Skip to main content

Part of the book series: Springer Laboratory ((SPLABORATORY))

Abstract

Drying is an important operation in a manufacturing process. An example is film formation which requires the removal of water to allow the particles to pack and to form a coherent film. This water removal is achieved by evaporation. In addition to film formation, there are a number of other examples where it is desirable to reduce the amount of water (or indeed any solvent) from a product:

  • To reduce transport costs for products, such as washing powder, which— although used and manufactured in the wet state—are shipped in a dry form.

  • To maintain suitable handling properties. For example, sand will flow easily when dry yet will be difficult to handle if wet.

  • To stop corrosion and the growth of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Barnes G.T. and Gentle I.R. (2005) Interfacial Science, Oxford University Press

    Google Scholar 

  • Ballauff M.(2001) SAXS. and SANS studies of polymer colloids. Curr Opin Coll Interf Sci 6:132–139

    Article  CAS  Google Scholar 

  • Belaroui F., Cabane B., Dorget M., Grohens Y., Marie P., Holl Y.(2003) Small-angle neutron scattering study of particle coalescence and SDS desorption during film formation from carboxylated acrylic latices. J Coll Interf Sci 262: 409–417

    Article  CAS  Google Scholar 

  • Brown G.L. (1956) Formation of films from polymer dispersions, Journal of Polymer Science, 22: 423–434.

    Article  CAS  Google Scholar 

  • Brown L.A., Zukoski C.F. and White L.R. (2002) Consolidation during drying of aggregated suspensions. AIChE J 48 (3) 492–502.

    Article  CAS  Google Scholar 

  • Brown L.A. and Zukoski C.F. (2003) Experimental tests of two phase fluid models of drying consolidation. AIChE J,. 49(2) 362–372.

    Article  CAS  Google Scholar 

  • Ciampi E. and McDonald P.J. (2003) Skin formation and water distribution in semicrystalline polymer layers cast from solution: A magnetic resonance imaging study, Macromolecules, 36:8398–8405 2003.

    Article  CAS  Google Scholar 

  • Croll S.G. (1986) Drying of latex paint. Journal of Coatings Technology 58(734): 41–49.

    CAS  Google Scholar 

  • Croll S.G. (1987) Heat and mass transfer in latex paints during drying. Journal of Coatings Technology, 59(751): 81–92.

    CAS  Google Scholar 

  • Cussler E.L. (1984) Diffusion: mass transfer in fluid systems, Cambridge University Press.

    Google Scholar 

  • Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R. and Witten T.A. (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389: 827–829.

    Article  CAS  Google Scholar 

  • Deegan R.D. (2000) Pattern formation in drying drops. Physical Review E,. 61(1): 475–485.

    Article  CAS  Google Scholar 

  • Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R. and Witten T.A. (2000) Contact line deposits in an evaporating drop. Physical Review E 62(1): 756–765

    Article  CAS  Google Scholar 

  • Dingenouts N. and Ballauff M. (1999) First stage of film formation by latexes investigated by small angle x-ray scattering, Langmuir, 15: 3283–3288.

    Article  CAS  Google Scholar 

  • Dufresne E.R., Corwin E.I., Greenblatt N.A., Ashmore J., Wang D.Y., Dinsmore A.D., Cheng J.X., Xie X.S., Hutchinson J.W. and Weitz D.A. (2003) Flow and fracture in drying nanoparticle suspensions, Physical Review Letters, 91(22): 4501–4504.

    Article  Google Scholar 

  • Dufresne E.R., Stark D.J., Greenblatt N.S., Cheng J.X., Hutchinson J.W., Ma-hadevan L. and Weitz D.A. (2006) Dynamics of fracture in drying suspensions, Langmuir 22(17): 7144–7147

    Article  CAS  Google Scholar 

  • Dunstan D. and White L.R. (1986) A capillary pressure method for measurement of contact angles in powders and porous media. Journal of Colloid and Interface Science, 111(1): 60–64.

    Article  CAS  Google Scholar 

  • Ekanayake, P., McDonald P.J., Keddie, J.L. (2009) An experimental test of the scaling prediction for the spatial distribution of water during the drying of colloidal films. European Physical Journal—Special Topics 166: 21–27.

    Article  Google Scholar 

  • Erkselius S., Wadsö L. and Karlsson O.J. (2007) A sorption balance based method to study the initial drying of dispersion droplets, Colloid and Polymer Science 285: 1707–1712.

    Article  CAS  Google Scholar 

  • Erkselius S., Wadsö L., Karlsson O.J. (2008) Drying rate variations of latex dispersions due to salt induced skin formation. J Coll Interf Sci 317: 83–95.

    Article  CAS  Google Scholar 

  • Gorce, J.-P., McDonald, P.J. and Keddie, J.L. (2002) Vertical water distribution during the drying of polymer films formed from emulsions. Eur Phys J E 8: 421–429.

    CAS  Google Scholar 

  • Holmes D.M., Kumar R.V. and Clegg W.J. (2006) Cracking during lateral drying of alumina suspensions, Journal of the American Ceramic Society 89 (6): 1908– 1913.

    Article  CAS  Google Scholar 

  • Hwa J.C.H. (1964) Mechanism of film formation from lattices. Phenomenon of flocculation, Journal of Polymer Science: Part A 2(2): 785–796.

    CAS  Google Scholar 

  • Juhué D. and Lang J. (1993) Effect of surfactant post added to latex dispersion on film formation: A study by atomic force microscopy. Langmuir 9: 792–796.

    Article  Google Scholar 

  • König A.M., Weerakkody, T.G., Keddie, J.L. and Johannsmann, D. (2008) Heterogeneous drying of colloidal polymer films: Dependence on added salt. Langmuir 24: 7580–7589.

    Article  Google Scholar 

  • Lee W.P. and Routh A.F. (2004) Why do drying films crack? Langmuir 20(23): 9885–9888.

    Article  CAS  Google Scholar 

  • Liao Q., Chen L., Qu X. and Jin X. (2000) Brownian Dynamics simulation of film formation of mixed polymer latex in the water evaporation stage, Journal of Colloid and Interface Science 227: 84–94.

    Article  CAS  Google Scholar 

  • Ma Y., Davis H.T. and Scriven L.E. (2005) Microstructure development in drying latex coatings. Progress in Organic Coatings 52: 46–62.

    Article  CAS  Google Scholar 

  • Mallégol J., Bennett G., McDonald P.J., Keddie J. and Dupont O. (2006) Skin development during film formation of waterborne acrylic pressure sensitive adhesives containing tackifying resins. The Journal of Adhesion, 82: 217–238.

    Article  Google Scholar 

  • McNamee C.E., Barnes G.T., Gentle I.R., Peng J.B., Steitz R. and Probert R. (1998) The evaporation resistance of mixed monolayers of octadecanol and cholesterol. Journal of Colloid and Interface Science, 207: 258–263.

    Article  CAS  Google Scholar 

  • Reyes Y. and Duda Y. (2005) Modelling of drying in films of colloidal particles. Langmuir 21: 7057–7060.

    Article  CAS  Google Scholar 

  • Overbeek, A., Bückmann, F., Martin, E., Steenwinkel, P., Annable T. (2003) New generation decorative paint technology. Progress in Organic Coatings 48: 125–139.

    Article  CAS  Google Scholar 

  • Narita T., Beauvais C., Hebraud P. and Lequeux F. (2004) Dynamics of concentrated colloidal suspensions during drying—aging, rejuvenation and overaging, European Physics Journal E 14: 287–292.

    Article  CAS  Google Scholar 

  • Narita T., Hebraud P. and Lequeux F. (2005) Effects of the rate of evaporation and film thickness in nonuniform drying of film–forming concentrated colloidaln suspensions. European Physics Journal E 17: 69–76.

    Article  CAS  Google Scholar 

  • Parisse F. and Allain C. (1997) Drying of colloidal suspension droplets: Experimental study and profile renormalisation. Langmuir, 13(14): 3598–3602.

    Article  CAS  Google Scholar 

  • Rottstegge J., Traub B., Wilhelm M., Landfester K., Heldmann C. and Spiess H.W. (2003) Investigations on the film formation process of latex dispersions by solid state NMR spectroscopy. Macromolecular Chemistry and Physics, 204 (5/6): 787–802.

    Article  CAS  Google Scholar 

  • Routh A.F. and Russel W.B. (1998) Horizontal drying fronts during solvent evaporation from latex films. AIChE J 44(9): 2088–2098.

    Article  CAS  Google Scholar 

  • Routh A.F., Russel W.B., Tang J. and El-Aasser M.A. (2001) Process model for latex film formation: Optical clarity fronts. Journal of Coatings Technology 73(916): 41–48.

    Article  CAS  Google Scholar 

  • Routh A.F. and Zimmerman W.B. (2004) Distribution of particles during solvent evaporation from films, Chemical Engineering Science 59: 2961–2968.

    Article  CAS  Google Scholar 

  • Salamanca J.M., Ciampi E., Faux D.A., Glover P.M., McDonald P.J., Routh A.F., Peters A.C.I.A., Satguru R. and Keddie J.L. (2001) Lateral drying in thick films of waterborne colloidal particles. Langmuir 17: 3202–3207.

    Article  CAS  Google Scholar 

  • Shimmin R.G., DiMauro A.J. and Braun P.V. (2006) Slow vertical deposition of colloidal crystals: A Langmuir-Blodgett process?, Langmuir 22 6507–6513.

    Article  CAS  Google Scholar 

  • Thouless M.D. (1990) Crack spacing in brittle films on elastic substrates. Journal of the American Ceramic Society, 73(7): 2144–2146.

    Article  Google Scholar 

  • Tirumkudulu M.S. and Russel W.B. (2005) Cracking in drying latex films. Langmuir, 21(11) 4938–4948

    Article  CAS  Google Scholar 

  • Vanderhoff J.W., Bradford E.B. and Carrington W.K. (1973) The transport of water through latex films, Journal of Polymer Science, part C: Polymer Symposium, 41:155–174

    Article  Google Scholar 

  • van Krevelen D.W. (1990) Properties of Polymers: Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction from Additive Group Contribution, 3rd edition Elsevier: Amsterdam 569–573.

    Google Scholar 

  • Wallin M., Glover P.M., Hellgren A.C., Keddie J.L. and McDonald P.J. (2000) Depth profiles of polymer mobility during the film formation of a latex dispersion undergoing photoinitiated crosslinking. Macromolecules 33: 8443–8452

    Article  CAS  Google Scholar 

  • White L.R. (1982) Capillary rise in powders. Journal of Colloid and Interface Science, 90(2).536–538

    Article  CAS  Google Scholar 

  • White L.R. (2006) Personal communication.

    Google Scholar 

  • Winnik M.A. and Feng J. (1996) Latex blends: An approach to zero VOC coatings. Journal of Coatings Technology, 68(852):39–50.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Keddie, J.L., Routh, A.F. (2010). Drying of Latex Films. In: Fundamentals of Latex Film Formation. Springer Laboratory. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2845-7_3

Download citation

Publish with us

Policies and ethics