Skip to main content

Abstract

This paper reviews techniques for measurement of basic mechanical properties of thin films. Emphasis is placed on the adaptations needed to prepare, handle, and characterize thin films, and on adaptations of fracture mechanics for adhesion strength. The paper also describes a recent development, the use of electrical current as a controlled means of applying thermo-mechanical stresses to electrical conductors to characterize their fatigue behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Read, D. T.; Volinsky, A. A. Thin Films for Microelectronics and Photonics: Physics, Mechanics, Characterization, and Reliability, in Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging: Volume 1 Materials Physics/Materials Mechanics., Suhir, E.; Lee, Y. C.; Wong, C. P., editors; Springer: New York, 2007; Chapter 4, pp. 135–180.

    Google Scholar 

  2. Brotzen, F. R. Mechanical Testing of Thin-Films, International Materials Reviews 39 (1), 24–45, 1994.

    Google Scholar 

  3. Ding, X. Y.; Ko, W. H.; Mansour, J. M. Residual-Stress and Mechanical-Properties of Boron-Doped P+-Silicon Films, Sensors and Actuators A-Physical 23 (1–3), 866–871, 1990.

    Article  Google Scholar 

  4. Read, D. T.; Dally, J. W. A New Method for Measuring the Strength and Ductility of Thin-Films, Journal of Materials Research 8 (7), 1542–1549, 1993.

    Article  Google Scholar 

  5. Sharpe, W. N.; Jackson, K. M.; Coles, G.; Eby, M. A.; Edwards, R. L. Tensile Tests of Various Thin Films, in ASTM STP 1413: Mechanical Properties of Structural Films; edited by Muhlstein, C.; Brown, S. B., editors; American Society for Testing and Materials: West Conshohoken, PA, 2001; pp. 229–247.

    Google Scholar 

  6. Read, D. T. Young's Modulus of Thin Films by Speckle Interferometry, Measurement Science and Technology 9 (4), 676–685, 1998.

    Article  MathSciNet  Google Scholar 

  7. Sharpe, W. N.; Yuan, B.; Edwards, R. L. A New Technique for Measuring the Mechanical Properties of Thin Films, Journal of Microelectromechanical Systems 6 (3), 193–199, 1997.

    Article  Google Scholar 

  8. Read, D. T.; Cheng, Y. W.; Keller, R. R.; McColskey, J. D. Tensile Properties of FreeStanding Aluminum Thin Films, Scripta Materialia 45 (5), 583–589, 2001.

    Article  Google Scholar 

  9. Ruud, J. A.; Josell, D.; Spaepen, F.; Greer, A. L. A New Method for Tensile Testing of Thin Films, Journal of Materials Research 8 (1), 112–117, 1993.

    Article  Google Scholar 

  10. Espinosa, H. D.; Prorok, B. C.; Peng, B. Plasticity Size Effects in Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Tension, Journal of the Mechanics and Physics of Solids 52 (3), 667–689, 2004.

    Article  Google Scholar 

  11. Haque, M. A.; Saif, M. T. A. Deformation Mechanisms in Free-Standing Nanoscale Thin Films: A Quantitative in situ Transmission Electron Microscope Study, Proceedings of the National Academy of Sciences of the United States of America 101 (17), 6335–6340, 2004.

    Article  Google Scholar 

  12. LaVan, D. A.; Tsuchiya, T.; Coles, G.; Knauss, W. G.; Chasiotis, I.; Read, D. T. Cross Comparison of Direct Strength Testing Techniques on Polysilicon Films, in ASTM STP 1413: Mechanical Properties of Structural Films; edited by Muhlstein, C.; Brown, S. B., editors; American Society for Testing and Materials: West Conshohoken, PA, 2001; pp. 16–27.

    Google Scholar 

  13. VanLandingham, M. R. Review of Instrumented Indentation, Journal of Research of the National Institute of Standards and Technology 108 (4), 249–265, 2003.

    Google Scholar 

  14. Loubet, J. L.; Georges, J. M.; Marchesini, O.; Meille, G. Vickers Indentation Curves of Magnesium-Oxide (MgO), Journal of Tribology-Transactions of the ASME 106 (1), 43–48, 1984.

    Article  Google Scholar 

  15. Doerner, M. F.; Nix, W. D. A Method for Interpreting the Data from Depth-Sensing Indentation Measurements, Journal of Materials Research 1 (4), 601–616, 1986.

    Article  Google Scholar 

  16. Oliver, W. C.; Pharr, G. M. An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments, Journal of Materials Research 7 (6), 1564–1583, 1992.

    Article  Google Scholar 

  17. King, R. B.; Osullivan, T. C. Sliding Contact Stresses in A Two-Dimensional Layered Elastic Half-Space, International Journal of Solids and Structures 23 (5), 581–597, 1987.

    Article  Google Scholar 

  18. Tsui, T. Y.; Oliver, W. C.; Pharr, G. M. Influences of Stress on the Measurement of Mechanical Properties Using Nanoindentation.1. Experimental Studies in an Aluminum Alloy, Journal of Materials Research 11 (3), 752–759, 1996.

    Article  Google Scholar 

  19. Bolshakov, A.; Oliver, W. C.; Pharr, G. M. Influences of Stress on the Measurement of Mechanical Properties Using Nanoindentation.2. Finite Element Simulations, Journal of Materials Research 11 (3), 760–768, 1996.

    Article  Google Scholar 

  20. Hainsworth, S. V.; Chandler, H. W.; Page, T. F. Analysis of Nanoindentation Load-Displacement Loading Curves, Journal of Materials Research 11 (8), 1987–1995, 1996.

    Article  Google Scholar 

  21. Berriche, R. Vickers Hardness from Plastic Energy, Scripta Metallurgica et Materialia 32 (4), 617–620, 1995.

    Article  Google Scholar 

  22. Li, X. D.; Bhushan, B. A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications, Materials Characterization 48 (1), 11–36, 2002.

    Google Scholar 

  23. Freund, L. B.; Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution; Cambridge University Press: Cambridge, UK, 2003.

    Google Scholar 

  24. Ohring, M. Materials Science of Thin Films, Deposition and Structure; Academic Press: San Diego, CA, 2002.

    Google Scholar 

  25. Nix, W. D. Mechanical-Properties of Thin-Films, Metallurgical Transactions A-Physical Metallurgy and Materials Science 20 (11), 2217–2245, 1989.

    Article  Google Scholar 

  26. Jankowski, A. F.; Tsakalakos, T. Effects of Deflection on Bulge Test Measurements of Enhanced Modulus in Multilayered Films, Thin Solid Films 291 243–247, 1996.

    Article  Google Scholar 

  27. Small, M. K.; Nix, W. D. Analysis of the Accuracy of the Bulge Test in Determining the Mechanical-Properties of Thin-Films, Journal of Materials Research 7 (6), 1553–1563, 1992.

    Article  Google Scholar 

  28. Liechti, K. M.; Shirani, A. Large-Scale Yielding in Blister Specimens, International Journal of Fracture 67 (1), 21–36, 1994.

    Article  Google Scholar 

  29. Petersen, K. E.; Guarnieri, C. R. Youngs Modulus Measurements of Thin-Films Using Micromechanics, Journal of Applied Physics 50 (11), 6761–6766, 1979.

    Article  Google Scholar 

  30. Osterberg, P. M.; Senturia, S. D. M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures, Journal of Microelectro-mechanical Systems 6 (2), 107–118, 1997.

    Article  Google Scholar 

  31. Weihs, T. P.; Hong, S.; Bravman, J. C.; Nix, W. D. Mechanical Deflection of Cantilever Microbeams — A New Technique for Testing the Mechanical-Properties of Thin-Films, Journal of Materials Research 3 (5), 931–942, 1988.

    Article  Google Scholar 

  32. Dauskardt, R.; Lane, M.; Ma, Q.; Krishna, N. Adhesion and Debonding of Multi-Layer Thin Film Structures, Engineering Fracture Mechanics 61 (1), 141–162, 1998.

    Article  Google Scholar 

  33. Volinsky, A. A.; Moody, N. R.; Gerberich, W. W. Interfacial Toughness Measurements for Thin Films on Substrates, Acta Materialia 50 (3), 441–466, 2002.

    Article  Google Scholar 

  34. Lane, M. Interface Fracture, Annual Review of Materials Research 33 29–54, 2003.

    Article  Google Scholar 

  35. Thouless, M. D. Cracking and Delamination of Coatings, Journal of Vacuum Science and Technology A-Vacuum Surfaces and Films 9 (4), 2510–2515, 1991.

    Article  Google Scholar 

  36. Hutchinson, J. W.; Suo, Z. Mixed-Mode Cracking in Layered Materials, Advances in Applied Mechanics, 29, 63–191, 1992.

    Article  MATH  Google Scholar 

  37. Beuth, J. L. Cracking of Thin Bonded Films in Residual Tension, International Journal of Solids and Structures 29 (13), 1657–1675, 1992.

    Article  Google Scholar 

  38. Marshall, D. B.; Evans, A. G. Measurement of Adherence of Residually Stressed Thin-Films by Indentation.1. Mechanics of Interface Delamination, Journal of Applied Physics 56 (10), 2632–2638, 1984.

    Article  Google Scholar 

  39. Kriese, M. D.; Gerberich, W. W.; Moody, N. R. Quantitative Adhesion Measures of Multilayer Films: Part I. Indentation Mechanics, Journal of Materials Research 14 (7), 3007–3018, 1999.

    Article  Google Scholar 

  40. Kriese, M. D.; Gerberich, W. W.; Moody, N. R. Quantitative Adhesion Measures of Multilayer Films: Part II. Indentation of W/Cu, W/W, Cr/W, Journal of Materials Research 14 (7), 3019–3026, 1999.

    Article  Google Scholar 

  41. Volinsky, A. A.; Moody, N. R.; Gerberich, W. W. Interfacial Toughness Measurements for Thin Films on Substrates, Acta Materialia 50 (3), 441–466, 2002.

    Article  Google Scholar 

  42. Charalambides, M. Fracture Mechanics Specimen for Interface Toughness Measurement, Journal of Applied Mechanics 56 (0), 77–82, 1989.

    Article  Google Scholar 

  43. Hofinger, I.; Oechsner, M.; Bahr, H. A.; Swain, M. V. Modified Four-Point Bending Specimen for Determining the Interface Fracture Energy for Thin, Brittle Layers, International Journal of Fracture 92 (3), 213–220, 1998.

    Article  Google Scholar 

  44. Becker, T. L.; McNaney, J. M.; Cannon, R. M.; Ritchie, R. O. Limitations on the Use of the Mixed-Mode Delaminating Beam Test Specimen: Effects of the Size of the Region of K-Dominance, Mechanics of Materials 25 (4), 291–308, 1997.

    Article  Google Scholar 

  45. Mönig, R.; Keller, R. R.; Volkert, C. A. Thermal Fatigue Testing of Thin Metal Films, Review of Scientific Instruments 75 (11), 4997–5004, 2004.

    Article  Google Scholar 

  46. Keller, R. R.; Geiss, R. H.; Cheng, Y.-W.; Read, D. T. IMECE2004-61291: Microstructure Evolution During Alternating-Current-Induced Fatigue, in Proceedings of the International Mechanical Engineering Conference and Exposition 2004; American Society of Mechanical Engineers: 2004; pp. 107–112.

    Google Scholar 

  47. Geiss, R. H.; Read, D. T.; Keller, R. R. TEM Study of Dislocation Loops in Deformed Aluminium Films, Microscopy and Microanalysis 11 (S02), 1870–1871, 2005.

    Google Scholar 

  48. Keller, R. R.; Geiss, R. H.; Barbosa, N.; Slifka, A. J.; Read, D. T. Strain-Induced Grain Growth During Rapid Thermal Cycling of Aluminum Interconnects, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 38A (13), 2263– 2272, 2007.

    Article  Google Scholar 

  49. Barbosa, N.; Keller, R. R.; Read, D. T.; Geiss, R. H.; Vinci, R. P. Comparison of Electrical and Microtensile Evaluations of Mechanical Properties of an Aluminum Film, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 38A (13), 2160–2167, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Read, D.T., Volinsky, A.A. (2009). Measurements for Mechanical Reliability of Thin Films. In: Pluvinage, G., Sedmak, A. (eds) Security and Reliability of Damaged Structures and Defective Materials. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2792-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2792-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2791-7

  • Online ISBN: 978-90-481-2792-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics