F.: Photoconductivity induced by single-photon excitation of aromatic molecules in liquid hydrocarbons. J. Phys. Chem. 88, 744–749 (1984)CrossRefGoogle Scholar
  102. 102.
    Jones II, G., Vullev, V.I.: Photoinduced electron transfer between non-native donor−acceptor moieties incorporated in synthetic polypeptide aggregates. Org. Lett. 4, 4001–4004 (2002)CrossRefGoogle Scholar
  103. 103.
    Yamana, K., Fukunaga, Y., Ohtani, Y., Sato, S., Nakamura, M., Kim, W.J., Akaike, T., Maruyama, A.: DNA mismatch detection using a pyrene–excimer-forming probe. Chem. Commun. 2005, 2509–2511 (2005)CrossRefGoogle Scholar
  104. 104.
    Hwang, G.T., Seo, Y.J., Kim, B.H.: A highly discriminating quencher-free molecular beacon for probing DNA. J. Am. Chem. Soc. 126, 6528–6529 (2004)CrossRefGoogle Scholar
  105. 105.
    Fujimoto, K., Shimizu, H., Inouye, M.: Unambiguous detection of target DNAs by excimer−monomer switching molecular beacons. J. Org. Chem. 69, 3271–3275 (2004)CrossRefGoogle Scholar
  106. 106.
    Bock, H., Helfrich, W.: Field dependent switching angle of a columnar pyrene. Liq. Cryst. 18, 707–713 (1995)CrossRefGoogle Scholar
  107. 107.
    Hirose, T., Kawakami, O., Yasutake, M.: Induction and control of columnar mesophase by charge transfer interaction and side chain structures of tetrasubstituted pyrenes. Mol. Cryst. Liq. Cryst. 451, 65–74 (2006)CrossRefGoogle Scholar
  108. 108.
    Hassheider, T., Benning, S.A., Kitzerow, H.S., Achard, M.F., Bock, H.: Color-tuned electroluminescence from columnar liquid crystalline alkyl arenecarboxylates. Angew. Chem. Int. Ed. 40, 2060–2063 (2001)CrossRefGoogle Scholar
  109. 109.
    Keuker-Baumann, S., Bock, H., Sala, F.D., Benning, S.A., Hassheider, T., Frauenheim, T., Kitzerow, H.S.: Absorption and luminescence spectra of electroluminescent liquid crystals with triphenylene, pyrene and perylene units. Liq. Cryst. 28, 1105–1113 (2001)CrossRefGoogle Scholar
  110. 110.
    Dantras, E., Dandurand, J., Lacabanne, C., Laffont, L., Tarascon, J.M., Archambeau, S., Seguy, I., Destruel, P., Bock, H., Fouet, S.: HRTEM, TSC and broadband dielectric spectroscopy of a discotic liquid crystal. Phys. Chem. Chem. Phys. 6, 4167–4173 (2004)CrossRefGoogle Scholar
  111. 111.
    de Halleux, V., Calbert, J.P., Brocorens, P., Cornil, J., Declercq, J.P., Bredas, J.L., Geerts, Y.: 1,3,6,8-tetraphenylpyrene derivatives: towards fluorescent liquid-crystalline columns? Adv. Fun. Mater. 14, 649–659 (2004)CrossRefGoogle Scholar
  112. 112.
    Sienkowska, M.J., Monobe, H., Kaszynski, P., Shimizu, Y.: Photoconductivity of liquid crystalline derivatives of pyrene and carbazole. J. Mater. Chem. 17, 1392–1398 (2007)CrossRefGoogle Scholar
  113. 113.
    Sienkowska, M.J., Farrar, J.M., Zhang, F., Kusuma, S., Heiney, P.A., Kaszynski, P.: Liquid crystalline behavior of tetraaryl derivatives of benzo[c]cinnoline, tetraazapyrene, phenanthrene, and pyrene: the effect of heteroatom and substitution pattern on phase stability. J. Mater. Chem. 17, 1399–1411 (2007)CrossRefGoogle Scholar
  114. 114.
    Hayer, A., de Halleux, V., Kohler, A., El-Garoughy, A., Meijer, E.W., Barbera, J., Tant, J., Levin, J., Lehmann, M., Gierschner, J., Cornil, J., Geerts, Y.H.: Highly fluorescent crystalline and liquid crystalline columnar phases of pyrene-based structures. J. Phys. Chem. B 110, 7653–7659 (2006)CrossRefGoogle Scholar
  115. 115.
    Tang, C.W.: Two‐layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986)ADSCrossRefGoogle Scholar
  116. 116.
    Shi, M.M., Chen, H.Z., Sun, J.Z., Ye, J., Wang, M.: Excellent ambipolar photoconductivity of PVK film doped with fluoroperylene diimide. Chem. Phys. Lett. 381, 666–671 (2003)ADSCrossRefGoogle Scholar
  117. 117.
    Horowitz, G., Kouki, F., Spearman, P., Fichou, D., Nogues, C., Pan, X., Garnier, F.: Evidence for n-type conduction in a perylene tetracarboxylic diimide derivative. Adv. Mater. 8, 242–245 (1996)CrossRefGoogle Scholar
  118. 118.
    Malenfant, P.R.L., Dimitrakopoulos, C.D., Gelorme, J.D., Kosbar, L.L., Graham, T.O., Curioni, A., Andreoni, W.: N-type organic thin-film transistor with high field-effect mobility based on a N, N′-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl. Phys. Lett. 80, 2517–2519 (2002)ADSCrossRefGoogle Scholar
  119. 119.
    Haas, U., Thalacker, C., Adams, J., Fuhrmann, J., Riethmuller, S., Beginn, U., Ziener, U., Moller, M., Dobrawa, R., Wurthner, F.: Fabrication and fluorescence properties of perylene bisimide dye aggregates bound to gold surfaces and nanopatterns. J. Mater. Chem. 13, 767–772 (2003)CrossRefGoogle Scholar
  120. 120.
    Ranke, P., Bleyl, I., Simmerer, J., Haarer, D., Bacher, A., Schmidt, H.W.: Electroluminescence and electron transport in a perylene dye. Appl. Phys. Lett. 71, 1332–1334 (1997)ADSCrossRefGoogle Scholar
  121. 121.
    Mitchell, R.H., Chaudhary, M., Williams, R.V., Fyles, R., Gibson, J., Smith, M.J.A., Fry, A.J.: Straining strained molecules. 111.′ The spectral and mutagenic properties and an alternate synthesis of diaceperylene and dicyclopenta[l,2,3-cd:11,2′,3′-lmlperylene. Can. J. Chem. 70, 1015–1021 (1992)Google Scholar
  122. 122.
    Stolarski, R., Fiksinski, K.J.: Fluorescent perylene dyes for liquid crystal displays. Dye. Pigment. 24, 295–303 (1994)CrossRefGoogle Scholar
  123. 123.
    Benning, S., Kitzerow, H.S., Bock, H., Achard, M.F.: Fluorescent columnar liquid crystalline 3,4,9,10-tetra-(n-alkoxycarbonyl)-perylenes. Liq. Cryst. 27, 901–906 (2000)CrossRefGoogle Scholar
  124. 124.
    Archambeau, S., Seguy, I., Jolinat, P., Farenc, J., Destruel, P., Nguyen, T.P., Bock, H., Grelet, E.: Stabilization of discotic liquid organic thin films by ITO surface treatment. Appl. Surf. Sci. 253, 2078–2086 (2006)ADSCrossRefGoogle Scholar
  125. 125.
    Alibert-Fouet, S., Seguy, I., Bobo, J.F., Destruel, P., Bock, H.: Liquid-crystalline and electron-deficient coronene oligocarboxylic esters and imides by twofold benzogenic diels–alder reactions on perylenes. Chem. Eur. J. 13, 1746–1753 (2007)CrossRefGoogle Scholar
  126. 126.
    Takahashi, M., Suzuki, Y., Ichihashi, Y., Yamashita, M., Kawai, H.: 1,3,8,10-Tetrahydro-2,9-diazadibenzo[cd, lm]perylenes: synthesis of reduced perylene bisimide analogues. Tetrahedron Lett. 48, 357–359 (2007)CrossRefGoogle Scholar
  127. 127.
