Skip to main content

Putative Stem Cell Origins in Solitary Tunicates

  • Chapter
  • First Online:

Abstract

Stem cells are primordial cells in complex metazoans, inside a developing embryo (blastocyst) and are understood to be totipotent (capable of differentiating into every cell type). Hematopoietic stem cells (HSC) are characterized by their capacity of self-renewal, multi-lineage differentiation. Because solitary tunicates are protochordates, they are believed to share certain developmental features of vertebrates and as such they are excellent, inexpensive, non-controversial animal models, when searching for stem cell strategies that are not likely to cause ethical, political or moral concerns. In the pharyngeal region and in the body wall there are collections of cells that form nodules capable of responding to antigenic stimulation. Turning to another approach related to differentiation in nodules vs. circulating cells, lymphocyte-like cells (LLCs) proliferate m response to allogeneic stimuli. In vitro labeling of proliferative hemocytes (blood cells) revealed significantly greater proliferative activity among individuals immunized with allogeneic tissue in contrast to autogeneically primed and naive animals. Enhanced proliferation was restricted to discrete crypts of dividing cells within the body wall of recipients. Here, increased proliferative activity was specifically associated with LLCs. A discrete circulatory hemocyte population mediates the recognition of histocompatibility antigens in Styela plicata. These immunocompetent cells, which bear an overt morphological similarity to vertebrate lymphocytes, specifically infiltrate incompatible tissue transplants prior to obvious allograft rejection. Host lymphocyte-like cells (LLC’s) accumulate around and within graft vascular tissue and appear to initiate rejection by means of cytotoxic activity. Yet to be tested are experiments that would show regeneration or transfer of immunological memory by removing these cells, characterizing their appearance with the aim of confirming whether they are terminally differentiated or may be cells with greater potential, i.e. protochordate stem cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alikani M (2007) The debate surrounding human embryonic stem cell research in the USA. Reprod Biomed Online 2:7–11

    Article  Google Scholar 

  • Azumi K, Yokozawa H, Ishii S (1991) Lipopolysaccharide induces release of a metallo-protease from hemocytes of the ascidian, Halocymthia roretzi. Dev Comp Immunol 15:1–7

    Article  CAS  Google Scholar 

  • Beck G, Vasta G, Marchalonis JJ, Habicht GS (1989) Characterization of interleukin-1 activity in tunicates. Comp Biochem Physiol 92B:93–98

    CAS  Google Scholar 

  • Cebrià F (2007) Regenerating the central nervous system: how easy for planarians! Dev Genes Evol l217:733–48

    Article  Google Scholar 

  • Cheung AM, Kwong YL, Liang R, Leung AY (2006) Stem cell model of hematopoiesis. Curr Stem Cell Res Theories 1:305–315

    CAS  Google Scholar 

  • Clause AR, Capaldi EA (2006) Caudal autotomy and regeneration in lizards. J Exp Zool 305:965–973

    Article  Google Scholar 

  • Cooper EL, Rinkevich B, Uhlenbruck G, Valembois P (1992) Invertebrate immunity: another viewpoint. Scand J Immunol 35:247–266

    Article  CAS  Google Scholar 

  • Cooper EL, Nisbet-Brown E (1993) Developmental immunology. Oxford University Press, USA

    Google Scholar 

  • Cooper EL, Parrinello N (2001) Immodefense. In: Sawada H, Yokosawa H, Lambert CC (eds) Tunicates: Cells and molecules, the biology of ascidians. Springer-Verlag, Tokio

    Google Scholar 

  • Endo T, Yoshino J, Kado K, Tochinai S (2007) Brain regeneration in anuran amphibians. Dev Growth Diff 49:121–129

    Google Scholar 

  • Goss RJ (1964) Adaptive growth. Basic Book, London

    Google Scholar 

  • Goss RJ (1969) Principles of regeneration. Basic Book, London

    Google Scholar 

  • Gottlieb PD (1974) Genetic correlation of a mouse light chain variable region marker with a thymocyte surface antigen. J Exp Med 140:1432–1437

    Article  CAS  Google Scholar 

  • Gurley KA, Rink JC, Alvarado AS (2008) β-catenin defines head versus tail identity during planerian regeneration and homeostasis. Science 319:323–327

    Article  CAS  Google Scholar 

  • Grünert M, Nurcombe V, Cool SM (2008) Stem cell fate decisions: the role of heparan sulfate in the control of autocrine and paracrine signals. Curr Stem Cell Res Theories 3:1–8

    Article  Google Scholar 

  • Horsley V, Aliprantis AO, Polak L, Glimcher LH (2008) Fuchs E.NFATc1 balances quiescence and proliferation of skin stem cells. Cell 2:299–310

    Article  CAS  Google Scholar 

  • Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Martí M, Dubova I, Izpisúa B (2006) Wnt/beta-catenin signaling regulates vertebrate limb regeneration. JC Genes Dev 20:3232–3237

    Article  CAS  Google Scholar 

  • Klein J (1989) Are invertebrates capable of anticipatory immune responses? Scand J Immunol 29:499–505

    Article  CAS  Google Scholar 

  • Kurosawa Y, Hashimoto K (1996) The immunoglobulin superfamily; Where do invertebrates fit in? Adv Comp Environ Physiol 23:151–184

    CAS  Google Scholar 

  • Lash LH, Putt DA, Zalups RK (2006) Influence of compensatory renal growth on susceptibility of primary cultures of renal cells to chemically induced injury. Toxicol Sci 94:417–427

    Article  CAS  Google Scholar 

  • Leri A, Kajstura J, Anversa P, Frishman WH (2008) Myocardial regeneration and stem cell repair. Curr Problems Cardiol 33:91–153

    Article  Google Scholar 

  • Lin H (2008) Cell biology of stem cells: an enigma of asymmetry and self-renewal. J Cell Biol 180:257–260

    Article  CAS  Google Scholar 

  • Littman DR, Thomas Y, Maddon PJ, Chess L, Axel R (1985) The isolation and sequence of the gene encoding T8: A molecule defining functional classes of T lymphocytes. Cell 40:237–246

    Article  CAS  Google Scholar 

  • Mansour MH, Cooper EL (1984) Serological and partial molecular characterization of a Thy-l homolog in tunicates. Europ J Immunol 14:1031–1039

    Article  CAS  Google Scholar 

  • Mansour MH, DeLange R, Cooper EL (1985) Isolation, purification and amino acid composition of the tunicate hemocyte Thy-1 homolog. J Biol Chem 260:2681–2686

    CAS  Google Scholar 

  • Mitsiadis TA, Barrandon O, Rochat A, Barrandon Y, De Bari C (2007) Stem cell niches in mammals. Exp Cell Res 313:3377–3385

    Article  CAS  Google Scholar 

  • Monniot C (1990) Diseases urochordata. In: Kinne O (ed) Diseases of marine animals III. Biologische Anstalt Helgoland, Hamburg

    Google Scholar 

  • Nakauchi H, Nolan GP, Hsu C, Huang HS, Kavathas P, Herzenberg LA (1985) Molecular cloning of Lyt-2, a membrane glycoprotein marking a subset of mouse T lymphocytes: Molecular homology to its human counterpart, Leu 2/T8 and to immunoglobulin variable regions. Proc Natl Acad Sci 82:5126–5130

    Article  CAS  Google Scholar 

  • Negm HI, Mansour MH, Cooper EL (199la) Identification and structural characterization of Lyt-l glycoproteins from tunicate hemocytes and mouse thymocytes. Comp Biochem Physiol 99B:741–749

    CAS  Google Scholar 

  • Negm HI, Mansour MH, Cooper EL (I991b) Serological characterization and partial purification of a Lyt-l homolog in tunicate hemocytes. Biol Cell 72:249–257

    Google Scholar 

  • Negm HI, Mansour MH, Cooper EL (1992) Identification and structural characterization of a Lyt-2/3 homolog in tunicates. Comp Biochem Physiol 101B:55–67

    CAS  Google Scholar 

  • O’Donoghue K, Chan J (2006) Human fetal mesenchymal stem cells. Curr Stem Cell Res Theories 1:371–386

    Google Scholar 

  • Petersen CP, Reddien PW (2007) Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319:327–330

    Article  CAS  Google Scholar 

  • Peddie CM, Smith VJ (1995) ‘Lymphocyte-like’ cells in ascidians: precursors for vertabrate lymphocytes? Fish Shellfish Immunol 5:613–629

    Article  Google Scholar 

  • Raftos DA (1990a) Cellular restriction of histocompatibility responses the solitary urochordate, Styela plicata. Dev Comp Immunol 15:241–249

    Google Scholar 

  • Raftos DA (1990b) Morphology of integumentary allograft rejection in the solitary urochordate, Styela plicata. Cell Tissue Res 261:389–396

    Article  Google Scholar 

  • Raftos DA (1991) Development of primitive recognition systems in invertebrates. In: Cooper EL, Nisbet-Brown E (eds) Developmental immunobiology. Oxford University Press, New York

    Google Scholar 

  • Raftos DA (1996) Histocompatibility reactions in invertebrates. In: Cooper EL (ed) Invertebrate Immune Responses: Cells and Molecular Products. Advances in Comparative & Environmental Physiology, vol. 23. Springer-Verlag Berlin Heidelberg

    Google Scholar 

  • Raftos DA, Cooper EL (1991) Proliferation of lymphocyte-like cells from the solitary tunicate, Styela clava, in response to allogeneic stimuli. J Exp Zool 260:391–400

    Article  CAS  Google Scholar 

  • Raftos DA, Cooper EL, Habicht GS, Beck G (1991) Invertebrate cytokines: tunicate cell proliferation stimulated by an interleukin 1-like molecule. Proc Natl Acad Sci 88:9518–9522

    Article  CAS  Google Scholar 

  • Raftos DA, Stillman DL, Cooper EL (1990) In vitro culture of tissue from the tunicate Styela clava. In Vitro Cell Dev Biol 26:962–970

    Article  CAS  Google Scholar 

  • Rossi L, Salvetti A, Batistoni R, Deri P, Gremigni V (2008) Molecular and cellular basis of regeneration and tissue repair: Planarians, a tale of stem cells. Cell Mol Sci 65:16–23

    Article  CAS  Google Scholar 

  • Rowley AF (1981) The blood cells of the sea squirt, Ciona intestinalis: morphology, differential counts and in vitro phacocytic activity. J Invert Pathol 37:91–200

    Article  Google Scholar 

  • Rowley AF (1982) Ultrastructural and cytochemical studies on the blood cells of the sea squirt, Ciona intestinalis. I. Stem cells and amoebocytes. Cell Tissue Res 223:403–414

    Article  CAS  Google Scholar 

  • Rumping JM, Jayne BC (1996) Muscle activity in autotomized tails of a lizard (Gekko gecko): a naturally occurring spinal preparation. J Comp Physiol 179:525–538

    Article  CAS  Google Scholar 

  • Sadeghi M (2007) Islamic perspectives on human cloning. Hum Reprod Gen Ethics 13:32–40

    Google Scholar 

  • Sawada T, Zhang J, Cooper EL (1994) Sustained viability and proliferation of hemocytes from the cultured pharynx of Styela clava. Mar Biol 119:597–603

    Article  Google Scholar 

  • Shapira A (2006) Law and bioethics in Israel: between liberal ethical values and Jewish religious norms. J Int Bioéthique 17:115–123, 165

    Article  Google Scholar 

  • Sukhatme VP, Sizer KC, Vollmer AC, Hunkapiller T, Parnes JR (1985a) The T cell differentiation antigen Leu-2/T8 is homologous to immunoglobulin and T cell receptor variable regions. Cell 40:591–597

    Article  CAS  Google Scholar 

  • Sukhatme VP, Vollmer AC, Erikson J, lsobe M, Crose C, Parnes JR (1985b) Gene for the human T cell differentiation antigen Leu-2/T8 is closely linked to the light chain locus on chromosome 2. J Exp Med 161:429–434

    Article  CAS  Google Scholar 

  • Watanabe H, Taneda Y (1982) Self or non-self recognition in compound ascidians. Am Zool 22:775–782

    Google Scholar 

  • Williams AF (1984) The immunoglobulin superfamily take shape. Nature 308:12–13

    Article  CAS  Google Scholar 

  • Williams AF, Gagnon J (1982) Neuronal cell Tby-l glycoproteins: Homology with immunoglobulin. Science 216:696–703

    Article  CAS  Google Scholar 

  • Wyss BK, Meyers JL, Sinn AL, Cai S, Pollok KE, Goebel WS (2008) A novel competitive repopulation strategy to quantitate engraftment of ex vivo manipulated murine marrow cells in submyeloablated hosts. Exp Hematol 36(4):513–521

    Article  CAS  Google Scholar 

  • Yin L, Fu SL, Shi GY, Li Y, Jin JQ, Ma ZW, Lu PH (2008) Expression and Regulation of Major Histocompatibility Complex on Neural Stem Cells and Their Lineages. Stem Cells Dev 17(1):53–65

    Article  CAS  Google Scholar 

  • Zamoyska R, Vollmer AC, Sizer KC, Liaw CH, Parnes JR (1985) Two Lyt-2 polypeptides arise from a single gene by alternative splicing patterns of mRNA. Cell 43:153–163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin L. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cooper, E.L. (2009). Putative Stem Cell Origins in Solitary Tunicates. In: Rinkevich, B., Matranga, V. (eds) Stem Cells in Marine Organisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2767-2_2

Download citation

Publish with us

Policies and ethics