Advertisement

Charge Carrier Transport in Liquid Crystalline Semiconductors

  • Jun-Ichi HannaEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 169)

Abstract

In this chapter, we describe the electrical properties in liquid crystals after a brief description of historical studies on them, including ionic and electronic conduction in liquid crystals, the anisotropy and dimensionality in charge carrier transport, charge carrier transport itself, mesophase structure, temperature and electric field dependence, the effect of impurities and structural defects, a model for electronic carrier transport depending upon the chemical and mesophase structure of the liquid crystalline semiconductor responsible for the charge transport.

Keywords

Liquid Crystal High Occupied Molecular Orbital Carrier Transport Nematic Phase Liquid Crystal Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kusabayashi, S., Labes, M.M.: Conductivity in liquid crystals. Mol. Cryst. Liq. Cryst. 7, 395–405 (1969)CrossRefGoogle Scholar
  2. 2.
    Heimeier, G.H., Zanoni, L.A., Burton, L.A.: Dynamic scattering: a new electrooptic effect in certain classes of nematic liquid crystals. Proc. IEEE 56, 1162–1171 (1968)CrossRefGoogle Scholar
  3. 3.
    Heilmeier, G.H., Heyman, P.M.: Note on transient current measurement in liquid crystals and related systems. Phys. Rev. Lett. 18, 583–585 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    Yoshino, K., Tanaka, N., Inuishi, Y.: Anomolous carrier mobility in smectic liquid crystal. Jpn. J. Appl. Phys. 15, 735–736 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    Derfel, G., Lipinski, A.: Charge carrier mobility measurements in nematic liquid crystals. Mol. Cryst. Liq. Cryst. 55, 88–99 (1979)CrossRefGoogle Scholar
  6. 6.
    Chandrasekhar, S., Sedaschiva, B.K., Suresh, K.A.: Pramana 9, 471–480 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    Boden, N., Bushby, R.J., Clements, J., Jesudason, M.V., Knowles, P.F., Williams, G.: One-dimensional electronic conductivity in discotic liquid crystals. Chem. Phys. Lett. 152, 94–99 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    Boden, N., Bushby, R.J., Clements, J., Movaghar, B., Donovan, K.J., Kreuozis, T.: Mechanism of charge transport in discotic liquid crystals. Phys. Rev. B 52, 13274–13280 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Arikainen, E.O., Boden, N., Bushby, R.J., Clements, J., Movaghar, B., Wood, A.: Effects of side-chain length on the charge transport properties of discotic liquid crystals and their implications for the transport mechanism. J. Mater. Chem. 5, 2161–2165 (1995)CrossRefGoogle Scholar
  10. 10.
    Shouten, P.G., Warman, J.M., de Haas, M.P., Fox, M.A., Pan, H.-L.: Charge migration in aggregates of peripherally substituted porphyrins. Nature 353, 736–737 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    Adam, D., Closs, F., Frey, T., Funhoff, D., Haarer, D., Schuhmacher, P., Siemensmeyer, K.: Transient photoconductivity in a discotic liquid crystal. Phys. Rev. Lett. 70, 457–460 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    Okamoto, K., Nakajima, S., Ueda, M., Itaya, A., Kusabayashi, S.: Electrical dark conductivity and photo-conductivity of 2-(paradecyloxybenzylideneamino)-9-fluorenone in the nematic state. Bull. Chem. Soc. Jpn. 56, 3830–3832 (1983)CrossRefGoogle Scholar
  13. 13.
    Closs, F., Siemensmeyer, K., Frey, T., Funhof, D.: Liquid crystalline photoconductors. Liq. Cryst. 14, 629–634 (1993)CrossRefGoogle Scholar
  14. 14.
    Funahashi, M., Hanna, J.: Fast hole transport in a New calamitic liquid crystal of 2-(4′-heptyloxyphenyl)-6-dodecylthiobenzothiazole. Phys. Rev. Lett. 78, 2184–2187 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Tokunaga, K., Iino, H., Hanna, J.: Reinvestigation of carrier transport properties in liquid crystalline 2-phenylbenzothiazole derivatives. J. Phys. Chem. B 111, 12041–12044 (2007)CrossRefGoogle Scholar
  16. 16.
    Funahashi, M., Hanna, J.: Fast ambipolar carrier transport in smectic phases of phenylnaphthalene liquid crystal. Appl. Phys. Lett. 71, 602–604 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Redecker, M., Bradley, D.D.C., Inbasekaran, M., Woo, E.P.: Nondispersive hole transport in an electroluminescent polyfluorene. Appl. Phys. Lett. 73, 1565–1567 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Farrar, S.R., Contoret, A.E.A., O’Neill, M., Nicholls, J.E., Richards, G.J., Kelly, S.M.: Nondispersive hole transport of liquid crystalline glasses and a cross-linked network for organic electroluminescence. Phys. Rev. B. 66, 125107–125111 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Chen, L.-Y., Hung, W.-Y., Lin, Y.-T., Wu, C.-C., Chao, T.-C., Hung, T.-H., Wong, K.-T.: Enhancement of bipolar carrier transport in oligofluorene films through alignment in the liquid-crystalline phase. Appl. Phys. Lett. 87, 112103–112103-3 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Yasuda, T., Fujita, K., Tsutsui, T., Geng, Y., Culligan, S.W., Chen, S.H.: Carrier transport properties of monodisperse glassy-nematic oligofluorenes in organic field-effect transistors. Chem. Mater. 17, 264–268 (2005)CrossRefGoogle Scholar
  21. 21.
    Murakami, S., Naito, H., Okuda, M., Sugimura, A.: Transient photocurrent in amorphous selenium and nematic liquid crystal double layers. J. Appl. Phys. 78, 4533–4537 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    Sawada, A., Manabe, A., Naemura, S.: Comparative studies on the attributes of ions in nematic and ionic phases. Jpn. J. Appl. Phys. Part 1 40, 220–224 (2001)CrossRefGoogle Scholar
  23. 23.
    Funahashi, M., Tamaoki, N.: Electronic conduction in the chiral nematic phase of an oligothiophene derivative. Chem.Phys.Chem. 7, 1193–1197 (2006)CrossRefGoogle Scholar
  24. 24.
    Tokunaga, K., Takayashiki, Y., Iino, H., Hanna, J.: Electronic conduction in nematic phase of small molecules. Phys. Rev. B 79, 033201–033205 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Iino, H., Hanna, J., Haarer, D.: Electronic and ionic carrier transports in discotic liquid crystalline photoconductor. Phys. Rev. B 72, 193203–193206 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Iino, H., Hanna, J.: Electronic and ionic transports for negative charge carriers in smectic liquid crystalline photoconductor. J. Phys. Chem. B 109, 22120–22125 (2005)CrossRefGoogle Scholar
  27. 27.
    Funahashi, M., Hanna, J.: Impurity effect on charge carrier transport in smectic liquid crystals. Chem. Phys. Lett. 397, 319–323 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Ahn, H., Ohno, A., Hanna, J.: Detection of trace amount of impurity in smectic liquid crystals. Jpn. J. Appl. Phys. 44, 3764–3768 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Ahn, H., Ohno, A., Hanna, J.: Impurity effects on charge carrier transport in various mesophases of smectic liquid crystals. J. Appl. Phys. 102, 093718 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Kurotaki, K., Hanna, J.: Carrier transport in molecularly diluted liquid crystalline photoconductor. J. Imaging Sci. Technol. 43, 237–241 (1999)Google Scholar
  31. 31.
    Redecker, M., Bradley, D.D.C., Inbasekaran, M., Woo, E.P.: Mobility enhancement through homogeneous nematic alignment of a liquid-crystalline polyfluorene. Appl. Phys. Lett. 74, 1400–1402 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Tokunaga, K., Takayashiki, Y., Iino, H., Hanna, J.: One-dimensional to three-dimensional electronic conduction in liquid crystalline mesophases. Mol. Cryst. Liq. Cryst. 510, 250/[1384]–258/[1392] (2009)Google Scholar
  33. 33.
    Funahashi, M., Hanna, J.: High ambipolar carrier mobility in self-organizing terthiophene derivative. Appl. Phys. Lett. 76, 2574–2576 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Mery, S., Haristoy, D., Nicoud, J.-F., Guillon, D., Diele, S., Monobe, H., Shimizu, Y.: Bipolar carrier transport in a lamello-columnar mesophase of a sanidic liquid crystal. J. Mater. Chem. 12, 37–41 (2002)CrossRefGoogle Scholar
  35. 35.
    Iino, H., Hanna, J., Haarer, D., Bushby, R.J.: Fast electron transport in discotic columnar phases of triphenylene derivatives. Jpn. J. Appl. Phys. 45, 430–433 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Iino, H., Takayashiki, Y., Hanna, J., Bushby, R.J.: Fast ambipolar carrier transport and easy homeotropic alignment in a metal-free phthalocyanine derivative. Jpn. J. Appl. Phys. 44, L1310–L1312 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Schein, L.B.: Temperature independent drift mobility along the molecular direction of As2S3. Phys. Rev. B 15, 1024–1034 (1977)ADSCrossRefGoogle Scholar
  38. 38.
    Iino, H., Hanna, J.: Ambipolar charge carrier transport in liquid crystals. Optoelectron. Rev. 14, 295–302 (2005)Google Scholar
  39. 39.
    Boden, N., Bushby, R.J., Lozman, O.R., Lu, Z.B., McNeill, A., Movaghar, B., Donovan, K., Kreouzis, T.: Enhanced conductivity in the discotic mesophase. Mol. Cryst. Liq. Cryst. 410, 541–549 (2004)CrossRefGoogle Scholar
  40. 40.
    Monobe, H., Shimizu, Y., Okamoto, S., Enomoto, H.: Ambipolar charge carrier transport properties in the homologous series of 2,3,6,7,10,11-hexaalkoxytriphenylene. Mol. Cryst. Liq. Cryst. 476, 277–287 (2007)CrossRefGoogle Scholar
  41. 41.
    Wegewijs, B.R., Siebbeles, L.D.A., Boden, N., Bushby, R.J., Movaghar, B., Lozman, O.R., Liu, Q., Pecchia, A., Mason, L.A.: Charge-carrier mobilities in binary mixtures of discotic triphenylene derivatives as a function of temperature. Phys. Rev. B 65, 245112-1–245112-8 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Iino, H., Takayashiki, Y., Hanna, J., Bushby, R.: Fast ambipolar carrier transport and easy homeotropic alignment in a metal-free phthalocyanine derivative. Jpn. J. App. Phys. 44, L1310–1312 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Funahashi, M., Hanna, J.: Mesomorphic behaviors and charge carrier transport in terthiophene derivatives. Mol. Cryst. Liq. Cryst. 410, 529–540 (2004)CrossRefGoogle Scholar
  44. 44.
    Funahashi, M., Zhang, F., Tamaoki, N., Hanna, J.: Ambipolar transport in the smectic E phase of 2-propyl-5″-hexynylterthiophene derivative over a wide temperature range. ChemPhysChem 9, 1465–1473 (2008)CrossRefGoogle Scholar
  45. 45.
    Funahashi, M., Tamaoki, N.: Electronic conduction in the chiral nematic phase of an oligothiophene derivative. ChemPhysChem 7, 1193–1197 (2006)CrossRefGoogle Scholar
  46. 46.
    Hoesterey, D.C., Letson, G.M.: The trapping of photocarriers in anthracene by anthraquinone, anthrone and naphthacene. J. Phys. Chem. Solid. 24, 1609–1615 (1963)ADSCrossRefGoogle Scholar
  47. 47.
    Iino, H., Hanna, J.: Optoelectron. Rev. 13, 295–302 (2005)Google Scholar
  48. 48.
    Maeda, H., Funahashi, M., Hanna, J.: Effect of grain boundary on carrier transport of calamitic liquid crystalline photoconductive materials. Mol. Cryst. Liq. Cryst. 346, 183–192 (2000)CrossRefGoogle Scholar
  49. 49.
    Maeda, H., Funahashi, M., Hanna, J.: Electrical properties of domain boundaries in photoconductive smectic mesophases and their crystal phases. Mol. Cryst. Liq. Cryst. 366, 369–376 (2001)CrossRefGoogle Scholar
  50. 50.
    Zhang, H., Hanna, J.: High mu tau product in a smectic liquid crystalline photoconductor of a 2-phenylnaphthalene derivative. Appl. Phys. Lett. 85(22), 5251–5253 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    Friedman, L.: Transport properties of organic semiconductors. Phys. Rev. 133, 1668 (1964)ADSCrossRefGoogle Scholar
  52. 52.
    Kreouzis, T., Donovan, K.J., Boden, N., Bushby, R.J., Lotzman, O.R., Liu, Q.: Temperature-independent hole mobility in discotic liquid crystals. J. Chem. Phys. 114, 1797–1802 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    Shiyanovskaya, I., Singer, K.D., Twieg, R.J., Sukhomlinova, L., Gettwert, V.: Electronic transport in smectic liquid crystals. Phys. Rev. E 65, 041715 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    Pecchia, A., Siebbeles, L., Movaghar, B.: Charge carrier transport in higly ordered smectic and discotic mesophases. Proc. SPIE 4991, 253–273 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    Silinsh, E.A., Shlihta, G.A., Jurgis, A.J.: A model description of charge carrier transport phenomena in organic molecular crystals. 1. Polyacene crystals. Chem. Phys. 138, 347–363 (1989)CrossRefGoogle Scholar
  56. 56.
    Holstein, T.: Studies of polaron motion. 1. The molecular-crystal model. Ann. Phys. (N.Y.) 8, 325–342 (1959)ADSzbMATHCrossRefGoogle Scholar
  57. 57.
    Holstein, T.: Studies of polaron motion. 1. The small polaron. Ann. Phys. (N.Y.) 8, 343–389 (1959)ADSCrossRefGoogle Scholar
  58. 58.
    Bässler, H.: Charge transport in disordered organic photoconductors – a Monte-Carlo simulation study. Phys. Status Solid. B 175, 15–56 (1993)ADSCrossRefGoogle Scholar
  59. 59.
    Bleyl, I., Erdelen, C., Schmidt, H.W., Haarer, D.: One-dimensional hopping transport in a columnar discotic liquid-crystalline glass. Philos. Mag. B 79, 463–475 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    Ohno, A., Hanna, J.: Simulated carrier transport in smectic mesophase and its comparison with experimental result. Appl. Phys. Lett. 82, 751–753 (2003)ADSCrossRefGoogle Scholar
  61. 61.
    Bosenberger, P.M., Weiss, D.S.: Organic Photoreceptors for Xerography. Marcel Deccer, Inc., New York (1998)Google Scholar
  62. 62.
    Van de Craats, A.M., Warman, J.M.: The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv. Mater. 13, 130 (2001)CrossRefGoogle Scholar
  63. 63.
    Funahashi, M., Hanna, J.: High carrier mobility up to 0.1 cm2 V–1 s–1 at ambient temperatures in thiophene-based smectic liquid crystals. Adv. Mater. 17, 594–598 (2005)CrossRefGoogle Scholar
  64. 64.
    Takayashiki, Y., Iino, H., Shimakawa, T., Hanna, J.: Ambipolar carrier transport in terphenyl derivative. Mol. Cryst. Liq. Cryst. 480, 295–301 (2008)CrossRefGoogle Scholar
  65. 65.
    van de Craats, A.M., Warman, J.M., Fechtenkotter, A., Brand, J.D., Harbison, M.A., Mullen, K.: Record charge carrier mobility in a room-temperature discotic liquid-crystalline derivative of hexabenzocoronene. Adv. Mater. 11, 1469–1472 (1999)CrossRefGoogle Scholar
  66. 66.
    Borsenberger, P.M., Bässler, H.: Concerning the role of dipolar disorder on charge transport in molecularly doped polymers. J. Chem. Phys. 95, 5327–5331 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Imaging Science and Engineering LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations