Advertisement

Columnar Liquid Crystalline Semiconductors

  • Richard J. BushbyEmail author
  • Daniel J. Tate
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 169)

Abstract

The advantages and disadvantages of the various methods used to study semiconducting discotic liquid crystals are surveyed. Comprehensive tables are provided of the charge-carrier mobilities of discotic liquid crystals. Interpretations of these mobilities are discussed as well as some of the remaining, outstanding problems.

Keywords

Liquid Crystal Charge Carrier Mobility Chemical Doping Aromatic Core Microwave Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shen, X., et al.: Orientational ordering and dynamics in the columnar phase of a discotic liquid crystal studied by deuteron NMR spectroscopy. J. Chem. Phys. 108(10), 4324–4332 (1998). doi: 10.1063/1.475833 ADSCrossRefGoogle Scholar
  2. 2.
    Dvinskikh, S.V., et al.: Molecular self-diffusion in a columnar liquid crystalline phase determined by deuterium NMR. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 65(5 Pt 1), 050702/1–050702/4 (2002). doi: 10.1103/PhysRevE.65.050702 Google Scholar
  3. 3.
    Van Keulen, J., et al.: Electrical conductivity in hexaalkoxytriphenylenes. Recueil des Travaux Chimiques des Pays-Bas. 106(10), 534–536 (1987). doi: 10.1002/recl.19871061004 CrossRefGoogle Scholar
  4. 4.
    Boden, N., et al.: One-dimensional electronic conductivity in discotic liquid crystals. Chem. Phys. Lett. 152(1), 94–99 (1988). doi: 10.1016/0009-2614(88)87334-2 ADSCrossRefGoogle Scholar
  5. 5.
    Arikainen, E.O., et al.: Effects of side-chain length on the charge transport properties of discotic liquid crystals and their implications for the transport mechanism. J. Mater. Chem. 5(12), 2161–2165 (1995). doi: 10.1039/JM9950502161 CrossRefGoogle Scholar
  6. 6.
    Bushby, R.J.: UnpublishedGoogle Scholar
  7. 7.
    Arikainen, E.O.: Spectroscopic Studies of the nature of charge carriers in one-dimensional electronically conducting discotic liquid crystals, p. 192. School of Chemistry, University of Leeds (1996)Google Scholar
  8. 8.
    Boden, N., et al.: First observation of a n-doped quasi-One-dimensional electronically-conducting discotic liquid crystal. J. Am. Chem. Soc. 116(23), 10807–10808 (1994). doi: 10.1021/ja00102a065 CrossRefGoogle Scholar
  9. 9.
    Boden, N., Bushby, R.J., Clements, J.: Mechanism of quasi-one-dimensional electronic conductivity in discotic liquid crystals. J. Chem. Phys. 98(7), 5920–5231 (1993). doi: 10.1063/1.464886 ADSCrossRefGoogle Scholar
  10. 10.
    Boden, N., et al.: Characterization of the cationic species formed in p-doped discotic liquid crystals. J. Mater. Chem. 5(10), 1741–1748 (1995). doi: 10.1039/JM9950501741 CrossRefGoogle Scholar
  11. 11.
    Borner, R.C.: Electronically conducting discotic liquid crystals, p. 168. School of Chemistry, University of Leeds (1992)Google Scholar
  12. 12.
    Schouten, P.G., et al.: Radiation-induced conductivity in polymerized and nonpolymerized columnar aggregates of phthalocyanine. J. Am. Chem. Soc. 114(23), 9028–9034 (1992). doi: 10.1021/ja00049a039 CrossRefGoogle Scholar
  13. 13.
    Warman, J.M., Van De Craats, A.M.: Charge mobility in discotic materials studied by PR-TRMC. Mol. Cryst. Liq. Cryst. 396, 41–72 (2003). doi: 10.1080/15421400390213186 CrossRefGoogle Scholar
  14. 14.
    Van de Craats, A.M., et al.: Mechanism of charge transport along columnar stacks of a triphenylene dimer. J. Phys. Chem. B 102(48), 9625–9634 (1998). doi: 10.1021/jp9828989 CrossRefGoogle Scholar
  15. 15.
    Piris, J., et al.: Aligned thin films of discotic hexabenzocoronenes: anisotropy in the optical and charge transport properties. Adv. Funct. Mater. 14(11), 1053–1061 (2004). doi: 10.1002/adfm.200400182 CrossRefGoogle Scholar
  16. 16.
