Fluctuations and Large Deviations in Non-equilibrium Systems

Conference paper

Abstract

For systems in contact with two reservoirs at different densities, the large deviation function of the density gives a possible way of extending the notion of free energy to non-equilibrium systems. This large deviation function of the density can be calculated explicitly for exclusion models in one dimension with open boundary conditions. For the simple exclusion process as well as for other diffusive systems, one can also obtain the distribution of the current of particles flowing through the system and the results lead to a simple conjecture for the large deviation function of the current of more general diffusive systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Fluctuations in stationary non-equilibrium states of irreversible processes. Phys. Rev. Lett. 87, 040601 (2001) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat, Phys. 107, 635–675 (2002) MATHCrossRefGoogle Scholar
  3. 3.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Minimum dissipation principle in stationary non-equilibrium states. J. Stat. Phys. 116, 831–841 (2004) MATHCrossRefADSGoogle Scholar
  4. 4.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic current fluctuations in stochastic lattice gases. Phys. Rev. Lett. 94, 030601 (2005) CrossRefADSGoogle Scholar
  5. 5.
    L. Bertini, D. Gabrielli, and J.L. Lebowitz, Large deviations for a stochastic model of heat flow. J. Stat. Phys. 121, 843–885 (2005) MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    T. Bodineau and B. Derrida, Current fluctuations in non-equilibrium diffusive systems: An additivity principle. Phys. Rev. Lett. 92, 180601 (2004) CrossRefADSGoogle Scholar
  7. 7.
    T. Bodineau and B. Derrida, Distribution of current in non-equilibrium diffusive systems and phase transitions. Phys. Rev. E 72(6), 066110 (2005) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    T. Bodineau and B. Derrida, Cumulants and large deviations of the current in non-equilibrium steady states. C. R. Phys. 8, 540–555 (2007) CrossRefADSGoogle Scholar
  9. 9.
    D. Chowdhury, L. Santen, and A. Schadschneider, Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    M. Clincy, B. Derrida, and M.R. Evans, Phase transitions in the ABC model. Phys. Rev. E 67, 066115 (2003) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 69, 667–687 (1992) MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    B. Derrida, M.R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493–1517 (1993) MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    B. Derrida, J.L. Lebowitz, and E.R. Speer, Free energy functional for non-equilibrium systems: an exactly solvable case. Phys. Rev. Lett. 87, 150601 (2001) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    B. Derrida, J.L. Lebowitz, and E.R. Speer, Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107, 599–634 (2002) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    B. Derrida, J.L. Lebowitz, and E.R. Speer, Exact free energy functional for a driven diffusive open stationary non-equilibrium system. Phys. Rev. Lett. 89, 030601 (2002) CrossRefADSGoogle Scholar
  16. 16.
    B. Derrida, J.L. Lebowitz, and E.R. Speer, Exact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion process. J. Stat. Phys. 110, 775–810 (2003) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    B. Derrida, B. Douçot, and P.E. Roche, Current fluctuations in the one dimensional symmetric exclusion process with open boundaries. J. Stat. Phys. 115, 717–748 (2004) MATHCrossRefADSGoogle Scholar
  18. 18.
    B. Derrida, C. Enaud, and J.L. Lebowitz, The asymmetric exclusion process and Brownian excursions. J. Stat. Phys. 115, 365–382 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    B. Derrida, J.L. Lebowitz, and E.R. Speer, Entropy of open lattice systems. J. Stat. Phys. 126, 1083–1108 (2007) MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    C. Enaud, and B. Derrida, Large deviation functional of the weakly asymmetric exclusion process. J. Stat. Phys. 114, 537–562 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    M.R. Evans, Phase transitions in one-dimensional non-equilibrium systems. Braz. J. Phys. 30, 42–57 (2000) CrossRefGoogle Scholar
  22. 22.
    D.J. Evans and D.J. Searles, The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2002) CrossRefADSGoogle Scholar
  23. 23.
    D.J. Evans, E.G.D. Cohen, and G.P. Morriss, Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401 (1993) MATHCrossRefADSGoogle Scholar
  24. 24.
    M.R. Evans, Y. Kafri, H.M. Koduvely, and D. Mukamel, Phase separation in one-dimensional driven diffusive systems. Phys. Rev. Lett. 80, 425–429 (1998) CrossRefADSGoogle Scholar
  25. 25.
    G. Gallavotti and E.D.G. Cohen, Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995) MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Y. Kafri, E. Levine, D. Mukamel, G.M. Schütz, and J. Torok, Criterion for phase separation in one-dimensional driven systems. Phys. Rev. Lett. 89, 035702 (2002) CrossRefADSGoogle Scholar
  27. 27.
    C. Kipnis, C. Marchioro, and E. Presutti, Heat-flow in an exactly solvable model. J. Stat. Phys. 27, 65–74 (1982) CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    C. Kipnis, S. Olla, and S.R.S. Varadhan, Hydrodynamics and large deviations for simple exclusion processes. Commun. Pure Appl. Math. 42, 115–137 (1989) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    J. Krug, Boundary-induced phase-transitions in driven diffusive systems. Phys. Rev. Lett. 67, 1882–1885 (1991) CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    J. Kurchan, Fluctuation theorem for stochastic dynamics. J. Phys. A 31, 3719 (1998) MATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    J.L. Lebowitz and H. Spohn, A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–366 (1999) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    T.M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, vol. 324. Springer, Berlin (1999) MATHGoogle Scholar
  33. 33.
    G.M. Schütz and E. Domany, Phase-transitions in an exactly soluble one-dimensional exclusion process. J. Stat. Phys. 72, 277–296 (1993) MATHCrossRefADSGoogle Scholar
  34. 34.
    H. Spohn, Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A 16, 4275–4291 (1983) CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    H. Spohn, Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991) MATHGoogle Scholar
  36. 36.
    J. Tailleur, J. Kurchan, and V. Lecomte, Mapping non-equilibrium onto equilibrium: the macroscopic fluctuations of simple transport models. Phys. Rev. Lett. 99, 150602 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Laboratoire de Physique StatistiqueEcole Normale SupérieureParis Cedex 05France

Personalised recommendations