    Mo, X., Chen, H.Z., Shi, M.M., Wang, M.: Syntheses and aggregate behaviors of liquid crystalline alkoxycarbonyl substituted perylenes. Chem. Phys. Lett. 417, 457–460 (2006)ADSCrossRefGoogle Scholar
  128. 128.
    Mo, X., Shi, M.M., Huang, J.C., Wang, M., Chen, H.Z.: Synthesis, aggregation and photoconductive properties of alkoxycarbonyl substituted perylenes. Dye. Pigment. 76, 236–242 (2008)CrossRefGoogle Scholar
  129. 129.
    Wurthner, F.: Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun. 2004, 1564–1579 (2004)CrossRefGoogle Scholar
  130. 130.
    Struijk, C.W., Sieval, A.B., Dakhorst, J.E.J., van Dijk, M., Kimkes, P., Koehorst, R.B.M., Donker, H., Schaafsma, T.J., Picken, S.J., van de Craats, A.M., Warman, J.M., Zuilhof, H., Sudholter, E.J.R.: Liquid crystalline perylene diimides: architecture and charge carrier mobilities. J. Am. Chem. Soc. 122, 11057–11066 (2000)CrossRefGoogle Scholar
  131. 131.
    Langhals, H., Karolin, J., Johansson, L.B.A.: Spectroscopic properties of new and convenient standards for measuring fluorescence quantum yields. J. Chem. Soc. Faraday Trans. 94, 2919–2922 (1998)CrossRefGoogle Scholar
  132. 132.
    Mende, L.S., Fechtenkotter, A., Mullen, K., Moons, E., Friend, R.H., MacKenzie, J.D.: Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001)ADSCrossRefGoogle Scholar
  133. 133.
    Breeze, A.J., Salomon, A., Ginley, D.S., Gregg, B.A., Tillmann, H., Horhold, H.H.: Polymer—perylene diimide heterojunction solar cells. Appl. Phys. Lett. 81, 3085–3087 (2002)ADSCrossRefGoogle Scholar
  134. 134.
    Kraft, A., Grimsdale, A.C., Holmes, A.B.: Electroluminescent conjugated polymers—seeing polymers in a new light. Angew. Chem. Int. Ed. 37, 402–428 (1998)CrossRefGoogle Scholar
  135. 135.
    Pan, J., Zhu, W., Li, S., Zeng, W., Cao, Y., Tian, H.: Dendron-functionalized perylene diimides with carrier-transporting ability for red luminescent materials. Polymer 46, 7658–7669 (2005)CrossRefGoogle Scholar
  136. 136.
    Karapire, C., Zafer, C., Icli, S.: Studies on photophysical and electrochemical properties of synthesized hydroxy perylenediimides in nanostructured titania thin films. Syn. Met. 145, 51–60 (2004)CrossRefGoogle Scholar
  137. 137.
    Wurthner, F., Schmidt, R.: Electronic and crystal engineering of acenes for solution-processible self-assembling organic semiconductors. ChemPhysChem 7, 793–797 (2006)CrossRefGoogle Scholar
  138. 138.
    Dimitrakopoulos, C.D., Malenfant, P.R.L.: Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002)CrossRefGoogle Scholar
  139. 139.
    Jones, B.A., Ahrens, M.J., Yoon, M.H., Facchetti, A., Marks, T.J., Wasielewski, M.R.: High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew. Chem. Int. Ed. 43, 6363–6366 (2004)CrossRefGoogle Scholar
  140. 140.
    Cormier, R.A., Gregg, B.A.: Self-organization in thin films of liquid crystalline perylene diimides. J. Phys. Chem. B 101, 11004–11006 (1997)CrossRefGoogle Scholar
  141. 141.
    Cormier, R.A., Gregg, B.A.: Synthesis and characterization of liquid crystalline perylene diimides. Chem. Mater. 10, 1309–1319 (1998)CrossRefGoogle Scholar
  142. 142.