    Piris, J., Pisula, W., Warman, J.M.: Anisotropy of the optical absorption and photoconductivity of a zone-cast film of a discotic hexabenzocoronene. Synth. Met. 147(1–3), 85–89 (2004). doi: 10.1016/j.synthmet.2004.06.032 CrossRefGoogle Scholar
  17. 17.
    Saeki, A., et al.: Charge-carrier dynamics in polythiophene films studied by in-situ measurement of flash-photolysis time-resolved microwave conductivity (FP-TRMC) and transient optical spectroscopy (TOS). Philos. Mag. 86(9), 1261–1276 (2006). doi: 10.1080/14786430500380159 ADSCrossRefGoogle Scholar
  18. 18.
    Sakurai, T., et al.: Prominent electron transport property observed for triply fused metalloporphyrin dimer: directed columnar liquid crystalline assembly by amphiphilic molecular design. J. Am. Chem. Soc. 130(42), 13812–13813 (2008). doi: 10.1021/ja8030714 CrossRefGoogle Scholar
  19. 19.
    Adam, D., et al.: Transient photoconductivity in a discotic liquid crystal. Phys. Rev. Lett. 70(4), 457–460 (1993). doi: 10.1103/PhysRevLett.70.457 ADSCrossRefGoogle Scholar
  20. 20.
    Adam, D., et al.: Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371(6493), 141–143 (1994). doi: 10.1038/371141a0 ADSCrossRefGoogle Scholar
  21. 21.
    Kepler, R.G.: Charge carrier production and mobility in anthracene crystals. Phys. Rev. 119, 1226–1229 (1960). doi: 10.1103/PhysRev.119.1226 ADSCrossRefGoogle Scholar
  22. 22.
    Muller-Horsche, E., Haarer, D., Scher, H.: Transition from dispersive to nondispersive transport: photoconduction of polyvinylcarbarzole. Condens. Matter Mater. Phys. 35(3), 1273–1280 (1987). doi: 10.1103/PhysRevB.35.1273 CrossRefGoogle Scholar
  23. 23.
    Christ, T., Stuempflen, V., Wendorff, J.H.: Light-emitting diodes based on a discotic main chain polymer. Macromol. Rapid Commun. 18(2), 93–98 (1997). doi: 10.1002/marc.1997.030180204 CrossRefGoogle Scholar
  24. 24.
    Mott, N.F., Gurney, D.: Electronic Processes in Ionic Crystals. Academic Press, New York (1970)Google Scholar
  25. 25.
    Bushby, R.J., et al.: Enhanced charge conduction in discotic liquid crystals. J. Mater. Chem. 11, 1982–1984 (2001). doi: 10.1039/b104112f CrossRefGoogle Scholar
  26. 26.
    McNeill, A., et al.: Discotic liquid crystals. In: 3D Nanoelectronic Computer Architecture and Implementation. Taylor & Francis, Philadelphia (2004)Google Scholar
  27. 27.
    Garcia-Frutos, E.M., et al.: High charge mobility in discotic liquid-crystalline triindoles: just a core business? Angew. Chem. 50, 7399–7402 (2011). doi: 10.1002/anie.201005820 Google Scholar
  28. 28.
    Bjornholm, T., Hassenkam, T., Reitzel, N.: Supramolecular organization of highly conducting organic thin films by the Langmuir-Blodgett technique. J. Mater. Chem. 9(9), 1975–1990 (1999). doi: 10.1039/A903019K CrossRefGoogle Scholar
  29. 29.
    Pisula, W., et al.: A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Adv. Mater. 17(6), 684–689 (2005). doi: 10.1002/adma.200401171 CrossRefGoogle Scholar
  30. 30.
    Pisula, W., et al.: Exceptionally long-range self-assembly of hexa-peri-hexabenzocoronene with dove-tailed alkyl substituents. J. Am. Chem. Soc. 126(26), 8074–8075 (2004). doi: 10.1021/ja048351r CrossRefGoogle Scholar
  31. 31.
    Gearba, R.I., et al.: Homeotropic alignment of columnar liquid crystals in open films by means of surface nanopatterning. Adv. Mater. 19(6), 815–820 (2007). doi: 10.1002/adma.200602460 CrossRefGoogle Scholar
  32. 32.
    Shklyarevskiy, I.O., et al.: High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. J. Am. Chem. Soc. 127(46), 16233–16237 (2005). doi: 10.1021/ja054694t CrossRefGoogle Scholar
  33. 33.
    Bramble, J.P., et al.: Planar alignment of columnar discotic liquid crystals by isotropic phase dewetting on chemically patterned surfaces. Adv. Funct. Mater. 20(6), 914–920 (2010). doi: 10.1002/adfm.200902140 CrossRefGoogle Scholar
  34. 34.
    de Leeuw, D.M., et al.: Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87(1), 53–59 (1997). doi: 10.1016/S0379-6779(97)80097-5 CrossRefGoogle Scholar
  35. 35.
    Iino, H., et al.: Fast ambipolar carrier transport and easy homeotropic alignment in a metal-free phthalocyanine derivative. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 44(42–45), L1310–L1312 (2005). doi: 10.1143/JJAP.44.L1310 CrossRefGoogle Scholar
  36. 36.
    Iino, H., et al.: High electron mobility of 0.1 cm2 V−1 s−1 in the highly ordered columnar phase of hexahexylthiotriphenylene. Appl. Phys. Lett. 87(19), 192105/1–192105/3 (2005). doi: 10.1063/1.2128066 ADSCrossRefGoogle Scholar
  37. 37.
    Iino, H., et al.: Fast electron transport in discotic columnar phases of triphenylene derivatives. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Br. Commun. Rev. Pap. 45(1B), 430–433 (2006). doi: 10.1143/JJAP.45.430 Google Scholar
  38. 38.
    Boden, N., et al.: Enhanced conduction in the discotic mesophase. Mol. Cryst. Liq. Cryst. 410, 541–549 (2004). doi: 10.1080/15421400490434324 CrossRefGoogle Scholar
  39. 39.
    Simmerer, J., et al.: Transient photoconductivity in a discotic hexagonal plastic crystal. Adv. Mater. 8(10), 815–819 (1996). doi: 10.1002/adma.19960081010 CrossRefGoogle Scholar
  40. 40.
    Hirai, Y., et al.: Enhanced hole-transporting behavior of discotic liquid-crystalline physical gels. Adv. Funct. Mater. 18(11), 1668–1675 (2008). doi: 10.1002/adfm.200701313 CrossRefGoogle Scholar
  41. 41.
    Wegewijs, B.R., et al.: Charge-carrier mobilities in binary mixtures of discotic triphenylene derivatives as a function of temperature. Phys. Rev. B Condens. Matter Mater. Phys. 65(24), 245112/1–245112/8 (2002). doi: 10.1103/PhysRevB.65.245112 ADSCrossRefGoogle Scholar
  42. 42.
    Nakayama, H., et al.: Measurements of carrier mobility and quantum yield of carrier generation in discotic liquid crystal hexahexyl-oxytriphenylene by time-of-flight method. Jpn. J. Appl. Phys. Part 2 Lett. 38(9A/B), L1038–L1041 (1999). doi: 10.1143/JJAP.38.L1038 CrossRefGoogle Scholar
  43. 43.
    Mizoshita, N., et al.: The positive effect on hole transport behaviour in anisotropic gels consisting of discotic liquid crystals and hydrogen-bonded fibres. Chem. Commun. 5, 428–429 (2002). doi: 10.1039/B111380C CrossRefGoogle Scholar
  44. 44.
    Miyake, Y., et al.: Carrier mobility of a columnar mesophase formed by a perfluoroalkylated triphenylene. Synth. Met. 159(9–10), 875–879 (2009). doi: 10.1016/j.synthmet.2009.01.044 CrossRefGoogle Scholar
  45. 45.
    Van de Craats, A.M., et al.: The mobility of charge carriers in all four phases of the columnar discotic material hexakis(hexylthio)triphenylene. Combined TOF and PR-TRMC results. Adv. Mater. 8(10), 823–826 (1996). doi: 10.1002/adma.19960081012 CrossRefGoogle Scholar
  46. 46.
    Iino, H., et al.: Hopping conduction in the columnar liquid crystal phase of a dipolar discogen. J. Appl. Phys. 100(4), 043716/1–043716/4 (2006). doi: 10.1063/1.2219692 ADSCrossRefGoogle Scholar
  47. 47.
    Bushby, R.J., et al.: Molecular engineering of triphenylene-based discotic liquid crystal conductors. Optoelectron. Rev. 13(4), 269–279 (2005)Google Scholar
  48. 48.
    Tate, D.J.: Applications of discotic liquid crystals in organic electronics, p. 237. School of Chemistry, University of Leeds (2008)Google Scholar
  49. 49.
    Ochse, A., et al.: Transient photoconduction in discotic liquid crystals. Phys. Chem. Chem. Phys. 1(8), 1757–1760 (1999). doi: 10.1039/A808615J CrossRefGoogle Scholar
  50. 50.
