Skip to main content

Entanglement-Assisted Quantum Error-Correcting Codes

  • Conference paper
New Trends in Mathematical Physics

Abstract

We develop the theory of entanglement-assisted quantum error correcting codes (EAQECCs), a generalization of the stabilizer formalism to the setting in which the sender and receiver have access to pre-shared entanglement. Conventional stabilizer codes are equivalent to self-orthogonal symplectic codes. In contrast, EAQECCs do not require self-orthogonality, which greatly simplifies their construction. We show how any classical quaternary block code can be made into a EAQECC. Furthermore, the error-correcting power of the quantum codes follows directly from the power of the classical codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit error correcting coding and decoding: Turbo-codes. In: Proc. ICC’93, Geneva, Switzerland, May 1993, pp. 1064–1070 (1993)

    Google Scholar 

  2. G. Bowen, Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002)

    Article  ADS  Google Scholar 

  3. S. Bravyi, D. Fattal, and D. Gottesman, GHZ extraction yield for multipartite stabilizer states. J. Math. Phys. 47, 062106 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.R. Calderbank, and P.W. Shor, Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  5. A.R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane, Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Devetak, A.W. Harrow, and A. Winter, A resource framework for quantum Shannon theory. IEEE Trans. Inf. Theory 54(10), 4587–4618 (2008)

    Article  MathSciNet  Google Scholar 

  7. D. Fattal, T.S. Cubitt, Y. Yamamoto, S. Bravyi, and I.L. Chuang, Entanglement in the stabilizer formalism. quant-ph/0406168 (2004)

  8. R.G. Gallager, Low-density parity-check codes. PhD thesis, Massachusetts Institute of Technology (1963)

    Google Scholar 

  9. D. Gottesman, Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Gottesman, Stabilizer codes and quantum error correction. PhD thesis, California Institute of Technology (1997)

    Google Scholar 

  11. M.H. Hsieh, T. Brun, and I. Devetak, Entanglement-assisted quantum quasicyclic low-density parity-check codes. Phys. Rev. A 79, 032340 (2009)

    Article  ADS  Google Scholar 

  12. E. Knill, and R. Laflamme, A theory of quantum error correcting codes. Phys. Rev. A 55, 900–911 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. D.J.C. MacKay, G. Mitchison, and P.L. McFadden, Sparse-graph codes for quantum error correction. IEEE Trans. Inf. Theory 50, 2315–2330 (2004)

    Article  MathSciNet  Google Scholar 

  14. M.A. Nielsen, and I.L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  15. J. Preskill, Lecture notes for physics 229: Quantum information and computation (1998). http://www.theory.caltech.edu/people/preskill/ph229

  16. P.W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  ADS  Google Scholar 

  17. A.M. Steane, Error-correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. W.G. Unruh, Maintaining coherence in quantum computers. Phys. Rev. A 51, 992–997 (1995)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Devetak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Devetak, I., Brun, T.A., Hsieh, MH. (2009). Entanglement-Assisted Quantum Error-Correcting Codes. In: Sidoravičius, V. (eds) New Trends in Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2810-5_14

Download citation

Publish with us

Policies and ethics