    Wurthner, F., Thalacker, C., Diele, S., Tschierske, C.: Fluorescent J-type aggregates and Thermotropic columnar mesophases of perylene bisimide dyes. Chem. Eur. J. 7, 2245–2253 (2001)CrossRefGoogle Scholar
  143. 143.
    van Herrikhuyzen, J., Syamakumari, A., Schenning, A.P.H.J., Meijer, E.W.: Synthesis of n-type perylene bisimide derivatives and their orthogonal self-assembly with p-type oligo(p-phenylene vinylene)s. J. Am. Chem. Soc. 126, 10021–10027 (2004)CrossRefGoogle Scholar
  144. 144.
    Debije, M.G., Chen, Z., Piris, J., Neder, R.B., Watson, M.M., Mullen, K., Wurthner, F.: Dramatic increase in charge carrier lifetime in a liquid crystalline perylene bisimide derivative upon bay substitution with chlorine. J. Mater. Chem. 15, 1270–1276 (2005)Google Scholar
  145. 145.
    An, Z., Yu, J., Jones, S.C., Barlow, S., Yoo, S., Domercq, B., Prins, P., Siebbeles, L.D.A., Kippelen, B., Marder, S.R.: High electron mobility in room-temperature discotic liquid-crystalline perylene diimides. Adv. Mater. 17, 2580–2583 (2005)CrossRefGoogle Scholar
  146. 146.
    Zucchi, G., Donnio, B., Geerts, Y.H.: Remarkable miscibility between disk- and lathlike mesogens. Chem. Mater. 17, 4273–4277 (2005)CrossRefGoogle Scholar
  147. 147.
    Nolde, F., Pisula, W., Muller, S., Kohl, C., Mullen, K.: Synthesis and self-organization of core-extended perylene tetracarboxdiimides with branched alkyl substituents. Chem. Mater. 18, 3715–3725 (2006)CrossRefGoogle Scholar
  148. 148.
    Li, X.Q., Stepanenko, V., Chen, Z., Prins, P., Siebbeles, L.D.A., Würthner, F.: Functional organogels from highly efficient organogelator based on perylene bisimide semiconductor. Chem. Commun. 2006, 3871–3873 (2006)CrossRefGoogle Scholar
  149. 149.
    Wurthner, F., Chen, Z., Dehm, V., Stepanenko, V.: One-dimensional luminescent nanoaggregates of perylene bisimides. Chem. Commun. 2006, 1188–1190 (2006)CrossRefGoogle Scholar
  150. 150.
    Percec, V., Aqad, E., Peterca, M., Imam, M.R., Glodde, M., Bera, T.K., Miura, Y., Balagurusamy, V.S.K., Ewbank, P.C., Wurthner, F., Heiney, P.A.: Self-assembly of semifluorinated minidendrons attached to electron-acceptor groups into pyramidal columns. Chem. Eur. J. 13, 3330–3345 (2007)CrossRefGoogle Scholar
  151. 151.
    Chen, Z., Baumeister, U., Tschierske, C., Wurthner, F.: Effect of core twisting on self-assembly and optical properties of perylene bisimide dyes in solution and columnar liquid crystalline phases. Chem. Eur. J. 13, 450–465 (2007)CrossRefGoogle Scholar
  152. 152.
    Chen, Z., Stepanenko, V., Dehm, V., Prins, P., Siebbeles, L.D.A., Seibt, J., Marquetand, P., Engel, V., Wurthner, F.: Photoluminescence and conductivity of self-assembled π–π stacks of perylene bisimide dye. Chem. Eur. J. 13, 436–449 (2007)CrossRefGoogle Scholar
  153. 153.
    Dehm, V., Chen, Z., Baumeister, U., Prins, P., Siebbeles, L.D.A., Wurthner, F.: Helical growth of semiconducting columnar dye assemblies based on chiral perylene bisimides. Org. Lett. 9, 1085–1088 (2007)CrossRefGoogle Scholar
  154. 154.
    Seybold, G., Wagenblast, G.: New perylene and violanthrone dyestuffs for fluorescent collectors. Dye. Pigment. 11, 303–317 (1989)CrossRefGoogle Scholar
  155. 155.
    Göltner, C., Pressner, D., Müllen, K., Spiess, H.W.: Liquid-crystalline perylene derivatives as “discotic pigments”. Angew. Chem. Int. Ed. 32, 1660–1662 (1993)CrossRefGoogle Scholar
  156. 156.
    Pressner, D., Göltner, C., Spiess, H.W., Müllen, K.: Liquid-crystalline perylene derivatives – orientation and phase variation of discotic dyes. Ber. Buns. Phys. Chem. 97, 1362–1365 (1993)CrossRefGoogle Scholar
  157. 157.
    Müller, G.R.J., Meiners, C., Enkelmann, V., Geerts, Y., Müllen, K.: Liquid crystalline perylene-3,4-dicarboximide derivatives with high thermal and photochemical stability. J. Mater. Chem. 8, 61–64 (1998)CrossRefGoogle Scholar
  158. 158.
    Avlasevich, Y., Li, C., Müllen, K.: Synthesis and applications of core-enlarged perylene dyes. J. Mater. Chem. 20, 3814–3826 (2010)CrossRefGoogle Scholar
  159. 159.
    Cooper, F.C., Partridge, M.W.: Cyclic amidines. Part I. Derivatives of phenhomazine (dibenzo[b, f]-1: 5-diazocine). J. Chem. Soc. 1954, 3429–3435 (1954)Google Scholar
  160. 160.
    Ponomarev, I.I., Sinichkin, M.K.: Polytricycloquinazolines – a new class of thermostable and heat-resistant cross-linked polymers. Poly. Sci. Ser. A 38, 951–953 (1996)Google Scholar
  161. 161.
    Yoneda, F., Mera, K.: A novel one-step synthesis of tricycloquinazolines. Chem. Pharm. Bull. 21, 1610–1611 (1973)CrossRefGoogle Scholar
  162. 162.
    Keinan, E., Kumar, S., Singh, S.P., Ghirlando, R., Wachtel, E.J.: New discotic liquid crystals having a tricycloquinazoline core. Liq. Cryst. 11, 157–173 (1992)CrossRefGoogle Scholar
  163. 163.
    Boden, N., Borner, R.C., Bushby, R.J., Clements, J.: First observation of a n-doped quasi-one-dimensional electronically-conducting discotic liquid crystal. J. Am. Chem. Soc. 116, 10807–10808 (1994)CrossRefGoogle Scholar
  164. 164.
    Schonherr, H., Kremer, F.J.B., Kumar, S., Rego, J.A., Wolf, H., Ringsdorf, H., Jaschke, M., Butt, H.J., Bamberg, E.: Self-assembled monolayers of diacotic liquid crystalline thioethers, discoid disulfides, and Thiols on gold: molecular engineering of ordered surfaces. J. Am. Chem. Soc. 118, 13051–13057 (1996)CrossRefGoogle Scholar
  165. 165.
    Uznanski, P., Kryszewski, M.: Photophysical properties of discotic hexa(heptylthio) tricycloquinazoline in crystalline and liquid crystalline phases. Proc. SPIE Int. Soc. Optic. Eng. 3318, 398–401 (1997)ADSGoogle Scholar
  166. 166.
    Hiesgen, R., Schonherr, H., Kumar, S., Ringsdorf, H., Meissner, D.: Scanning tunneling microscopy investigation of tricycloquinazoline liquid crystals on gold. Thin Solid Films 358, 241–249 (2000)ADSCrossRefGoogle Scholar
  167. 167.
    Kumar, S., Wachtel, E.J., Keinan, E.: Hexaalkoxytricycloquinazoline: new discotic liquid crystals. J. Org. Chem. 58, 3821–3827 (1993)CrossRefGoogle Scholar
  168. 168.
    Kumar, S.: A simple, rapid, one-step synthesis of aryl poly ethers from aryl acetates: improved synthesis of Hexaalkoxytricycloquinazoline derivatives. Mol. Cryst. Liq. Cryst. 289, 247–253 (1996)CrossRefGoogle Scholar
  169. 169.
    Kumar, S., Rao, D.S.S., Prasad, S.K.: New branched chain tricycloquinazoline derivatives: a room temperature electron deficient discotic system. J. Mater. Chem. 9, 2751–2754 (1999)CrossRefGoogle Scholar
  170. 170.
    Boden, N., Bushby, R.J., Donovan, K., Liu, Q., Lu, Z., Kreouzis, T., Wood, A.: 2,3,7,8,12,13-Hexakis[2-(2-methoxyethoxy)ethoxy]tricycloquinazoline: a discogen which allows enhanced levels of n-doping. Liq. Cryst. 28, 1739–1748 (2001)CrossRefGoogle Scholar
  171. 171.
    Bushby, R.J., Lozman, O.R., Mason, L.A., Taylor, N., Kumar, S.: Cyclic voltammetry studies of discotic liquid crystals. Mol. Cryst. Liq. Cryst. 410, 171–181 (2004)CrossRefGoogle Scholar
  172. 172.
    Battersby, A.R., Fookes, C.J.R., Matcham, G.W.J., McDonald, E.: Biosynthesis of the pigments of life: formation of the macrocycle. Nature 285, 17–21 (1980)ADSCrossRefGoogle Scholar
  173. 173.
    Falk, J.E.: Porphyrins and Metalloporphyrins. Elsevier, Amsterdam (1964)Google Scholar
  174. 174.
    Wrobel, D., Dudkowiak, A.: Porphyrins and phthalocyanines – functional molecular materials for optoelectronics and medicine. Mol. Cryst. Liq. Cryst. 448, 15–38 (2006)CrossRefGoogle Scholar
  175. 175.
    Drain, C.M., Varotto, A., Radivojevic, I.: Self-organized Porphyrinic materials. Chem. Rev. 109, 1630–1658 (2009)Google Scholar
  176. 176.
    Macdonald, I.J., Dougherty, T.J.: Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanins. 5, 105–129 (2001)CrossRefGoogle Scholar
  177. 177.
    Donnio, B.: Lyotropic metallomesogens. Curr. Opin. Coll. Interface Sci. 7, 371–394 (2002)CrossRefGoogle Scholar
  178. 178.
    Gregg, B.A., Fox, M.A., Bard, A.J.: 2,3,7,8,12,13,17,18-Octakis(.beta.-hydroxyethyl) porphyrin (octaethanolporphyrin) and its liquid crystalline derivatives: synthesis and characterization. J. Am. Chem. Soc. 111, 3024–3029 (1989)Google Scholar
  179. 179.
    Gregg, B.A., Fox, M.A., Bard, A.J.: Porphyrin octaesters: new discotic liquid crystals. J. Chem. Soc. Chem. Commun. 1987, 1134–1135 (1987)CrossRefGoogle Scholar
  180. 180.
    Dorphin, D. (ed.): The Porphyrins, vol. l, pp. 1–7. Academic, New York (1978)Google Scholar
  181. 181.
    Rothemund, P., Menotti, A.R.: Porphyrin studies. IV. 1 the synthesis of α,β,γ,δ-tetraphenylporphine. J. Am. Chem. Soc. 63, 267–270 (1941)Google Scholar
  182. 182.
    Adler, A.D., Longo, F.R., Finarelli, J.D., Goldmacher, J., Assour, J., Korsakoff, L.: A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem. 32, 476 (1967)CrossRefGoogle Scholar
  183. 183.
    Lindsey, J.S., Schreiman, I.C., Hsu, H.C., Kearney, P.C., Marguerettaz, A.M.: Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions. J. Org. Chem. 52, 827–836 (1987)CrossRefGoogle Scholar
  184. 184.
    Arsenault, G.P., Bullock, E., Macdonald, S.F.: Pyrromethanes and porphyrins therefrom. J. Am. Chem. Soc. 82, 4384–8389 (1960)CrossRefGoogle Scholar
  185. 185.
    Serrano, J.L. (ed.): Metallomesogens: Synthesis, Properties and Applications. VCH, Weinheim (1996)Google Scholar
  186. 186.
    Sakurai, T., Shi, K., Sato, H., Tashiro, K., Osuka, A., Saeki, A., Seki, S., Tagawa, S., Sasaki, S., Masunaga, H., Osaka, K., Takata, M., Aida, T.: Prominent electron transport property observed for triply fused metalloporphyrin dimer: directed columnar liquid crystalline assembly by amphiphilic molecular design. J. Am. Chem. Soc. 130, 13812–13813 (2008)CrossRefGoogle Scholar
  187. 187.
    Piechocki, C., Simon, J., Skoulios, A., Guillon, D., Weber, P.: Annelides. 7. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors. J. Am. Chem. Soc. 104, 5245–5247 (1982)Google Scholar
  188. 188.
    Clar, E., Ironside, C.T.: Hexabenzocoronene. Proc. Chem. Soc. 1958, 150–151 (1958)Google Scholar
  189. 189.
    Halleux, A., Martin, R.H., King, G.S.D.: Synthèses dans la série des dérivés polycycliques aromatiques hautement condensés. L′hexabenzo-1,12; 2,3; 4,5; 6,7; 8,9; 10,11-Coronène, le tétrabenzo-4,5; 6,7; 11,12; 13,14-péropyrène et le tétrabenzo-1,2; 3,4; 8,9; 10,11-bisanthène. Helv. Chim. Acta. 129, 1177–1183 (1958)Google Scholar
  190. 190.
    Hendel, W., Khan, Z.H., Schmidt, W.: Hexa-peri-benzocoronene, a candidate for the origin of the diffuse interstellar visible absorption bands. Tetrahedron 42, 1127–1134 (1986)CrossRefGoogle Scholar
  191. 191.
    Simpson, C.D., Wu, J., Watson, M.D., Mullen, K.: From graphite molecules to columnar superstructures – an exercise in nanoscience. J. Mater. Chem. 14, 494–504 (2004)CrossRefGoogle Scholar
  192. 192.
    Berresheim, A.J., Muller, M., Mullen, K.: Polyphenylene nanostructures. Chem. Rev. 99, 1747–1785 (1999)Google Scholar
  193. 193.
    Watson, M.D., Fechtenkotter, A., Mullen, K.: Big is beautiful−“Aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 101, 1267–1300 (2001)CrossRefGoogle Scholar
  194. 194.
    Grimsdale, A.C., Wu, J., Mullen, K.: New carbon-rich materials for electronics, lithium battery, and hydrogen storage applications. Chem. Commun. 2005, 2197–2204 (2005)CrossRefGoogle Scholar
  195. 195.
    Mullen, K., Rabe, J.P.: Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. Acc. Chem. Res. 41, 511–520 (2008)CrossRefGoogle Scholar
  196. 196.
    Herwig, P., Kayser, C.W., Mullen, K., Spiess, H.W.: Columnar mesophases of alkylated hexa-peri-hexabenzocoronenes with remarkably large phase widths. Adv. Mater. 8, 510–513 (1996)CrossRefGoogle Scholar
  197. 197.
    Fechtenkotter, A., Saalwachter, K., Harbison, M.A., Mullen, K., Spiess, H.W.: Highly ordered columnar structures from hexa-peri-hexabenzocoronenes—synthesis, X-ray diffraction, and solid-state heteronuclear multiple-quantum NMR investigations. Angew. Chem. Int. Ed. 38, 3039–3042 (1999)CrossRefGoogle Scholar
  198. 198.
    Weiss, K., Beernink, G., Dotz, F., Birkner, A., Mullen, K., Woll, C.H.: Template-mediated synthesis of polycyclic aromatic hydrocarbons: cyclodehydrogenation and planarization of a hexaphenylbenzene derivative at a copper surface. Angew. Chem. Int. Ed. 38, 3748–3752 (1999)CrossRefGoogle Scholar
  199. 199.
    Wadumethrige, S.H., Rathore, R.: A facile synthesis of elusive alkoxy-substituted hexa-peri-hexabenzocoronene. Org. Lett. 10, 5139–5142 (2008)CrossRefGoogle Scholar
  200. 200.
    Fechtenkotter, A., Tchebotareva, N., Watson, M., Mullen, K.: Discotic liquid crystalline hexabenzocoronenes carrying chiral and racemic branched alkyl chains: supramolecular engineering and improved synthetic methods. Tetrahedron 57, 3769–3783 (2001)CrossRefGoogle Scholar
  201. 201.
    Grimsdale, A.C., Bauer, R., Weil, T., Tchebotareva, N., Wu, J., Watson, M., Mullen, K.: The chemical desymmetrisation of two- and three-dimensional polyphenylenes as a key step to functional nanoparticles. Synthesis 2002, 1229–1238 (2002)CrossRefGoogle Scholar
  202. 202.
    Watson, M.D., Debije, M.G., Warman, J.M., Mullen, K.: Peralkylated coronenes via regiospecific hydrogenation of hexa-peri-hexabenzocoronenes. J. Am. Chem. Soc. 126, 766–771 (2004)CrossRefGoogle Scholar
  203. 203.
    Pisula, W., Tomovic, Z., Simpson, C., Kastler, M., Pakula, T., Mullen, K.: Relationship between core size, side chain length, and the supramolecular organization of polycyclic aromatic hydrocarbons. Chem. Mater. 17, 4296–4303 (2005)CrossRefGoogle Scholar
  204. 204.
    Feng, X., Pisula, W., Mullen, K.: From helical to staggered stacking of zigzag nanographenes. J. Am. Chem. Soc. 129, 14116–14117 (2007)CrossRefGoogle Scholar
  205. 205.
    Kastler, M., Schmidt, J., Pisula, W., Sebastiani, D., Mullen, K.: From armchair to zigzag peripheries in nanographenes. J. Am. Chem. Soc. 128, 9526–9534 (2006)CrossRefGoogle Scholar
  206. 206.
    Tomovic, Z., Watson, M.D., Mullen, K.: Superphenalene-based columnar liquid crystals. Angew. Chem. Int. Ed. 43, 755–758 (2004)CrossRefGoogle Scholar
  207. 207.
    Feng, X., Liu, M., Pisula, W., Takase, M., Li, J., Mullen, K.: Supramolecular organization and photovoltaics of triangle-shaped discotic graphenes with swallow-tailed alkyl substituents. Adv. Mater. 20, 2684–2689 (2008)CrossRefGoogle Scholar
  208. 208.
    Wasserfallen, D., Kastler, M., Pisula, W., Hofer, W.A., Fogel, Y., Wang, Z., Mullen, K.: Suppressing aggregation in a large polycyclic aromatic hydrocarbon. J. Am. Chem. Soc. 128, 1334–1339 (2006)CrossRefGoogle Scholar
  209. 209.
    Iyer, V.S., Yoshimura, K., Enkelmann, V., Epsch, R., Rabe, J.P., Mullen, K.: A soluble C60 graphite segment. Angew. Chem. Int. Ed. 37, 2696–2699 (1998)CrossRefGoogle Scholar
  210. 210.
    Debije, M.G., Piris, J., de Hass, M.P., Warman, J.M., Tomovic, Z., Simpson, C.D., Watson, M.D., Mullen, K.: The optical and charge transport properties of discotic materials with large aromatic hydrocarbon cores. J. Am. Chem. Soc. 126, 4641–4645 (2004)CrossRefGoogle Scholar
  211. 211.
    Zhang, Y.-D., Jespersen, K.G., Kempe, M., Kornfield, J.A., Barlow, S., Kippelen, B., Marder, S.R.: Columnar discotic liquid-crystalline oxadiazoles as electron-transport materials. Langmuir 19, 6534–6536 (2003)CrossRefGoogle Scholar
  212. 212.
    Kim, B.G., Kim, S., Park, S.Y.: Synthesis of novel discotic mesogen containing electron-transportable oxadiazole moiety. Mol. Cryst. Liq. Cryst. 370, 391–394 (2001)CrossRefGoogle Scholar
  213. 213.
    Manickam, M., Belloni, M., Kumar, S., Varshney, S.K., Rao, D.S.S., Ashton, P.R., Preece, J.A., Spencer, N.: The first hexagonal columnar discotic liquid crystalline carbazole derivatives induced by noncovalent π-π interactions. J. Mater. Chem. 11, 2790–2800 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Soft Condensed Matter GroupRaman Research InstituteBangaloreIndia

Personalised recommendations