    Bleyl, I., et al.: Photopolymerization and transport properties of liquid crystalline triphenylenes. Mol. Cryst. Liq. Cryst. Sci. Technol. Section A Mol. Cryst. Liq. Cryst. 299, 149–155 (1997). doi: 10.1080/10587259708041987 CrossRefGoogle Scholar
  51. 51.
    Bleyl, I., et al.: One-dimensional hopping transport in a columnar discotic liquid-crystalline glass. Philos. Mag. B Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 79(3), 463–475 (1999). doi: 10.1080/014186399257258 ADSGoogle Scholar
  52. 52.
    Paraschiv, I., et al.: H-bond-stabilized triphenylene-based columnar discotic liquid crystals. Chem. Mater. 18(4), 968–974 (2006). doi: 10.1021/cm052221f CrossRefGoogle Scholar
  53. 53.
    Paraschiv, I., et al.: Hydrogen-bond stabilized columnar discotic benzenetrisamides with pendant triphenylene groups. J. Mater. Chem. 18(45), 5475–5481 (2008). doi: 10.1039/B805283B CrossRefGoogle Scholar
  54. 54.
    Gearba, R.I., et al.: Tailoring discotic mesophases: columnar order enforced with hydrogen bonds. Adv. Mater. 15(19), 1614–1618 (2003). doi: 10.1002/adma.200305137 CrossRefGoogle Scholar
  55. 55.
    Kreouzis, T., et al.: Enhanced electronic transport properties in complementary binary discotic liquid crystal systems. Chem. Phys. 262(2–3), 489–497 (2000). doi: 10.1016/S0301-0104(00)00323-2 ADSCrossRefGoogle Scholar
  56. 56.
    Donovan, K.J., et al.: Molecular engineering the phototransport properties of discotic liquid crystals. Mol. Cryst. Liq. Cryst. 396, 91–112 (2003). doi: 10.1080/15421400390213221 CrossRefGoogle Scholar
  57. 57.
    Tate, D.J., et al.: Improved syntheses of high hole mobility phthalocyanines: a case of steric assistance in the cyclo-oligomerisation of phthalonitriles. Beilstein J. Org. Chem. 8(14), 120–128 (2012). doi: 10.3762/bjoc.8.14 CrossRefGoogle Scholar
  58. 58.
    Schouten, P.G., et al.: The effect of structural modifications on charge migration in mesomorphic phthalocyanines. J. Am. Chem. Soc. 116(15), 6880–6894 (1994). doi: 10.1021/ja00094a048 CrossRefGoogle Scholar
  59. 59.
    van de Craats, A.M., Warman, J.M.: The influence of chain-to-core coupling on the charge transport and mesomorphic properties of discotic materials. Synth. Met. 121(1–3), 1287–1288 (2001). doi: 10.1016/S0379-6779(00)01219-4 CrossRefGoogle Scholar
  60. 60.
    van de Craats, A.M.: Charge transport in self-aggregating columnar systems such as phthalocyanines, triphenylenes and benzocoronenes. The formation, migration and recombination of charge carriers in various phases of the materials studied is investigated by making use of the time-resolved microwave conductivity technique, PR-TRMC. Opto-electronic Materials, Delft University of Technology (2000)Google Scholar
  61. 61.
    Ban, K., et al.: Discotic liquid crystals of transition metal complexes. 29. Mesomorphism and charge transport properties of alkylthio-substituted phthalocyanine rare-earth metal sandwich complexes. J. Mater. Chem. 11(2), 321–331 (2001). doi: 10.1039/B003984P CrossRefGoogle Scholar
  62. 62.
    Fujikake, H., et al.: Time-of-flight analysis of charge mobility in a Cu-phthalocyanine-based discotic liquid crystal semiconductor. Appl. Phys. Lett. 85(16), 3474–3476 (2004). doi: 10.1063/1.1805178 ADSCrossRefGoogle Scholar
  63. 63.
    Mori, T., Takeuchi, H., Fujikawa, H.: Field-effect transistors based on a polycyclic aromatic hydrocarbon core as a two-dimensional conductor. J. Appl. Phys. 97(6), 066102/1–066102/3 (2005). doi: 10.1063/1.1862757 ADSCrossRefGoogle Scholar
  64. 64.
