Skip to main content

Neuroimmune Chemical Messengers and Their Conservation During Evolution

  • Chapter
  • First Online:
Stem Cells in Marine Organisms

Abstract

Cellular communication is mediated primarily by chemical signal molecules. This suggests that during the course of evolution, organisms in which this form of communication developed have greatly increased their chances of survival, ensuring that this trait passes on to their descendents. Interestingly, for the most part, these signaling molecules and their apparent systems/mechanisms have remained relatively intact during evolution. However, this principle of conservation does not preclude events that may lead to an old signal system being used in a new functional capacity. A classical example of this phenomenon can be observed in the immune and neuroendocrine systems. They share a common pool of identical molecules, i.e., opioids, involved in the maintenance of homeostasis, which occurs in both invertebrates and vertebrates. Specifically, many of these protein molecules, active as chemical messengers, are also derived from larger polypeptide gene products and classified into three families: the proopiomelanocortin (POMC), the proenkephalin and the prodynorphin families. In marine mussels the immunocytes produce and react to opioid peptides, demonstrating autocrine and paracrine signaling. Under stressful stimuli immune system alteration occurs, in part mediated by opioid signals, coupling these processes and demonstrating neuroimmune-regulatory phenomena. Additionally, both immune and nervous systems contain mammalian-cytokine-like molecules, which also interact with the endogenous opioid system. Recent data have demonstrated the presence of novel opiate receptors on human multi-lineage progenitor cells. Interestingly, these same receptors are found on molluscan neural cells, suggesting their early evolutionary origins and conservation. The only data on molluscan stem cells are the presence of CD14- and CD-34-like molecules on prohemocyte membranes. These data suggest that the highly sophisticated mammalian immune and neuroendocrine systems had their origins in their invertebrate counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo HF, Sliifkin M, Pouchet GR, Pardo M (1978) Immunohistochemical localization of a choriogonadotropin-like protein in bacteria isolated from cancer patients. Cancer 41:1217–1229

    Article  CAS  Google Scholar 

  • Audigier Y, Deprat AM, Cros J (1980) Comparative study of opiate and enkephalin receptors on lower vertebrates. Comp Biochem Physiol 67:191–194

    Google Scholar 

  • Ballarin L, Cima F (2005) Cytochemical properties of Botryllus schlosseri haemocytes: Indications for morpho-functional characterisation. Eur J Histochem 49:255–264

    CAS  Google Scholar 

  • Beck G Habicht GS (1986) Isolation and characterization of a primitive interleukin-1-like protein from an invertebrate, Asterias forbesi. Proc Natl Acad Sci USA 83:7429–7433

    Article  CAS  Google Scholar 

  • Bianchi E, Alessandrini C, Guarna M, Tagliamone A (1993) Endogenous codeine and morphine are stored in specific brain neurons. Brain Res 627:210–215

    Article  CAS  Google Scholar 

  • Bianchi E, Guarna M, Tagliamonte A (1994) Immunocytochemical localization of endogenous codeine and morphine. Adv Neuroimmunol 4:83–92

    Article  CAS  Google Scholar 

  • Bilfinger TV, Fimiani C, Stefano GB (1998) Morphine’s immunoregulatory actions are not shared by fentanyl. Int J cardiol 64:61–66

    Article  Google Scholar 

  • Bilfinger TV, Hartman A, Liu Y, Magazine HI, Stefano GB (1997) Cryopreserved veins used for myocardial revascularization: A 5 year experience and a possible mechanism for their increased failure. Ann Thoracic Surg 63:1063–1069

    Article  CAS  Google Scholar 

  • Blalock JE (1984) The immune system as a sensory organ. J Immunol 132:1067–1070

    CAS  Google Scholar 

  • Blalock JE, Smith EM (1985) The immune system: Our mobile brain? Immunol Today 6:115–117

    Article  CAS  Google Scholar 

  • Bellaïche Y, Schweisguth F (2001) Lineage diversity in the Drosophila nervous system. Curr Opin Gen Dev 11:418–423

    Article  Google Scholar 

  • Brix-Christensen V, Tonnesen E, Sanchez RG, Bilfinger TV, Stefano GB (1997) Endogenous morphine levels increase following cardiac surgery as part of the antiinflammatory response? Intern J Cardiol 62:191–197

    Article  CAS  Google Scholar 

  • Cadet P, Mantione KJ, Stefano GB (2003a) Molecular identification and functional expression of μ3, a novel alternatively spliced variant of the human mu opiate receptor gene. J Immunol 170:5118–5123

    CAS  Google Scholar 

  • Cadet P, Zhu W, Mantione K, Rymer M, Dardik I, Reisman S, Hagberg S, Stefano GB (2003b) Cyclic exercise induces anti-inflammatory signal molecule increases in the plasma of Parkinson’s patients. Int J Mol Med 12:485–492

    CAS  Google Scholar 

  • Cadet P, Mantione KJ, Zhu W, Kream RM, Sheehan M, Stefano GB (2007) A functionally coupled μ3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol 179:5839–5844

    CAS  Google Scholar 

  • Cardinale GJ, Donnerer J, Finck AD, Kantrowitz JD, Oka K, Spector S (1987) Morphine and codeine are endogenous components of human cerebrospinal fluid. Life Sci 40:301–306

    Article  CAS  Google Scholar 

  • Caselgrandi E, Kletsas D, Ottaviani E (2000) Neutral endopeptidase-24.11 (NEP) deactivates PDGF- and TGF-beta-induced cell shape changes in invertebrate immunocytes. Cell Biol Int 24:85–90

    Article  CAS  Google Scholar 

  • Chen Y, Mestek A, Liu J, Hurley JA, Yu L (1993) Molecular cloning and functional expression of a m-opioid receptor from rat brain. Mol Pharmacol 44:8–12

    CAS  Google Scholar 

  • Cima F, Matozzo V, Marin MG, Ballarin L (2000) Haemocytes of the clam Tapes philippinarum (Adams & Reeve, 1850): Morphofunctional characterisation. Fish Shellfish Immunol 10:677–693

    Article  CAS  Google Scholar 

  • Civelli O, Douglass J, Goldstein A, Herbert E (1985) Sequence and expression of the rat prodynorphin gene. Proc Natl Acad Sci USA 82:4291–4295

    Article  CAS  Google Scholar 

  • Clark JA, Liu L, Price M, Hersh BS, Edelson M, Pasternak GW (1989) Kappa opiate receptor multiplicity: Evidence for two U50, 488- sensitive K1 subtypes and a novel K3 subtype. J Pharmacol Exp Therap 251:461–468

    CAS  Google Scholar 

  • Collins DP (2006) Isolation and characterization of umbilical cord blood-derived multipotent stem cells arising from an adherent CD45+/CD34+ cell subset. (Paper presented at the 4th Ann Int Umbilical Cord Blood Transplant Symp)

    Google Scholar 

  • Cruciani RA, Dvorkin B, Klinger HP, Makman MH (1994) Presence in neuroblastoma cells of a m3 receptor with selectivity for opiate alkaloids but without affinity for opioid peptides. Brain Res 667:229–237

    Article  CAS  Google Scholar 

  • Dobrenis K, Makman MH, Stefano GB (1995) Occurrence of the opiate alkaloid-selective m3 receptor in mammalian microglia, astrocytes and kupffer cells. Brain Res 686:239–248

    Article  CAS  Google Scholar 

  • Donnerer J, Cardinale G, Coffey J, Lisek CA, Jardine I, Spector S (1987) Chemical characterization and regulation of endogenous morphine and codeine in the rat. J Pharmacol Exp Therap 242:583–587

    CAS  Google Scholar 

  • Donnerer J, Oka K, Brossi A, Rice KC, Spector S (1986) Presence and formation of codeine and morphine in the rat. Proc Natl Acad Sci USA 83:4566–4567

    Article  CAS  Google Scholar 

  • Duvaux-Miret O, Dissous C, Guatron JP, Pattou E, Kordon C, Capron A (1990) The helminth Schistosoma mansoni expresses a peptide similar to human beta-endorphin and possesses a POMC-related gene. New Biol 2:93–99

    CAS  Google Scholar 

  • Duvaux-Miret O, Stefano GB, Smith EM, Capron A (1992a) Neuroimmunology of host parasite interactions: Proopiomelanocortin derivedpeptides in the infection by Schistosoma mansoni. Adv Neuroimmunol 2:297–311

    Article  CAS  Google Scholar 

  • Duvaux-Miret O, Stefano GB, Smith EM, Mallozzi L, Capron A (1992b) Proopiomelanocortin-derived peptides as tools of immune evasion for the human trematode Schistosoma mansoni. Acta Biol Hung 43:281–286

    CAS  Google Scholar 

  • Edley SM, Hall L, Herkenham M, Pert CB (1982) Evolution of striated opiate receptors. Brain Res 249:184–188

    Article  CAS  Google Scholar 

  • Epple A, Nibbio B, Spector S, Brinn J (1994) Endogenous codeine: Autocrine regulator of catecholamine release from chromaffin cells. Life Sci 54:695–702

    Article  CAS  Google Scholar 

  • Esch T, Guarna M, Bianchi E, Zhu W, Stefano GB (2004) Commonalities in the central nervous system’s involvement with complementary medical therapies: Limbic morphinergic processes. Med Sci Monit 10:MS6–MS17

    Google Scholar 

  • Evans CJ, Keith DE Jr, Morrison H, Magendzo K, Edwards RH (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955

    Article  CAS  Google Scholar 

  • Ewandinger NM, Ridgway RL, Syed NI, Lukowiak K, Bulloch AGM (1996) Identification and localization of a (Met5)-enkephalin-like peptide in the mollusc, Lymnaea stagnalis. Brain Res 737:1–15

    Article  Google Scholar 

  • Fecho K, Maslonek KA, Coussons-Read ME, Dykstra LA, Lysle DT (1994) Macrophage-derived nitric oxide is involved in the depressed concanavalin A responsiveness of splenic lymphocytes from rats administered morphine in vivo. J Immunol 152:5845–5851

    CAS  Google Scholar 

  • Ferreira SH, Duarte ID, Lorenzetti BB (1991) The molecular mechanism of action of peripheral morphine analgesia: Stimulation of the cGMP system via nitric oxide release. Eur J Pharmacol 201:121

    Article  CAS  Google Scholar 

  • Franceschi C, Cossarizza A, Monti D, Ottaviani E (1991) Cytotoxicity and immunocyte markers in cells from the freshwater snail Planorbarius corneus (L.) (Gastropoda pulmonata): Implications for the evolution of natural killer cells. Eur J Immunol 21:489–493

    Article  CAS  Google Scholar 

  • Franchini A, Fontanili P, Ottaviani E (1994) Expression of pro-opiomelanocortin (POMC)-mRNA in phagocytic hemocytes of Mytilus galloprovincialis. In: Argano R, Cirotto C, Grassi Milano E, Mastrolia L (eds) Contributions to animal biology. Halocynthia Assoc, Palermo, pp 233–236

    Google Scholar 

  • Franchini A, Kletsas D, Ottaviani E (1996) Immunocytochemical evidence of PDGF- and TGF-beta-like molecules in invertebrate and vertebrate immunocytes: An evolutionary approach. Histochem J 28:599–605

    Article  CAS  Google Scholar 

  • Frontali N, Gainer H (1977) Peptides in invertebrate nervous system. In: Gainer H (ed) Peptides in neurobiology. Plenum Press, New York, pp 259–271

    Google Scholar 

  • Genedani S, Bernardi M, Ottaviani E, Franceschi C, Leung MK, Stefano GB (1993) Differential modulation of invertebrate hemocyte motility by CRF, ACTH, and its fragments. Peptides 15:203–206

    Article  Google Scholar 

  • Gintzler AR, Gershon MD, Spector S (1978) A nonpeptide morphine-like compound: Immunocytochemical localization in the mouse brain. Science 199:447–448

    Article  CAS  Google Scholar 

  • Gintzler AR, Levy A, Spector S (1976) Antibodies as a means of isolating and characterizing biologically active substances: Presence of a non-peptide morphine-like compound in the central nervous system. Proc Natl Acad Sci USA 73:2132–2136

    Article  CAS  Google Scholar 

  • Goldstein A, Barrett RW, James IF, Lowney LI, Weitz C, Knipmeyer LI, Rapoport H (1985) Morphine and other opiates from beef brain and adrenal. Proc Natl Acad Sci USA 82:5203–5207

