A Causal Model of Biochemical Essentiality

  • Stefan FränzleEmail author
Part of the Tasks for Vegetation Science book series (TAVS, volume 45)


So it might (have proven to) be useful during evolution to increase the number of essential components, while the separation of the ancestors of animals and higher plants took place only after formation of metazoans, and even though the number of possibly essential (chemically suitable and sufficiently abundant) elements is limited to about 40 at best, the rule of three functions produces another limit as it also holds for molecular “vitamins”, of course. The result will be some optimum function for the number of essential elements vs. histological complexity (and animals tend to use more different elements than plants, fungi or bacteria) which accordingly tends to be a smooth, steady one. Presumably this is why earthly organisms did not evolve into metazoans for most of the time of biological evolution, even much after oxygen did accumulate in the atmosphere. If so, the group of organisms forming the original basis of the Biological System of Elements – vascular plants and some mosses – had to be considered atypical, however. On the other hand, as the results reported here come directly from chemical physics pertinent to any kind of reproducing system, they will apply to any kind of living being, not just photoautotrophic metazoans.


Green Plant Catalytic Cycle Bidentate Ligand Complex Formation Constant Photosynthetic Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balahura RJ, Lewis NA (1976) Linkage isomers in coordination chemistry. Coord Chem Rev 20:109–154CrossRefGoogle Scholar
  2. Bjerrum J (1950) On the tendency of the metal ions toward complex formation. Chem Rev 46:381–407CrossRefGoogle Scholar
  3. Chatt J, Jeffery Leigh G, Neukomm H, Pickett CJ, Stanley DR (1980) Redox potential-structure relationships in metal complexes. Part 2. The influence of trans-substituents upon the redox properties of certain dinitrogen complexes of molybdenum and tungsten and some carbonyl analogues: inner-sphere versus outer-sphere electron transfer in the alkylation of co-ordinated dinitrogen. J Chem Soc, Dalton Trans 121–127Google Scholar
  4. Chou MH, Szalda DJ, Creutz C, Sutin N (1994) Reactivity and coordination chemistry of aromatic carboxamide RC(O)NH2 and carboxylate ligands: properties of pentaammineruthenium(II) and –(III) complexes. Inorg Chem 33:1674–1684CrossRefGoogle Scholar
  5. Christianson DW, Fierke CA (1996) Carbonic anhydrase: evolution of the zinc binding site by nature and by design. Acc Chem Res 29:331–339CrossRefGoogle Scholar
  6. Clarke BL (1975) Theorems on chemical network stability. J Chem Phys 62:773–775CrossRefGoogle Scholar
  7. Clarke BL (1980) Stability of complex reaction networks. Adv Chem Phys 43:1–217CrossRefGoogle Scholar
  8. Cotton FA, Wilkinson G (1981) Anorganische chemie: eine zusammenfassende Darstellung für Fortgeschrittene. Verlag Chemie, Weinheim/Deerfield Beach/BaselGoogle Scholar
  9. Donard OFX, Weber JH (1988) Volatilization of tin as stannane in anoxic environments. Nature 332:339–341CrossRefGoogle Scholar
  10. Dulka JJ, Risby TH (1976) Ultratrace metals in some environmental and biological systems. Anal Chem 48(A):640–653Google Scholar
  11. Eady RR (2003) Current status of structure function relationships of vanadium nitrogenases. Coord Chem Rev 237:23–30CrossRefGoogle Scholar
  12. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften 58:465–523CrossRefPubMedGoogle Scholar
  13. Eismann F, Glindemann D, Bergmann A, Kuschk P (1997) Balancing phosphine in manure fermentation. J Environ Sci Health B – Pesticides, food contaminants and agricultural wastes 32:955–968Google Scholar
  14. Eiswirth M, Freund A, Ross J (1991b) Mechanistic classification of chemical oscillators and the role of species. Adv Chem Phys 80:127–198CrossRefGoogle Scholar
  15. Emsley J (2001) Nature’s building blocks. An A–Z guide to the elements. Oxford University Press, OxfordGoogle Scholar
  16. Fränzle S (2008) REEs and their distributions as probes into biochemical fractionation and transport. In: Delfrey KN (ed) Rare Earths: research and application. Nova, Hauppauge, NY, Chapter 8Google Scholar
  17. Fränzle S, Markert B (2003) Carcinogenesis and chemotherapy viewed from the perspective of stoichiometric network analysis (SNA): what can the biological system of the elements contribute to an understanding of tumour induction by elemental chemical noxae (e.g. Ni2+, Cd2+) and to an understanding of chemotherapy? DOI: 2003.202.tsw
  18. Frausto Da Silva JJR, Williams RJP (2001) The biological chemistry of the elements. The inorganic chemistry of life. Oxford University Press, OxfordGoogle Scholar
  19. Golub AM, Köhler H (1979) Chemie der Pseudohalogenide. Deutscher Verlag der Wissenschaften, Berlin (East)Google Scholar
  20. Gribble GW (1992) Naturally occurring organohalogen compounds – a survey. J Nat Prod 55:1353–1395CrossRefGoogle Scholar
  21. Heß D (1999) Phlanzenphysiologie – molekulare und biochemische Grundlagen von Stoffwechsel und Entwicklung der Pflanzen. 10. Aufl., Ulmer, StuttgartGoogle Scholar
  22. Horovitz CT (1988) Is the major part of the periodic system really inessential for life? J Trace Elem Electrolytes Health Dis 2:135–142PubMedGoogle Scholar
  23. Irving H, Rossotti H (1956) Some relationships among the stabilities of metal complexes. Acta Chim Scand 10:72–93CrossRefGoogle Scholar
  24. Jenkins RO, Morris TA, Craig PJ, Ritchie AW, Ostah N (2000) Phosphine generation by mixed- and monoseptic cultures of anaerobic bacteria. Sci Total Environ 250:73–81CrossRefPubMedGoogle Scholar
  25. Jordan RB (1994) Mechanismen anorganischer und metallorganischer Reaktionen. Teubner, StuttgartGoogle Scholar
  26. Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton, FLGoogle Scholar
  27. Kaim W, Schwederski B (1993) Bioanorganische Chemie. Teubner, StuttgartGoogle Scholar
  28. Larsson E (1934) The dissociation constants of substituted ammonium and silver diammine ions and a relation between them. Z Phys Chem 169:208–214Google Scholar
  29. Le Son H, Suwannachot Y, Bujdak J, Rode BM (1998) Salt-induced peptide formation from amino acids in the presence of clay and related catalysts. Inorg Chim Acta 272:89–94CrossRefGoogle Scholar
  30. Lever ABP (1990) Electrochemical parametrization of metal complex redox potentials, using the ruthenium(III)/ruthenium(II) couple to generate a ligand electrochemical series. Inorg Chem 29:1271–1285CrossRefGoogle Scholar
  31. Lipscomb W (1982) Acceleration of reactions by enzymes. Acc Chem Res 15:232–238CrossRefGoogle Scholar
  32. Liu C, Xu H (2002) The metal site as a template for the metalloprotein structure formation. J Inorg Biochem 88:77–86CrossRefPubMedGoogle Scholar
  33. Mansy SS, Cowan JA (2004) Iron-sulfur-cluster biosynthesis: toward an understanding of cellular machinery and molecular mechanism. Acc Chem Res 37:719–725CrossRefPubMedGoogle Scholar
  34. Markert B (1996) Instrumental element and multi-element analysis of plant samples – methods and applications. Wiley, Chichester/New YorkGoogle Scholar
  35. Marschner H (1986) Mineral nutrition of higher plants. Harcourt Bruce Jovanovich/Academic, London/OrlandoGoogle Scholar
  36. Martell AE, Motekaitis RJ, Smith RM (1985) Speciation of metal complexes and and methods of predicting thermodynamics of metal-ligand reactions. Environmental inorganic chemistry. VCH, Weinheim/New YorkGoogle Scholar
  37. Mingos DMP (1984) The angular overlap model. Acc Chem Res 17:311–318CrossRefGoogle Scholar
  38. Mizerski W (1997) Tablice chemiczne. Wydawnictwo Adamantan, WarsawGoogle Scholar
  39. Nozaki Y (1997) A fresh look at element distribution in the North Pacific. Eos 78:207–211CrossRefGoogle Scholar
  40. Pota G, Stedman G (1994) Exotic behaviour of chemical reaction systems. Acta Chim Hungarica – Model Chem 131:229–268Google Scholar
  41. Price NM, Morel FMM (1990) Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344:658–660CrossRefGoogle Scholar
  42. Riedel E (2004) Moderne anorganische chemie. De Gruyter, Berlin/New YorkGoogle Scholar
  43. Rosenzweig AC (2001) Copper delivery by metallochaperone proteins. Acc Chem Res 34:119–128CrossRefPubMedGoogle Scholar
  44. Rothenberg G (2008) Catalysis. Wiley/VCH, Weinheim/BergstrasseCrossRefGoogle Scholar
  45. Schrauzer GN (1975) Nonenzymatic simulation of nitrogenase reactions and the mechanism of biological nitrogen fixation. Angew Chem Int Edit 14:514–522CrossRefGoogle Scholar
  46. Sillen LG (1967) How have seawater and air got their present compositions? Chem Br 1:291–297Google Scholar
  47. Simpson JS, Garson MJ (2004) Biosynthetic pathways to isocyanides and isothiocyanates; precursor incorporation studies on terpene metabolites in the tropical marine sponges Amphimedon terpenensis and Axinyssa n.sp. J Org Biomol Chem 2:939–948CrossRefGoogle Scholar
  48. Sterner RW, Elser JJ (2002) Ecological stoichiometry. The biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJ/OxfordGoogle Scholar
  49. Strasdeit H (2001) Das erste cadmiumspezifische Enzym. Angewandte Chemie 113:730–732CrossRefGoogle Scholar
  50. Sykes P (1977) Reaktionsmechanismen der Organischen Chemie. Verlag Chemie, Weinheim/Deerfield BeachGoogle Scholar
  51. Tobe ML (1976) Reaktionsmechanismen der Anorganischen Chemie. Verlag Chemie/Physik Verlag, WeinheimGoogle Scholar
  52. Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal-sensors and metallochaperones. Acc Chem Res 38:775–783CrossRefPubMedGoogle Scholar
  53. Vallee BL, Williams RJP (1968) Metalloenzymes. The entatic nature of their active sites. Proc Nat Acad Sci USA 59:498–505Google Scholar
  54. Wedler G (1982) Lehrbuch der Physikalischen Chemie. Verlag Chemie, Weinheim/Deerfield Beach/BaselGoogle Scholar
  55. Williams RJP, Frausto Da Silva JJR (1996) The natural selection of the chemical elements. Clarendon, OxfordGoogle Scholar
  56. Woolfolk CA, Whiteley HR (1962) Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactolyticus L. J Bacteriol 84:647–658PubMedGoogle Scholar
  57. Yamazaki S, Yamazaki Y (1990) Nickel-catalyzed dehydrogenation of amines to nitriles. Bull Chem Soc Jpn 63:301–303CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Internationales Hochschulinstitut ZittauZittauGermany

Personalised recommendations