    Fechtenkotter, A., et al.: Discotic liquid crystalline hexabenzocoronenes carrying chiral and racemic branched alkyl chains: supramolecular engineering and improved synthetic methods. Tetrahedron 57(17), 3769–3783 (2001). doi: 10.1016/S0040-4020(01)00252-6 CrossRefGoogle Scholar
  65. 65.
    Ito, S., et al.: Synthesis and self-assembly of functionalized hexa-peri-hexabenzocoronenes. Chem. A Eur. J. 6(23), 4327–4342 (2000). doi:10.1002/1521-3765(20001201)6:23<4327::AID-CHEM4327>3.0.CO;2-7CrossRefGoogle Scholar
  66. 66.
    Van De Craats, A.M., et al.: Record charge carrier mobility in a room temperature discotic liquid-crystalline derivative of hexabenzocoronene. Adv. Mater. 11(17), 1469–1472 (1999). doi:10.1002/(SICI)1521-4095(199912)11:17<1469::AID-ADMA1469>3.0.CO;2-KCrossRefGoogle Scholar
  67. 67.
    Pisula, W., et al.: Relation between supramolecular order and charge carrier mobility of branched alkyl hexa-peri-hexabenzocoronenes. Chem. Mater. 18(16), 3634–3640 (2006). doi: 10.1021/cm0602343 CrossRefGoogle Scholar
  68. 68.
    van de Craats, A.M., et al.: Meso-epitaxial solution growth of self-organizing discotic liquid crystalline semiconductors. Adv. Funct. Mater. 15(6), 495–499 (2003). doi: 10.1002/adma.200390114 Google Scholar
  69. 69.
    Kastler, M., et al.: Room-temperature nondispersive hole transport in a discotic liquid crystal. Appl. Phys. Lett. 89(25), 252103/1–252103/3 (2006). doi: 10.1063/1.2408654 ADSCrossRefGoogle Scholar
  70. 70.
    Watson, M.D., et al.: Peralkylated coronenes via regiospecific hydrogenation of hexa-peri-hexabenzocoronenes. J. Am. Chem. Soc. 126(3), 766–771 (2004). doi: 10.1021/ja037522+ CrossRefGoogle Scholar
  71. 71.
    Iyer, V.S., et al.: A soluble C60 graphite segment. Angew. Chem. Int. Ed. 37(19), 2696–2699 (1998). doi:10.1002/(SICI)1521-3773(19981016)37:19<2696::AID-ANIE2696>3.0.CO;2-ECrossRefGoogle Scholar
  72. 72.
    Debije, M.G., et al.: The optical and charge transport properties of discotic materials with large aromatic hydrocarbon cores. J. Am. Chem. Soc. 126(14), 4641–4645 (2004). doi: 10.1021/ja0395994 CrossRefGoogle Scholar
  73. 73.
    Tomovic, Z., Watson, M.D., Muellen, K.: Superphenalene-based columnar liquid crystals. Angew. Chem. Int. Ed. 43(6), 755–758 (2004). doi: 10.1002/anie.200352855 CrossRefGoogle Scholar
  74. 74.
    Zhang, Y.-D., et al.: Columnar discotic liquid-crystalline oxadiazoles as electron-transport materials. Langmuir 19(16), 6534–6536 (2003). doi: 10.1021/la0341456 CrossRefGoogle Scholar
  75. 75.
    Boden, N., et al.: 2,3,7,8,12,13-Hexakis[2-(2-methoxyethoxy)ethoxy]tricycloquinazoline: a discogen which allows enhanced levels of n-doping. Liq. Cryst. 28(12), 1739–1748 (2001). doi: 10.1080/02678290110082383 CrossRefGoogle Scholar
  76. 76.
    Sienkowska, M.J., et al.: Photoconductivity of liquid crystalline derivatives of pyrene and carbazole. J. Mater. Chem. 17(14), 1392–1398 (2007). doi: 10.1039/B612253A CrossRefGoogle Scholar
  77. 77.
    Van de Craats, A.M., et al.: Charge transport in mesomorphic derivatives of perylene. Synth. Met. 102(1–3), 1550–1551 (1999). doi: 10.1016/S0379-6779(98)00554-2 CrossRefGoogle Scholar
  78. 78.
    Struijk, C.W., et al.: Liquid crystalline perylene diimides: architecture and charge carrier mobilities. J. Am. Chem. Soc. 122(45), 11057–11066 (2000). doi: 10.1021/ja000991g CrossRefGoogle Scholar
  79. 79.
    Tsao, H.N., et al.: From ambi- to unipolar behavior in discotic dye field-effect transistors. Adv. Mater. 20(14), 2715–2719 (2008). doi: 10.1002/adma.200702992 CrossRefGoogle Scholar
  80. 80.
    Monobe, H., Mima, S., Shimizu, Y.: Carrier mobility of discotic lamellar mesophases of 5,10,15,20-tetrakis(4-n-pentadecylphenyl)porphyrin. Chem. Lett. 9, 1004–1005 (2000)CrossRefGoogle Scholar
  81. 81.
    Yuan, Y., Gregg, B.A., Lawrence, M.F.: Time-of-flight study of electrical charge mobilities in liquid-crystalline zinc octakis(beta -octoxyethyl) porphyrin films. J. Mater. Res. 15(11), 2494–2498 (2000). doi: 10.1557/JMR.2000.0358 ADSCrossRefGoogle Scholar
  82. 82.
    Schouten, P.G., et al.: Charge migration in supramolecular stacks of peripherally substituted porphyrins. Nature 353(6346), 736–737 (1991). doi: 10.1038/353736a0 ADSCrossRefGoogle Scholar
  83. 83.
    Destrade, C., et al.: Disk-like mesogen polymorphism. Mol. Cryst. Liq. Cryst. 106(1–2), 121–146 (1984). doi: 10.1080/00268948408080183 CrossRefGoogle Scholar
  84. 84.
    Chiang, L.Y., et al.: Highly oriented fibers of discotic liquid crystal. J. Chem. Soc. Chem. Commun. 11, 695–696 (1985). doi: 10.1039/C39850000695 ADSCrossRefGoogle Scholar
  85. 85.
    Safinya, C.R., et al.: Synchrotron x-ray scattering study of freely suspended discotic strands. Mol. Cryst. Liq. Cryst. 123(1–4), 205–216 (1985). doi: 10.1080/00268948508074778 CrossRefGoogle Scholar
  86. 86.
    Arikainen, E.O., et al.: Complimentary polytopic interactions. Angew. Chem. Int. Ed. 39(13), 2333–2336 (2000). doi:10.1002/1521-3757(20000703)112:13<2423::AID-ANGE2423>3.0.CO;2-RCrossRefGoogle Scholar
  87. 87.
    Bushby, R.J., et al.: The stability of columns comprising alternating triphenylene and hexaphenyltriphenylene molecules: variations in the structure of the hexaphenyltriphenylene component. Liq. Cryst. 33(6), 653–664 (2006). doi: 10.1080/02678290600682078 CrossRefGoogle Scholar
  88. 88.
    Borsenberger, P.M., O’Regan, M.B.: The role of dipole moments on hole transport in triphenylamine doped poly(styrene). Chem. Phys. 200(1,2), 257–263 (1995). doi: 10.1016/0301-0104(95)00195-T CrossRefGoogle Scholar
  89. 89.
    Lemaur, V., et al.: Charge transport properties in discotic liquid crystals: a quantum-chemical insight into structure-property relationships. J. Am. Chem. Soc. 126, 3271–3279 (2004). doi: 10.1021/ja0390956. Copyright (C) 2011 American Chemical Society (ACS). All Rights ReservedGoogle Scholar
  90. 90.
    van de Craats, A.M., Warman, J.M.: The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv. Mater. 13(2), 130–133 (2001). doi:10.1002/1521-4095(200101)13:2<130::AID-ADMA130>3.0.CO;2-LCrossRefGoogle Scholar
  91. 91.
    Meot-Ner, M.: Dimer cations of polycyclic aromatics. Experimental bonding energies and resonance stabilization. J. Phys. Chem. 84(21), 2724–2728 (1980)CrossRefGoogle Scholar
  92. 92.
    Mautner, M.: Structurally complex organic ions: thermochemistry and noncovalent interactions. Acc. Chem. Res. 17(5), 186–193 (1984). doi: 10.1021/ar00101a006 CrossRefGoogle Scholar
  93. 93.
    Terahara, A., et al.: Transannular interactions in dimer cation radicals of naphthalene derivatives. Conformation anomaly and stabilization energy. J. Phys. Chem. 90(8), 1564–1571 (1986). doi: 10.1021/j100399a022 CrossRefGoogle Scholar
  94. 94.
    Ohya-Nishiguchi, H., Ide, H., Hirota, N.: Spin densities in the trimer cation radical of coronene. Chem. Phys. Lett. 66(3), 581–583 (1979). doi: 10.1016/0009-2614(79)80344-9 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of ChemistryUniversity of LeedsLeedsUK
  2. 2.Organic Materials Innovation Centre, School of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations