Advertisement

Volcanism in Reverse and Strike-Slip Fault Settings

  • Alessandro TibaldiEmail author
  • Federico Pasquarè
  • Daniel Tormey
Chapter
Part of the International Year of Planet Earth book series (IYPE)

Abstract

Traditionally volcanism is thought to require an extensional state of stress in the crust. This review examines recent relevant data demonstrating that volcanism occurs also in compressional tectonic settings associated with reverse and strike-slip faulting. Data describing the tectonic settings, structural analysis, analogue modelling, petrology, and geochemistry, are integrated to provide a comprehensive presentation of this topic. An increasing amount of field data describes stratovolcanoes in areas of coeval reverse faulting, and shield volcanoes, stratovolcanoes, and monogenic edifices along strike-slip faults, whereas calderas are mostly associated with pull-apart structures in transcurrent regimes. Physically-scaled analogue experiments simulate the propagation of magma in these settings, and taken together with data from subvolcanic magma bodies, they provide insight into the magma paths followed from the crust to the surface. In several transcurrent tectonic plate boundary regions, volcanoes are aligned along both the strike-slip faults and along fractures normal to the local least principal stress (σ3). At subduction zones, intra-arc tectonics is frequently characterised by contraction or transpression. In intra-plate tectonic settings, volcanism can develop in conjunction with reverse faults or strike slip faults. In most of these cases, magma appears to reach the surface along fractures striking parallel to the local σ1. In some cases, there is a direct geometric control by the substrate strike-slip or reverse fault: magma is transported beneath the volcano to the surface along the main faults, irrespective of the orientation of σ3. The petrology and geochemistry of lavas erupted in compressive stress regimes indicate longer crustal residence times, and higher degrees of lower crustal and upper crustal melts contributing to the evolving magmas when compared to lavas from extensional stress regimes. Small volumes of magma tend to rise to shallow crustal levels, and magma mixing is common in the compressional regimes. In detailed studies from the Andes and Anatolia, with geographic and temporal coverage with which to compare compressional, transcurrent and extensional episodes in the same location, there do not appear to be changes to the mantle or crustal source materials that constitute the magmas. Rather, as the stress regime becomes more compressional, the magma transport pathways become more diffuse, and the crustal residence time and crustal interaction increases.

Keywords

Compressional tectonics Reverse faults Strike-slip faults Volcanism Magma transport 

Notes

Acknowledgements

C.J. Busby is greatly acknowledged for her useful suggestions on a previous version of the manuscript. This is a contribution to the International Lithosphere Programme – Task II project “New tectonic causes of volcano failure and possible premonitory signals”.

References

  1. Acocella V, Korme T, Salvini F, Funiciello R (2002). Elliptic calderas in the Ethiopian Rift: control of pre-existing structures. J Volcanol Geotherm Res 119:189–203.Google Scholar
  2. Acocella V, Salvini F, Funiciello R, Faccenna C (1999). The role of transfer structures on volcanic activity at Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 91:123–139.Google Scholar
  3. Acocella V, Vezzoli L, Omarini R, Mattini M, Mazzuoli R (2007). Kinematic variations across Eastern Cordillera at 24°S (Central Andes): Tectonic and magmatic implications. Tectonophysics 434:81–92.Google Scholar
  4. Adiyaman O, Chorowicz J, Arnaud ON, Gündogdu N, Gourgaud A (2001). Late Cenozoic tectonics and volcanism along the North Anatolian Fault: new structural and geochemical data. Tectonophysics 338:135–165.Google Scholar
  5. Adiyaman Ö, Chorowicz J, Köse O (1998). Relationships between volcanic patterns and neotectonics in Eastern Anatolia from analysis of satellite images and DEM. J Volcanolol Geotherm Res 85:17–32.Google Scholar
  6. Agostini S, Corti G, Doglioni C, Carminati E, Innocenti F, Tonarini S, Manetti P, Di Vincenzo G, Montanari D (2006). Tectonic and magmatic evolution of the active volcanic front in El Salvador: insight into the Berlín and Ahuachapán geothermal areas. Geothermics 35:368–408.Google Scholar
  7. Alaniz-Álvarez SA, Nieto-Samaniego AF, Morán-Zenteno DJ, Alba-Aldave L (2002). Rhyolitic volcanism in extension zone associated with strike-slip tectonics in the Taxco region, southern Mexico. J Volcanol Geotherm Res 118:1–14.Google Scholar
  8. Aldrich MJ, Jr. (1986). Tectonics of the Jemez lineament in the Jemez Mountains and Rio Grande rift. J Geophys Res 91: 1753–1762Google Scholar
  9. Aldiss DT, Ghazali SA (1984). The regional geology and evolution of the Toba volcano-tectonic depression, Indonesia. J Geol Soc London 141:487–500.Google Scholar
  10. Alemán A, Ramos VA (2000). Northern Andes. In : Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (Eds.), Tectonic Evolution of South America International Geological Congress, 31, 453–480. Río de Janeiro.Google Scholar
  11. Allmendinger RW, Figueroa D, Snyder D, Beer J, Mpodozis C, Isacks BL (1990). Foreland shortening and crustal balancing in the Andes at 30°S latitude. Tectonics 9(4) : 789–809.Google Scholar
  12. Allmendinger R, Jordan T, Kay SM, Isacks B (1997). The evolution of the Altiplano-Puna plateau of the Central Andes. Annu Rev Earth Planet Sci 25 : 139–174.Google Scholar
  13. Aldrich MJ, Jr. (1986). Tectonics of the Jemez lineament in the Jemez Mountains and Rio Grande rift. J Geophys Res 91 : 1753–1762.Google Scholar
  14. Anderson EM (1951). The Dynamics of Faulting. Oliver and Boyd, Edinburgh.Google Scholar
  15. Auzende J-M, Collot J-Y, Lafoy Y, Gracia E, Géli L, Ondréas H, Eissen J-P, Olisukulu C, Tolia D, Biliki N, Larue MB (1994). Evidence for sinistral strike-slip deformation in The Solomon Island arc. Geo-Marine Lett 14:232–237.Google Scholar
  16. Aydin, A, Nur, A (1982). Evolution of pull-apart basins and their scale independence. Tectonics 1:91–105.Google Scholar
  17. Aydin A, Schultz RA, Campagna D (1990). Fault-normal dilatation in pull-apart basins: implications for relationship between strike-slip fault and volcanic activity. In: Boccaletti M, Nur A (Eds.), Active and Recent Strike-Slip Tectonics. Ann. Tectonicae Special Issue, pp. 45–52.Google Scholar
  18. Bailey RA (1989). Quaternary volcanism of Long Valley caldera, and Mono-Inyo Craters, Eastern California: 28th International Geological Congress, Field trip Guidebook T313. American Geophysical Union, Washington, DC.Google Scholar
  19. Barberi F, Coltelli M, Ferrara G, Innocenti F, Navarro JM, Santacroce R (1988). Plio-Quaternary volcanism in Ecuador. Geol Mag 125:1–14.Google Scholar
  20. Barberi F, Gandino A, Gioncada A, La Torre P, Sbrana A, Zenucchini C (1994). The deep structure of the Eolian arc (Filicudi-Panarea-Vulcano sector)in light of gravity, magnetic and volcanological data. J Volcanol Geotherm Res 61:189–206.Google Scholar
  21. Branquet Y, van Wyk de Vries B (2001). Effects of volcanic loading on regional compressive structures: New insights from natural examples and analogue modelling. Comptes Rendu de l‘Académie des Sciences 833:455–461.Google Scholar
  22. Beck ME (1983). On the mechanism of tectonic transport in zones of oblique subduction. Tectonophysics 93:1–11.Google Scholar
  23. Bellier O, Bellon H, Sebrier M, Sutanto MRC (1999). K-Ar age of the Ranau tuffs; implications for the Ranau Caldera emplacement and slip-partitioning in Sumatra (Indonesia). Tectonophysics 312:347–359.Google Scholar
  24. Bellier O, Sebrier M (1994). Relationship between tectonism and volcanism along the Great Sumatran Fault zone deduced by SPOT image analyses. Tectonophysics 233:215–231.Google Scholar
  25. Bellotti F, Capra L, Groppelli G, Norini G (2006). Tectonic evolution of the central-eastern sector of Trans Mexican volcanic belt and its influence on the eruptive history of the Nevado de Toluca Volcano (Mexico). J Volcanol Geotherm Res 158: 21–36.Google Scholar
  26. Benn K, Odonne F, de Saint Blanquat M (1998). Pluton emplacement during transpression in brittle crust: new views from analogue experiments. Geology 26:1079–1082.Google Scholar
  27. Burkhart B, Self S (1985). Extension and rotation of crustal blocks in northern Central America and effect on the volcanic arc. Geology 13:22–26.Google Scholar
  28. Busby CJ, Bassett KN (2007). Volcanic facies architecture of an intra-arc strike-slip basin, Santa Rita Mountains, Southern Arizona. Bull Volcanol 70:85–103.Google Scholar
  29. Busby CJ, Bassett K, Steiner MB, Riggs NR (2005). Climatic and tectonic controls on Jurassic intra-arc basins related to northward drift of North America. In: Anderson TH, Nourse JA, McKee JW, Steiner MB (Eds.), The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives. Geol Soc Am Spec Pap 393, pp. 359–376.Google Scholar
  30. Busby CJ, Hagan J, Putirka K, Pluhar C, Gans P, Rood D, De Oreo S, Skilling, I, Wagner, D (2008). The ancestral Cascades arc: Implications for the development of the Sierran microplate and tectonic significance of high-K2O volcanism. Geol Soc Am Spec Pap, Hopson Volume 438 : 331–378.Google Scholar
  31. Cas RAF, Wright JV (1987). Volcanic Successions. Allen & Unwin, London, 528 pp.Google Scholar
  32. Clavero, JE, Sparks RS, Pringle MS, Polanco E, Gardeweg MC (2004). Evolution and volcanic hazards of Taapaca Volcanic Complex, Central Andes of Northern Chile. J Geol Soc (London) 161:603–618.Google Scholar
  33. Cembrano J, Hervè F, Lavenu A (1996). The Liquine Ofqui fault zone: A long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66.Google Scholar
  34. Chiarabba C, Pino NA, Ventura G, Vilardo G (2004). Structural features of the shallow plumbing system of Vulcano Island Italy. Bull Volcanol 66:477–484.Google Scholar
  35. Chuvashova IS, Rasskazov SV, Yasnygina TA, Saracina EV, Fefelov NN (2007). Holocene Volcanism in Central Mongolia and Northeast China: Asynchronous Decompressional and Fluid Melting of the Mantle. J Volcanol Seismol 1:372–396.Google Scholar
  36. Coban H (2007). Basalt magma genesis and fractionation in collision and extension related provinces: A comparison between eastern, central, and western Anatolia. Earth Sci Rev 80:219–238.Google Scholar
  37. Cobbold PR, Davy P, Gapais D, Rossello EA, Sadybakasov E, Thomas JC, Tondji Biyo JJ, De Urreiztieta M (1993). Sedimentary basins and crustal thickening. Sediment Geol 86(1–2) : 77–89.Google Scholar
  38. Coira B, Davidson J, Mpodozis C, Ramos VA (1982). Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth Sci Rev 18 : 303–332.Google Scholar
  39. Coira B, Kay SM, Viramonte JG (1993). Upper Cenozoic magmatic evolution of the Argentine Puna-a model for changing subduction geometry. Int Geol R Review 35 : 677–720.Google Scholar
  40. Cooper KM, Reid MR, Dunbar NW, McIntosh WC (2002). Origin of mafic magmas beneath northwestern Tibet: Constraints from 230Th-238U disequilibria. Geochem Geophys Geosyst doi:10.1029/2002GC000332.Google Scholar
  41. Corazzato C, Tibaldi A (2006). Basement fracture control on type, distribution, and morphology of parasitic volcanic cones: an example from Mt. Etna, Italy. In: Tibaldi A, Lagmay M (Eds.), Interaction between Volcanoes and their Basement, Journal of Volcanology and Geothermal Research, Special issue, 158, pp. 177–194.Google Scholar
  42. Corti G, Bonini M, Innocenti F, Manetti P, Mulugeta G (2001). Centrifuge models simulating magma emplacement during oblique rifting. J Geodyn 31:557–576.Google Scholar
  43. Corti G, Carminati E, Mazzarini F, Garcia MO (2005). Active strike-slip faulting in El Salvador (Central America). Geology 33:989–992.Google Scholar
  44. Courtillot V, Tapponier P, Varet J (1974). Surface features associated with transform faults: a comparison between observed examples and an experimental model. Tectonophysics 24:317–329.Google Scholar
  45. Deng W (1993). Study on trace element and Sr, Nd isotopic geochemistry of Cenozoic potassic volcanic rocks in north Tibet. Acta Petrol Sin 9:379–387.Google Scholar
  46. Dewey JF, Hempton MR, Kidd WSF, Saroglu F, Sengör AMC (1986). Shortening of continental lithosphere; the neotectonics of eastern Anatolia, a young collision zone. In: Coward MP, Ries AC (Eds.), Collision Tectonics. Geol Soc Spec Pub 19, pp. 3–36.Google Scholar
  47. Dungan M, Wulff A, Thompson R (2001). Eruptive stratigraphy of the Tatara–San Pedro Compelx, 36°S, Southern Volcanic Zone, Chilean Andes: Reconstruction method and implications for magma evolution at long-lived arc volcanic centers. J Petrol 42:555–626.Google Scholar
  48. Ebinger CJ (1989). Geometric and kinematic development of border faults and accommodation zones, Kivu-Rusizi Rift, Africa. Tectonics 8:117–133.Google Scholar
  49. Ego F, Sebrier M, Lavenu A, Yepes H, Eguez A (1996). Quaternary state of stress in the northern Andes and the restraining bend model for the Ecuadorian Andes. Tectonophysics 259:101–116.Google Scholar
  50. Elmohandes SE (1981). The central european graben system: rifting imitated by clay modelling. Tectonophysics 73:69–78.Google Scholar
  51. Ferrari L, Tibaldi A (1989). Seismotectonics of northeastern Ecuadorian Andes (abstract). Ann Geophys 39.Google Scholar
  52. Ferrari L, Tibaldi A (1992). Recent and active tectonics of the North-Eastern Ecuadorian Andes. J Geodynamics 15(1/2) : 39–58.Google Scholar
  53. Fitch TJ (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific. J Geophys Res 77:4432–4460.Google Scholar
  54. Flint S, Turner P, Jolley EJ, Hartley AJ (1993). Extensional tectonics in convergent margin basins: an example from the Salar de Atacama, Chilean Andes. Geol Soc Am Bull 105:603–617.Google Scholar
  55. Folguera A, Bottesi G, Zapata T, Ramos VA (2008). Crustal collapse in the Andean backarc since 2 Ma: Tromen volcanic plateau, Southern Central Andes (36°40′–37°30′S). Tectonophysics 459:140–160.Google Scholar
  56. Fujita E, Ukawa M, Yamamoto E (2004). Subsurface cyclic magma sill expansions in the 2000 Miyakejima volcano eruption: Possibility of two-phase flow oscillation. J Geophys Res, doi:10.1029/2003JB002556.Google Scholar
  57. