Skip to main content

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 45))

  • 1243 Accesses

Abstract

So it might (have proven to) be useful during evolution to increase the number of essential components, while the separation of the ancestors of animals and higher plants took place only after formation of metazoans, and even though the number of possibly essential (chemically suitable and sufficiently abundant) elements is limited to about 40 at best, the rule of three functions produces another limit as it also holds for molecular “vitamins”, of course. The result will be some optimum function for the number of essential elements vs. histological complexity (and animals tend to use more different elements than plants, fungi or bacteria) which accordingly tends to be a smooth, steady one. Presumably this is why earthly organisms did not evolve into metazoans for most of the time of biological evolution, even much after oxygen did accumulate in the atmosphere. If so, the group of organisms forming the original basis of the Biological System of Elements – vascular plants and some mosses – had to be considered atypical, however. On the other hand, as the results reported here come directly from chemical physics pertinent to any kind of reproducing system, they will apply to any kind of living being, not just photoautotrophic metazoans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the controversy about inferred formation of and intoxication by stibane SbH3 purportedly produced by fungi in moist matraces (Emsley 2001; Thayer 1995) which was related to cot death syndrome (SIDS): in fact, SbH3 simply does not form in these circumstances.

  2. 2.

    For esters EL(L)R´-COOR can be estimated from charge change effects due to (de-)protonation and H/alkyl similarity for uncoordinated substituents (cp. amines):

    EL(L)R´-COOR ≈ EL(L)R´-COOH ≈ EL(L)R´-COO- + 0.5 V, that is, about +0.3 V (somewhat less than for nitriles).

References

  • Balahura RJ, Lewis NA (1976) Linkage isomers in coordination chemistry. Coord Chem Rev 20:109–154

    Article  CAS  Google Scholar 

  • Bjerrum J (1950) On the tendency of the metal ions toward complex formation. Chem Rev 46:381–407

    Article  CAS  Google Scholar 

  • Chatt J, Jeffery Leigh G, Neukomm H, Pickett CJ, Stanley DR (1980) Redox potential-structure relationships in metal complexes. Part 2. The influence of trans-substituents upon the redox properties of certain dinitrogen complexes of molybdenum and tungsten and some carbonyl analogues: inner-sphere versus outer-sphere electron transfer in the alkylation of co-ordinated dinitrogen. J Chem Soc, Dalton Trans 121–127

    Google Scholar 

  • Chou MH, Szalda DJ, Creutz C, Sutin N (1994) Reactivity and coordination chemistry of aromatic carboxamide RC(O)NH2 and carboxylate ligands: properties of pentaammineruthenium(II) and –(III) complexes. Inorg Chem 33:1674–1684

    Article  CAS  Google Scholar 

  • Christianson DW, Fierke CA (1996) Carbonic anhydrase: evolution of the zinc binding site by nature and by design. Acc Chem Res 29:331–339

    Article  CAS  Google Scholar 

  • Clarke BL (1975) Theorems on chemical network stability. J Chem Phys 62:773–775

    Article  CAS  Google Scholar 

  • Clarke BL (1980) Stability of complex reaction networks. Adv Chem Phys 43:1–217

    Article  CAS  Google Scholar 

  • Cotton FA, Wilkinson G (1981) Anorganische chemie: eine zusammenfassende Darstellung für Fortgeschrittene. Verlag Chemie, Weinheim/Deerfield Beach/Basel

    Google Scholar 

  • Donard OFX, Weber JH (1988) Volatilization of tin as stannane in anoxic environments. Nature 332:339–341

    Article  CAS  Google Scholar 

  • Dulka JJ, Risby TH (1976) Ultratrace metals in some environmental and biological systems. Anal Chem 48(A):640–653

    Google Scholar 

  • Eady RR (2003) Current status of structure function relationships of vanadium nitrogenases. Coord Chem Rev 237:23–30

    Article  CAS  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften 58:465–523

    Article  CAS  PubMed  Google Scholar 

  • Eismann F, Glindemann D, Bergmann A, Kuschk P (1997) Balancing phosphine in manure fermentation. J Environ Sci Health B – Pesticides, food contaminants and agricultural wastes 32:955–968

    Google Scholar 

  • Eiswirth M, Freund A, Ross J (1991b) Mechanistic classification of chemical oscillators and the role of species. Adv Chem Phys 80:127–198

    Article  CAS  Google Scholar 

  • Emsley J (2001) Nature’s building blocks. An A–Z guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  • Fränzle S (2008) REEs and their distributions as probes into biochemical fractionation and transport. In: Delfrey KN (ed) Rare Earths: research and application. Nova, Hauppauge, NY, Chapter 8

    Google Scholar 

  • Fränzle S, Markert B (2003) Carcinogenesis and chemotherapy viewed from the perspective of stoichiometric network analysis (SNA): what can the biological system of the elements contribute to an understanding of tumour induction by elemental chemical noxae (e.g. Ni2+, Cd2+) and to an understanding of chemotherapy? www.thescientificworld.com. DOI: 2003.202.tsw

  • Frausto Da Silva JJR, Williams RJP (2001) The biological chemistry of the elements. The inorganic chemistry of life. Oxford University Press, Oxford

    Google Scholar 

  • Golub AM, Köhler H (1979) Chemie der Pseudohalogenide. Deutscher Verlag der Wissenschaften, Berlin (East)

    Google Scholar 

  • Gribble GW (1992) Naturally occurring organohalogen compounds – a survey. J Nat Prod 55:1353–1395

    Article  CAS  Google Scholar 

  • Heß D (1999) Phlanzenphysiologie – molekulare und biochemische Grundlagen von Stoffwechsel und Entwicklung der Pflanzen. 10. Aufl., Ulmer, Stuttgart

    Google Scholar 

  • Horovitz CT (1988) Is the major part of the periodic system really inessential for life? J Trace Elem Electrolytes Health Dis 2:135–142

    CAS  PubMed  Google Scholar 

  • Irving H, Rossotti H (1956) Some relationships among the stabilities of metal complexes. Acta Chim Scand 10:72–93

    Article  CAS  Google Scholar 

  • Jenkins RO, Morris TA, Craig PJ, Ritchie AW, Ostah N (2000) Phosphine generation by mixed- and monoseptic cultures of anaerobic bacteria. Sci Total Environ 250:73–81

    Article  CAS  PubMed  Google Scholar 

  • Jordan RB (1994) Mechanismen anorganischer und metallorganischer Reaktionen. Teubner, Stuttgart

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kaim W, Schwederski B (1993) Bioanorganische Chemie. Teubner, Stuttgart

    Google Scholar 

  • Larsson E (1934) The dissociation constants of substituted ammonium and silver diammine ions and a relation between them. Z Phys Chem 169:208–214

    Google Scholar 

  • Le Son H, Suwannachot Y, Bujdak J, Rode BM (1998) Salt-induced peptide formation from amino acids in the presence of clay and related catalysts. Inorg Chim Acta 272:89–94

    Article  CAS  Google Scholar 

  • Lever ABP (1990) Electrochemical parametrization of metal complex redox potentials, using the ruthenium(III)/ruthenium(II) couple to generate a ligand electrochemical series. Inorg Chem 29:1271–1285

    Article  CAS  Google Scholar 

  • Lipscomb W (1982) Acceleration of reactions by enzymes. Acc Chem Res 15:232–238

    Article  CAS  Google Scholar 

  • Liu C, Xu H (2002) The metal site as a template for the metalloprotein structure formation. J Inorg Biochem 88:77–86

    Article  CAS  PubMed  Google Scholar 

  • Mansy SS, Cowan JA (2004) Iron-sulfur-cluster biosynthesis: toward an understanding of cellular machinery and molecular mechanism. Acc Chem Res 37:719–725

    Article  CAS  PubMed  Google Scholar 

  • Markert B (1996) Instrumental element and multi-element analysis of plant samples – methods and applications. Wiley, Chichester/New York

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Harcourt Bruce Jovanovich/Academic, London/Orlando

    Google Scholar 

  • Martell AE, Motekaitis RJ, Smith RM (1985) Speciation of metal complexes and and methods of predicting thermodynamics of metal-ligand reactions. Environmental inorganic chemistry. VCH, Weinheim/New York

    Google Scholar 

  • Mingos DMP (1984) The angular overlap model. Acc Chem Res 17:311–318

    Article  CAS  Google Scholar 

  • Mizerski W (1997) Tablice chemiczne. Wydawnictwo Adamantan, Warsaw

    Google Scholar 

  • Nozaki Y (1997) A fresh look at element distribution in the North Pacific. Eos 78:207–211

    Article  Google Scholar 

  • Pota G, Stedman G (1994) Exotic behaviour of chemical reaction systems. Acta Chim Hungarica – Model Chem 131:229–268

    Google Scholar 

  • Price NM, Morel FMM (1990) Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344:658–660

    Article  CAS  Google Scholar 

  • Riedel E (2004) Moderne anorganische chemie. De Gruyter, Berlin/New York

    Google Scholar 

  • Rosenzweig AC (2001) Copper delivery by metallochaperone proteins. Acc Chem Res 34:119–128

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg G (2008) Catalysis. Wiley/VCH, Weinheim/Bergstrasse

    Book  Google Scholar 

  • Schrauzer GN (1975) Nonenzymatic simulation of nitrogenase reactions and the mechanism of biological nitrogen fixation. Angew Chem Int Edit 14:514–522

    Article  CAS  Google Scholar 

  • Sillen LG (1967) How have seawater and air got their present compositions? Chem Br 1:291–297

    Google Scholar 

  • Simpson JS, Garson MJ (2004) Biosynthetic pathways to isocyanides and isothiocyanates; precursor incorporation studies on terpene metabolites in the tropical marine sponges Amphimedon terpenensis and Axinyssa n.sp. J Org Biomol Chem 2:939–948

    Article  CAS  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry. The biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJ/Oxford

    Google Scholar 

  • Strasdeit H (2001) Das erste cadmiumspezifische Enzym. Angewandte Chemie 113:730–732

    Article  Google Scholar 

  • Sykes P (1977) Reaktionsmechanismen der Organischen Chemie. Verlag Chemie, Weinheim/Deerfield Beach

    Google Scholar 

  • Tobe ML (1976) Reaktionsmechanismen der Anorganischen Chemie. Verlag Chemie/Physik Verlag, Weinheim

    Google Scholar 

  • Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal-sensors and metallochaperones. Acc Chem Res 38:775–783

    Article  CAS  PubMed  Google Scholar 

  • Vallee BL, Williams RJP (1968) Metalloenzymes. The entatic nature of their active sites. Proc Nat Acad Sci USA 59:498–505

    Google Scholar 

  • Wedler G (1982) Lehrbuch der Physikalischen Chemie. Verlag Chemie, Weinheim/Deerfield Beach/Basel

    Google Scholar 

  • Williams RJP, Frausto Da Silva JJR (1996) The natural selection of the chemical elements. Clarendon, Oxford

    Google Scholar 

  • Woolfolk CA, Whiteley HR (1962) Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactolyticus L. J Bacteriol 84:647–658

    CAS  PubMed  Google Scholar 

  • Yamazaki S, Yamazaki Y (1990) Nickel-catalyzed dehydrogenation of amines to nitriles. Bull Chem Soc Jpn 63:301–303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Fränzle .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fränzle, S. (2010). A Causal Model of Biochemical Essentiality. In: Chemical Elements in Plant and Soil: Parameters Controlling Essentiality. Tasks for Vegetation Science, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2752-8_3

Download citation

Publish with us

Policies and ethics