    Article  CAS  Google Scholar 

  • Goumon Y, Casares F, Zhu W, Stefano GB (2001) The presence of morphine in ganglionic tissues of Modiolus deminissus: A highly sensitive method of quantitation for morphine and its derivatives. Mol Brain Res 86:184–188

    Article  CAS  Google Scholar 

  • Goumon Y, Strub JM, Moniatte M, Nullans G, Poteur L, Hubert P, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1996) The C-terminal bisphosphorylated proenkephalin-A-(209–237)-peptide from adrenal medullary chromaffin granules possesses antibacterial activity [published erratum appears in Eur J Biochem (1996) 237(3):883]. Europ J Biochem 235:516–525

    Article  CAS  Google Scholar 

  • Guarna M, Ghelardini C, Galeotti N, Stefano GB, Bianchi E (2005) Neurotransmitter role of endogenous morphine in CNS. Med Sci Monitor 11:RA190–RA193

    CAS  Google Scholar 

  • Gyires K (1994) The role of endogenous nitric oxide in the gastroprotective action of morphine. Eur J Pharmacol 255:33–37

    Article  CAS  Google Scholar 

  • Harrison SM, Harrison DA (2006) Contrasting mechanisms of stem cell maintenance in Drosophila. Semin Cell Dev Biol 17:518–533

    Article  CAS  Google Scholar 

  • Haynes LW (1980) Peptide neuroregulation in invertebrates. Progr Neurobiol 15:205–223

    Article  CAS  Google Scholar 

  • Hiripi L, Salanki J, Stefano GB, Assanah P (1985) Heavy metal pollution influences serotonin level and dopamine-stimulated adenylate cyclase activity in the CNS of molluscs. In: Salanki J (ed) Symposia Biologica Hungarica, vol 29. Academy Hungarica Press, Budapest, pp 401–412

    Google Scholar 

  • Hiripi L, Stefano GB (1980) Dopamine inhibition of tryptophane hydroxylase in molluscan nervous tissue homogenates: Evidence for intracellular site of action. Life Sci 27:1205–1209

    Article  CAS  Google Scholar 

  • Horikawa S, Takai T, Toyosata M, Takahashi H, Noda M, Kakidani H, Kubo T, Hirose T, Inayama S, Hayashida H, Miyata T (1983) Isolation and structural organization of the human preproenkephalin B gene. Nature 306:611–614

    Article  CAS  Google Scholar 

  • Horowitz D, Callahan JF, Pelus LM, Fukuda S, King AG (2002) Inhibition of hematopoietic progenitor cell growth by Tyr-MIF, an endogenous opiate modulator, and its degradation products. Int Immunopharmacol 2:721–730

    Article  CAS  Google Scholar 

  • Hughes TK, Cadet P, Rady PL, Tyring SK, Chin R, Smith EM (1994) Evidence for the production and action of IL-10 in pituitary cells. Cellular Mol Neurobiol 14:59–69

    Article  CAS  Google Scholar 

  • Hughes TK, Chin R (1994) Interactions of neuropeptides and cytokines. In: Scharrer B, Smith EM, Stefano GB (eds) Neuropeptides and immunoregulation. Springer-Verlag, Berlin, pp 101–119

    Google Scholar 

  • Hughes TK, Chin R, Smith EM, Leung MK, Stefano GB (1991a) Similarities of signal systems in vertebrates and invertebrates: Detection, action, and interactions of immunoreactive monokines in the mussel, Mytilus edulis. Adv Neuroimmunol 1:59–70

    Article  CAS  Google Scholar 

  • Hughes TK, Smith EM, Cadet P, Sinisterra JI, Leung MK, Shipp MA, Scharrer B, Stefano GB (1990) Interaction of immunoactive monokines (IL-1 and TNF) in the bivalve mollusc Mytilus edulis. Proc Natl Acad Sci USA 87:4426–4429

    Article  CAS  Google Scholar 

  • Hughes TK, Smith EM, Stefano GB (1991b) Detection of immunoreactive Interleukin-6 in invertebrate hemolymph and nervous tissue. Progr Neuroimmune Endocrinol 4:234–239

    Google Scholar 

  • Hughes TKJ, Smith EM, Barnett JA, Charles R, Stefano GB (1991c) LPS stimulated invertebrate hemocytes: A role for immunoreactive TNF and IL-1. Dev Comp Immunol 15:117–122

    Article  Google Scholar 

  • Josefsson JO, Johansson P (1979) Naloxone reversible effect of opioid on pinocytosis in Amoeba proteus. Nature 78:283–292

    Google Scholar 

  • Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishik S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine beta-neo-endorphin/dynorphin precursor. Nature 298:245–249

    Article  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science. McGraw-Hill/Appleton & Lange, United States

    Google Scholar 

  • Kieffer BL, Befort K, Gaveriaux-Ruff CE, Hirth CG (1992) The d-opioid receptor: Isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA 89:12048–12052

    Article  CAS  Google Scholar 

  • Kim E, Clark AL, Kiss A, Hahn JW, Wesselschmidt R, Coscia CJ, Belcheva MM (2006) Mu- and kappa-opioids induce the differentiation of embryonic stem cells to neural progenitors. J Biol Chem 281:33749–33760

    Article  CAS  Google Scholar 

  • Kletsas D, Sassi D, Franchini A, Ottaviani E (1998) PDGF and TGF-beta induce cell shape changes in invertebrate immunocytes via specific cell surface receptors. Eur J Cell Biol 75:362–366

    CAS  Google Scholar 

  • Kondo M, Takeshita T, Ishii N, Nakamura M, Watanabe S, Arai K, Sugamura K (1993) Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262:1874–1877

    Article  CAS  Google Scholar 

  • Krause DS, Fackler MJ, Civin CI, May WS (1996) CD34: Structure, biology, and clinical utility. Blood 87:1–13

    CAS  Google Scholar 

  • Kream RM, Sheehan M, Cadet P, Mantione KJ, Zhu W, Casares F, Stefano GB (2007) Persistence of evolutionary memory: Primordial six-transmembrane helical domain mu opiate receptors selectively linked to endogenous morphine signaling. Med Sci Monit 13:SC5–SC6

    CAS  Google Scholar 

  • Kream RM, Stefano GB (2006a) De novo biosynthesis of morphine in animal cells: An evidence-based model. Med Sci Monit 12:RA207–RA219

    CAS  Google Scholar 

  • Kream RM, Stefano GB (2006b) Morphine synthesis in animals (Editorial). Med Sci Monit 12:ED1–ED2

    Google Scholar 

  • Kream RM, Zukin RS, Stefano GB (1980) Demonstration of two classes of opiate binding sites in the nervous tissue of the marine mollusc Mytilus edulis. Positive homotropic cooperativity of lower affinity binding sites. J Biol Chem 255:9218–9224

    CAS  Google Scholar 

  • Laurent V, Salzet M (1995) Isolation of a renin-like enzyme from the leech Theromyzon tessulatum. Peptides 16:1351–1358

    Article  CAS  Google Scholar 

  • Laurent V, Salzet M (1996a) Identification and properties of an angiotensin-converting enzyme in the leech Theromyzon tessulatum. Peptides 17:737–745

    Article  CAS  Google Scholar 

  • Laurent V, Salzet M (1996b) Metabolism of enkephalins in head membranes of the leech Theromyzon tessulatum by peptidases. Regul Pept 65:123–131

    Article  CAS  Google Scholar 

  • Lee SC, Spector S (1991) Don’t use changes in endogenous morphine and codeine contents in the fasting rat. J Pharmacol Exp Therap 257:647–652

    CAS  Google Scholar 

  • LeRoith D, Trudgill DL, Roth J, Shiloach J, Lewis ME, Pert CB, Kriger DT (1982) Corticotropin and b-endorphin-like materials are native to unicellular organisms. Proc Natl Acad Sci USA 79:2086–2090

    Article  CAS  Google Scholar 

  • Leung MK, Stefano GB (1984) Isolation and identification of enkephalin in pedal ganglia of Mytilus edulis (mollusca). Proc Natl Acad Sci USA 81:955–958

    Article  CAS  Google Scholar 

  • Leung MK, Stefano GB (1987) Comparative neurobiology of opioids in invertebrates with special attention to senescent alterations. Progr Neurobiol 28:131–159

    Article  CAS  Google Scholar 

  • Lim JY, Lee BH, Kang SW, Wago H, Han SS (2004) Association of reticular cells with CD34+/Sca-1+ apoptotic cells in the hemopoietic organ of grasshopper, Euprepocnemis shirakii. J Insect Physiol 50:657–665

    Article  CAS  Google Scholar 

  • Liu Y, Bilfinger TV, Stefano GB (1996a) A rapid and sensitive quantitation method of endogenous morphine in human plasma. Life Sci 60:237–243

    Article  Google Scholar 

  • Liu Y, Shenouda D, Bilfinger TV, Stefano ML, Magazine HI, Stefano GB (1996b) Morphine stimulates nitric oxide release from invertebrate microglia. Brain Res 722:125–131

    Article  CAS  Google Scholar 

  • Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptodes: Multiple agonists and receptors. Nature 267:495–499

    Article  CAS  Google Scholar 

  • Luschen W, Buck F, Willig A, Jaros PP (1991) Isolation, sequence analysis, and physiological properties of enkephalins in the nervous tissue of the shore crab, Carcinus maenas L. Proc Natl Acad Sci USA 88:8671–8675

    Article  CAS  Google Scholar 

  • Majeed NH, Przewlocka B, Machelska H, Przewlocki R (1994) Inhibition of nitric oxide synthase attenuates the development of morphine tolerance and dependence in mice. Neuropharmacology 33:189–192

    Article  CAS  Google Scholar 

  • Makman MH, Bilfinger TV, Stefano GB (1995a) Human granulocytes contain an opiate receptor mediating inhibition of cytokine-induced activation and chemotaxis. J Immunol 154:1323–1330

    CAS  Google Scholar 

  • Makman MH, Dvorkin B, Stefano GB (1995b) Murine macrophage cell lines contain m3-opiate receptors. Eur J Pharmacol 273:R5–R6

    Article  CAS  Google Scholar 

  • Makman MH, Stefano GB (1984) Marine mussels and cephalopods as models for study of neuronal aging. In: Mitchell DH, Johnson TE (eds) Invertebrate models in aging research. CRC Press Inc, Boca Raton, Florida, pp 165–190

    Google Scholar 

  • Malagoli D, Franchini A, Ottaviani E (2000) Synergistic role of cAMP and IP(3) in corticotropin-releasing hormone-induced cell shape changes in invertebrate immunocytes. Peptides 21:175–182

    Article  CAS  Google Scholar 

  • Malagoli D, Gobba F, Ottaviani E (2003) Effects of 50-Hz magnetic fields on the signalling pathways of fMLP-induced shape changes in invertebrate immunocytes: The activation of an alternative “stress pathway”. Biochim Biophys Acta 1620:185–190

    CAS  Google Scholar 

  • Malagoli D, Ottaviani E (2005) Cytotoxicity as a marker of mussel health status. J Mar Biol Ass UK 85:359–362

    Article  CAS  Google Scholar 

  • Malfroy B, Swerts JP, Guyon A, Roques BP, Schwartz JC (1978) High affinity enkephalin degrading peptidase in brain is increased after morphine. Nature 276:523–526

    Article  CAS  Google Scholar 

  • Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U (2007) A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446:320–324

    Article  CAS  Google Scholar 

  • Mattia A, Farmer SC, Takemori AE, Sultana M, Portoghese PS, Mosberg HI, Bowen WD, Porreca F (1992) Spinal opioid delta antinociception in the mouse mediation by a 5’-NTII-sensitive delta receptor subtype. J Pharmacol Exp Therap 260:518–525

    CAS  Google Scholar 

  • Nagy L, Hiripi L (2002) Role of tyrosine, DOPA and decarboxylase enzymes in the synthesis of monoamines in the brain of the locust. Neurochem Int 41:9–16

    Article  CAS  Google Scholar 

  • Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X, Leonard WJ (1993) Interleukin-2 receptor gamma chain: A functional component of the interleukin-7 receptor. Science 262:1877–1880

    Article  CAS  Google Scholar 

  • Oka K, Kantrowitz JD, Spector S (1985) Isolation of morphine from toad skin. Proc Natl Acad Sci USA 82:1852–1854

    Article  CAS  Google Scholar 

  • Ottaviani E, Caselgrandi E, Bondi M, Cassarizza A, Monti D, Franceschi C (1991a) The “immune-mobile brain”: Evolutionary evidence. Adv Neuroimmunol 1:27–39

    Article  CAS  Google Scholar 

  • Ottaviani E, Caselgrandi E, Franchini A (1988) Epinephrine investigation in the snail brain of Helicella virgata (Gastropoda, pulmonata). Comp Biochem Physiol C Toxicol Pharmacol 89:267–269

    Article  Google Scholar 

  • Ottaviani E, Cossarizza A, Ortolani C, Monti D, Franceschi C (1991b) ACTH-like molecules in gastropod molluscs: A possible role in ancestral immune response and stress. Proc Biol Sci R Soc 245:215–218

    Article  CAS  Google Scholar 

  • Ottaviani E, Franceschi C (1996) The neuroimmunology of stress from invertebrates to man. Progr Neurobiol 48:421–440

    Article  CAS  Google Scholar 

  • Ottaviani E, Franceschi C (1997) The invertebrate phagocytic immunocyte: Clues to a common evolution of immune and neuroendocrine systems. Immunol Today 18:169–174

    Article  CAS  Google Scholar 

  • Ottaviani E, Franchini A, Barbieri D, Kletsas D (1998a) Comparative and morphofunctional studies on Mytilus galloprovincialis hemocytes: Presence of two aging-related hemocytes stages. Ital J Zool 65:349–354

    Article  Google Scholar 

  • Ottaviani E, Franchini A, Franceschi C (1998b) Presence of immunoreactive corticotropin-releasing hormone and cortisol molecules in invertebrate haemocytes and lower and higher vertebrate thymus. Histochem J 30:61–67

    Article  CAS  Google Scholar 

  • Ottaviani E, Franchini A, Hanukoglu I (1998c) In situ localization of ACTH receptor-like mRNA in molluscan and human immunocytes. Cell Mol Life Sci 54:139–142

    Article  CAS  Google Scholar 

  • Ottaviani E, Malagoli D, Franceschi C (2007) Common evolutionary origin of the immune and neuroendocrine systems: Ten years from circumstantial evidences to in silico approaches. Trends Immunol 28:497–502

    Article  CAS  Google Scholar 

  • Ottaviani E, Malagoli D, Franchini A (2004) Invertebrate humoral factors: Cytokines as mediators of cell survival. Progr Mol Subcell Biol 34:1–25

    CAS  Google Scholar 

  • Ottaviani E, Sassi D, Kletsas D (1997) PDGF- and TGF-beta-induced changes in cell shape of invertebrate immunocytes: Effect of calcium entry blockers. Eur J Cell Biol 74:336–341

    CAS  Google Scholar 

  • Paemen LR, Porchet-Hennere E, Masson M, Leung MK, Hughes TK, Stefano GB (1992) Glial localization of interleukin-1a in invertebrate ganglia. Cell Mol Neurobiol 12:463–472

    Article  CAS  Google Scholar 

  • Pasternak GW (1986) Multiple μ opiate receptors: Biochemical and pharmacological evidence for multiplicity. Biochem Pharmacol 35:361–364

    Article  CAS  Google Scholar 

  • Pasternak GW (1988) The opiate receptors. Humana Press, New Jersey

    Google Scholar 

  • Patey G, Rossier J (1986) Decouverte, anatomie et biosynthese des differentes familles de peptides opioides endogenes. Ann Endocrinologie (Paris) 47:71–87

    CAS  Google Scholar 

  • Pert CB, Taylor D (1980) Type 1 and type 2 opiate receptors: A subclassification scheme based upon GTP’s differential effects on binding. In: Way EL (ed) Endogenous and exogenous opiate agonists and antagonists. Pergamon Press, New York, pp 87–94

    Google Scholar 

  • Prevot V, Rialas C, Croix D, Salzet M, Dupouy JP, Puolain P, Beauvillain JC, Stefano GB (1998) Morphine and anandamide coupling to nitric oxide stimulated GnRH and CRF release from rat median eminence: Neurovascular regulation. Brain Res 790:236–244

    Article  CAS  Google Scholar 

  • Przewlocki R, Machelska H, Przewlocka B (1993) Inhibition of nitric oxide synthase enhances morphine antinociception in the rat spinal cord. Life Sci 53:PL1–PL5

    Article  Google Scholar 

  • Renwrantz L (1990) Internal defense system of Mytilus edulis. In: Stefano GB (ed) Neurobiology of Mytilus edulis. Studies in Neuroscience. Manchester University Press, Manchester, pp 256–275

    Google Scholar 

  • Rialas C, Bilfinger TV, Salzet M, Stefano GB (1998) Endomorphin 1 and 2 do not interact with the m3 opiate receptor subtype. Acta Pharmacol Sinica 19:403–407

    CAS  Google Scholar 

  • Rojtinnakorn J, Hirono I, Itami T, Takahashi Y, Aoki T (2002) Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immunol 13:69–83

    Article  CAS  Google Scholar 

  • Rothe H, Luschen W, Asken A, Willig A, Jaros PP (1991) Purified crustacean enkephalins inhibits release of hyperglycemic hormone in the crab, Carcinus maenas L. Comp Biochem Physiol C Toxicol Pharmacol 99:57–62

    Article  Google Scholar 

  • Rothman RB, Bykov V, DeCosta BR, Jacobson AE, Rice KC, Brady LS (1990) Interaction of endogenous opioid peptides and other drugs with four kappa binding sites in guinea pig brain. Peptides 11:311–331

    Article  CAS  Google Scholar 

  • Rozsa KS, Rubakhin SS, Szucs A, Hughes TK, Stefano GB (1997) Opposite effects of IL-2 and -4 on GABA-induced inward currents in dialyzed Lymnaea neurons. Gen Pharmacol 29:73–77

    Google Scholar 

  • Russell SM, Keegan AD, Harada N, Nakamura Y, Noguchi M, Leland P, Friedmann MC, Miyajima A, Puri RK, Paul WE (1993) Interleukin-2 receptor gamma chain: A functional component of the interleukin-4 receptor. Science 262:1880–1883

    Article  CAS  Google Scholar 

  • Salzet M, Bulet P, Verger-Bocquet M, Malecha J (1995) Isolation and structural characterization of enkephalin-related peptides in the brain of the Rhynchobdellid leech Theromyzon tessulatum. FEBS Lett 357:187–191

    Article  CAS  Google Scholar 

  • Salzet M, Cocquerelle C, Verger-Bocquet M, Pryor SC, Rialas CM, Laurent V, Stefano GB (1997) Leech immunocytes contain proopiomelanocortin: Nitric oxide mediates hemolymph POMC processing. J Immunol 159:5400–5411

    CAS  Google Scholar 

  • Salzet M, Stefano GB (1997a) Invertebrate proenkephalin: Delta opioid binding sites in leech ganglia and immunocytes. Brain Res 768:224–232

    Article  CAS  Google Scholar 

  • Salzet M Stefano GB (1997b) Prodynorphin in invertebrates. Mol Brain Res 52:46–52

    Article  CAS  Google Scholar 

  • Salzet M, Stefano GB (1998) Evidence for an invertebrate neuroendocrine system: Neuropeptide processing in leech-host communication. Res Trends 5:85–98

    CAS  Google Scholar 

  • Salzet M, Verger-Bocquet M, Bulet P, Beauvillain JC, Malecha J (1996) Purification, sequence analysis and cellular localization of a prodynorphin-derived peptide related to the a neo-endorphin in the rhynchobdellid leech Theromyzon tessulatum. J Biol Chem 271:13191–13196

    Article  CAS  Google Scholar 

  • Sawada M, Hara N, Maeno T (1991) Ionic mechanism of the outward current induced by extracellular ejection of interleukin-1 onto identified neurons of Aplysia. Brain Res 545:248–256

    Article  CAS  Google Scholar 

  • Sawada M, Ichinose M, Stefano GB (1997) Nitric oxide inhibits the dopamine-induced K+ current via guanylate cyclase in Aplysia neurons. J Neurosci Res 50:450–456

    Article  CAS  Google Scholar 

  • Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  Google Scholar 

  • Scharrer B (1967) The neurosecretory neuron in neuroendocrine regulatory mechanisms. Am Zool 7:161–168

    CAS  Google Scholar 

  • Scharrer B (1978) Peptidergic neuron: Facts and trends. Gen Comp Endocrinol 34:50–62

    Article  CAS  Google Scholar 

  • Scharrer B, Paemen LR, Smith EM, Hughes TK, Liu Y, Pope M, Stefano GB (1996) The presence and effects of mammalian signal molecules in immunocytes of the insect Leucophaea madarae. Cell Tissue Res 283:93–97

    Article  CAS  Google Scholar 

  • Seta N, Kuwana M (2007) Human circulating monocytes as multipotential progenitors. Keio J Med 56:41–47

    Article  Google Scholar 

  • Shipp MA, Stefano GB, D’Adamio L, Switzer SN, Howard FD, Sinisterra JI, Scharrer B, Reinherz E (1990) Downregulation of enkephalin-mediated inflammatory response by CD10/neutral endopeptidase 24.11. Nature 347:394–396

    Article  CAS  Google Scholar 

  • Smith EM (1992) Hormonal activities of cytokines. Chem Immunol 52:154–172

    Article  CAS  Google Scholar 

  • Sonetti D, Ottaviani E, Bianchi F, Rodriquez M, Stefano ML, Scharrer B, Stefano GB (1994) Microglia in invertebrate ganglia. Proc Natl Acad Sci USA 91:9180–9184

    Article  CAS  Google Scholar 

  • Sonetti D, Ottaviani E, Stefano GB (1997) Opiate signaling regulates microglia activities in the invertebrate nervous system. Gen Pharmacol 29:39–47

    CAS  Google Scholar 

  • Sonetti D, Peruzzi E, Stefano GB (2005) Endogenous morphine and ACTH association in neural tissues. Med Sci Monit 11:MS22–MS30

    CAS  Google Scholar 

  • Stefano GB (1982) Comparative aspects of opioid-dopamine interaction. Cell Mol Neurobiol 2:167–178

    Article  CAS  Google Scholar 

  • Stefano GB (1986) Comparative opioid and related neuropeptide mechanisms. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Stefano GB (1989) Role of opioid neuropeptides in immunoregulation. Progr Neurobiol 33:149–159

    Article  CAS  Google Scholar 

  • Stefano GB (1990) Norepinephrine: Presence and interaction with endogenous biogenic amines. In: Stefano GB (ed) Neurobiology of Mytilus edulis. Manchester University Press, Manchester, pp 93–103

    Google Scholar 

  • Stefano GB (1992) Invertebrate and vertebrate immune and nervous system signal molecule commonalities. Cell Mol Neurobiol 12:357–366

    Article  CAS  Google Scholar 

  • Stefano GB (1998) Autoimmunovascular regulation: Morphine and anandamide stimulated nitric oxide release. J Neuroimmunol 83:70–76

    Article  CAS  Google Scholar 

  • Stefano GB (1999) The μ3 opiate receptor subtype. Pain Forum 8:206–209

    Google Scholar 

  • Stefano GB, Aiello E (1975) Histoflourescent localization of serotonin and dopamine in the nervous system and gill of Mytilus edulis (Bivalvia). Biol Bull 148:141–156

    Article  CAS  Google Scholar 

  • Stefano GB, Cadet P, Scharrer B (1989a) Stimulatory effects of opioid neuropeptides on locomotory activity and conformational changes in invertebrate and human immunocytes: Evidence for a subtype of delta receptor. Proc Natl Acad Sci USA 86:6307–6311

    Article  CAS  Google Scholar 

  • Stefano GB, Cadet P, Sinisterra JI, Charles R, Barnett JA, Kuruvilla S, Aiello E (1990) Functional neural anatomy of Mytilus edulis: Monoaminergic and opioid localization. In: Stefano GB (ed) Neurobiology of Mytilus edulis. Manchester University Press, Manchester, pp 38–56

    Google Scholar 

  • Stefano GB, Cadet P, Sinisterra JI, Scharrer B (1991a) Comparative aspects of the response of human and invertebrate immunocytes to stimulation by opioid neuropeptides. In: Stefano GB, Florey E (eds) Comparative aspects of neuropeptide function. University of Manchester Press, Manchester, pp 329–334

    Google Scholar 

  • Stefano GB, Catapane EJ (1979) Enkephalin increases dopamine levels in the CNS of a marine mollusc. Life Sci 24:1617–1622

    Article  CAS  Google Scholar 

  • Stefano GB, Catapanem EJ, Aiello E (1976) Dopaminergic agents: Influence on serotonin in the molluscan nervous system. Science 194:539–541

    Article  CAS  Google Scholar 

  • Stefano GB, Digenis A, Spector S, Leung MK, Bilfinger TV, Makman MH, Scharrer B, Abumrad NN (1993) Opiate-like substances in an invertebrate, an opiate receptor on invertebrate and human immunocytes, and a role in immunosuppression. Proc Natl Acad Sci USA 90:11099–11103

    Article  CAS  Google Scholar 

  • Stefano GB, Goumon Y, Bilfinger TV, Welters I, Cadet P (2000a) Basal nitric oxide limits immune, nervous and cardiovascular excitation: Human endothelia express a mu opiate receptor. Progr Neurobiol 60:513–530

    Article  CAS  Google Scholar 

  • Stefano GB, Goumon Y, Casares F, Cadet P, Fricchione GL, Rialas C, Peter D, Sonetti D, Guarna M, Welters I, Bianchi E (2000b) Endogenous morphine. Trends Neurosci 9:436–442

    Article  Google Scholar 

  • Stefano GB, Hartman A, Bilfinger TV, Magazine HI, Liu Y, Casares F, Goligorsky MS (1995a) Presence of the μ3 opiate receptor in endothelial cells: Coupling to nitric oxide production and vasodilation. J Biol Chem 270:30290–30293

    Article  CAS  Google Scholar 

  • Stefano GB, Hiripim L, Catapane EJ (1978) The effect of short- and long-term temperature stress on serotonin, dopamine and neuroepinephrine metabolism in molluscan ganglia. J Thermal Biol 3:79–83

    Article  CAS  Google Scholar 

  • Stefano GB, Kahoud J, Hughes J (1999) Inhibition of microglial egress in excised ganglia by human interleukin 10: Implications for its activity in invertebrates. Acta Biol Hungarica 50:247–256

    CAS  Google Scholar 

  • Stefano GB, Kream RM, Zukin RS (1980) Demonstration of stereospecific opiate binding in the nervous tissue of the marine mollusc Mytilus edulis. Brain Res 181:445–450

    Article  Google Scholar 

  • Stefano GB, Leung MK (1984) Presence of met-enkephalin-Arg6-Phe7 in molluscan neural tissues. Brain Res 298:362–365

    Article  CAS  Google Scholar 

  • Stefano GB, Leung MK, Bilfinger TV, Scharrer B (1995b) Effect of prolonged exposure to morphine on responsiveness of human and invertebrate immunocytes to stimulatory molecules. J Neuroimmunol 6:175–181

    Article  Google Scholar 

  • Stefano GB, Leung MK, Zhao X, Scharrer B (1989b) Evidence for the involvement of opioid neuropeptides in the adherence and migration of immunocompetent invertebrate hemocytes. Proc Natl Acad Sci USA 86:626–630

    Article  CAS  Google Scholar 

  • Stefano GB, Melchiorri P, Negri L, Hughes TK, Scharrer B (1992a) (D-Ala2)-Deltorphin I binding and pharmacological evidence for a special subtype of delta opioid receptor on human and invertebrate immune cells. Proc Natl Acad Sci USA 89:9316–9320

    Article  CAS  Google Scholar 

  • Stefano GB, Paemen LR, Hughes TK Jr (1992b) Autoimmunoregulation: Differential modulation of CD10/neutral endopeptidase 24.11 by tumor necrosis factor and neuropeptides. J Neuroimmunol 41:9–14

    Article  CAS  Google Scholar 

  • Stefano GB, Salzet B, Fricchione GL (1998a) Enkelytin and opioid peptide association in invertebrates and vertebrates: Immune activation and pain. Immunol Today 19:265–268

    Article  CAS  Google Scholar 

  • Stefano GB, Salzet B, Rialas CM, Pope M, Kustka A, Neenan K, Pryor SC, Salzet M (1997) Morphine and anandamide stimulated nitric oxide production inhibits presynaptic dopamine release. Brain Res 763:63–68

    Article  CAS  Google Scholar 

  • Stefano GB, Salzet M (1999) Invertebrate opioid precursors: Evolutionary conservation and the significance of enzymatic processing. Int Rev Cytol 187:261–286

    Article  CAS  Google Scholar 

  • Stefano GB, Salzet M, Bilfinger TV (1998b) Long-term exposure of human blood vessels to HIV gp120, morphine and anandamide increases endothelial adhesion of monocytes: Uncoupling of Nitric Oxide. J Cardiovasc Pharmacol 31:862–868

    Article  CAS  Google Scholar 

  • Stefano GB, Salzet M, Magazine HI, Bilfinger TV (1998c) Antagonist of LPS and IFN-g induction of iNOS in human saphenous vein endothelium by morphine and anandamide by nitric oxide inhibition of adenylate cyclase. J Cardiovasc Pharmacol 31:813–820

    Article  CAS  Google Scholar 

  • Stefano GB, Salzet-Raveillon B, Salzet M (1998d) Mytilus edulis hemocytes contains pro-opiomelanocortin: LPS and morphine stimulate differential processing. Molecular Brain Res 63:340–350

    Article  Google Scholar 

  • Stefano GB, Salzet-Raveillon B, Salzet M (1998e) Mytilus edulis hemolymph contain prodynorphin. Immunol Lett 63:33–39

    Article  CAS  Google Scholar 

  • Stefano GB, Scharrer B (1991) A possible immunoregulatory function for [Met]-enkephalin-Arg6-Phe7 involving human and invertebrate granulocytes. J Neuroimmunol 31:97

    Article  CAS  Google Scholar 

  • Stefano GB, Scharrer B (1994) Endogenous morphine and related opiates, a new class of chemical messengers. Adv Neuroimmunol 4:57–68

    Article  CAS  Google Scholar 

  • Stefano GB, Scharrer B (1996) The presence of the m3 opiate receptor in invertebrate neural tissues. Comp Biochem Physiol C Toxicol Pharmacol 113:369–373

    Article  CAS  Google Scholar 

  • Stefano GB, Scharrer B, Leung MK (1989c) Neurobiology of opioids in Leucophaea maderae. Cockroaches as models for neurobiology: Applications in biomedical research. CRC Press Inc, Boca Raton, Florida

    Google Scholar 

  • Stefano GB, Scharrer B, Smith EM, Hughes TK, Magazine HI, Bilfinger TV, Hartman A, Fricchione GL, Liu Y, Makman MH (1996) Opioid and opiate immunoregulatory processes. Crit Rev Immunol 16:109–144

    CAS  Google Scholar 

  • Stefano GB, Smith EM (1996) Adrenocorticotropin, a central trigger in immune responsiveness: Tonal inhibition of immune activation. Med Hypotheses 46:471–478

    Article  CAS  Google Scholar 

  • Stefano GB, Smith EM, Hughes TK (1991b) Opioid induction of immunoreactive interleukin-1 in Mytilus edulis and human immunocytes: An interleukin-1-like substance in invertebrate neural tissue. J Neuroimmunol 32:29–34

    Article  CAS  Google Scholar 

  • Stefano GB, Zhu W, Cadet P, Mantione K (2004) Morphine enhances nitric oxide release in the mammalian gastrointestinal tract via the m3 opiate receptor subtype: A hormonal role for endogenous morphine. J Physiol Pharmacol: Official J Polish Physiol Soc 55:279–288

    CAS  Google Scholar 

  • Stefano GB, Zhu W, Cadet P, Mantione K, Bilfinger TV, Bianchi E, Guarna M (2002) A hormonal role for endogenous opiate alkaloids: Vascular tissues. Neuroendocrinol Lett 23:21–26

    CAS  Google Scholar 

  • Stefano GB, Zukinm RS, Kream RM (1982) Evidence for the presynaptic localization of a high affinity opiate binding site on dopamine neurons in the pedal ganglia of Mytilus edulis. J Pharmacol Exp Therap 222:759–764

    CAS  Google Scholar 

  • Strub JM, Goumon Y, Lugardon K, Capon C, Lopez M, Moniatte M, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1996) Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173–194 from bovine adrenal medullary chromaffin granules. J Biol Chem 271:28533–28540

    Article  CAS  Google Scholar 

  • Szucs A, Stefano GB, Hughes TK, Rozsa KS (1992a) Modulation of voltage-activated ion currents on identified neurons of Helix pomatia L. by interleukin-1. Cell Mol Neurobiol 12:429–438

    Article  CAS  Google Scholar 

  • Szucs A, Stefano GB, Hughes TK, Rozsa KS (1992b) Modulation of voltage-activated ion currents on identified neurons of Helix pomatia L. by interleukin-1. Cell Mol Neurobiol 12:429–438

    Article  CAS  Google Scholar 

  • Taga T, Kishimoto T (1992) Cytokine receptors and signal transduction. FASEB J 6:3387–3396

    CAS  Google Scholar 

  • Traynor JR, Elliott J (1993) d-Opioid receptor subtypes and cross-talk with μ-receptors. Trends Pharmacol Sci 14:84–86

    Article  CAS  Google Scholar 

  • Turner A, Leung MK, Stefano GB (1994) Peptidases of significance in neuroimmunoregulation. In: Scharrer B, Smith EM, Stefano GB (eds) Neuropeptides in neuroimmunology. Springer-Verlag, Berlin, pp 152–169

    Google Scholar 

  • Udenfriend S, Kilpatrick DL (1984) Proenkephalin and the products of its processing: Chemistry and biology. In: Udenfriend S, Meienhofer J (eds) The Peptides, vol 6. Academic Press, San Diego, pp 26–69

    Google Scholar 

  • Udenfriend S, Meienhofer J (1984) Opioid peptides: Biology, chemistry and genetics. Academic Press, San Diego

    Google Scholar 

  • Vehovszky A, Salanki J (1983) Pharmacological characterization of postsynaptic potentials evoked in the bimodal pacemaker neuron of Helix pomatia L. Acta Physiol Hungarica 62:35–46

    CAS  Google Scholar 

  • Ventura C, Maioli M (2000) Opioid peptide gene expression primes cardiogenesis in embryonal pluripotent stem cells. Circulation Res 87:189–194

    CAS  Google Scholar 

  • Yasuda K, Raynor K, Kong H, Breder CD, Takeda J, Reisine T, Bell GI (1993) Cloning and functional comparison of κ and δ-opioid receptors from mouse brain. Proc Natl Acad Sci USA 90:6736–6740

    Article  CAS  Google Scholar 

  • Zhu W, Baggerman G, Goumon Y, Casares F, Brownawell B, Stefano GB (2001) Presence of morphine and morphine-6-glucuronide in the marine mollusk Mytilus edulis ganglia determined by GC/MS and Q-TOF-MS. Starvation increases opiate alkaloid levels. Mol Brain Res 88:155–160

    Article  CAS  Google Scholar 

  • Zhu W, Cadet P, Baggerman G, Mantione KJ, Stefano GB (2005a) Human white blood cells synthesize morphine: CYP2D6 modulation. J Immunol 175:7357–7362

    CAS  Google Scholar 

  • Zhu W, Ma Y, Cadet P, Yu D, Bilfinger TV, Bianchi E, Stefano GB (2003) Presence of reticuline in rat brain: A pathway for morphine biosynthesis. Mol Brain Res 117:83–90

    Article  CAS  Google Scholar 

  • Zhu W, Ma Y, Stefano GB (2002) Presence of isoquinoline alkaloids in molluscan ganglia. Neuroendocrinol Lett 23:329–334

    CAS  Google Scholar 

  • Zhu W, Mantionem KJ, Shen L, Cadet P, Esch T, Goumon Y, Bianchi E, Sonetti D, Stefano GB (2005b) Tyrosine and tyramine increase endogenous ganglionic morphine and dopamine levels in vitro and in vivo: CYP2D6 and tyrosine hydroxylase modulation demonstrates a dopamine coupling. Med Sci Monitor 11:BR397-BR404

    CAS  Google Scholar 

  • Zhu W, Mantione KJ, Shen L, Stefano GB (2005c) In vivo and in vitro L-DOPA exposure increases ganglionic morphine levels. Med Sci Monit 11:MS1-MS5

    CAS  Google Scholar 

  • Zhu W, Stefano GB (2004) Reticuline exposure to invertebrate ganglia increases endogenous morphine levels. Neuroendocrinol Lett 25:323–330

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Ottaviani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stefano, G.B., Salzet, M., Ottaviani, E. (2009). Neuroimmune Chemical Messengers and Their Conservation During Evolution. In: Rinkevich, B., Matranga, V. (eds) Stem Cells in Marine Organisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2767-2_6

Download citation

Publish with us

Policies and ethics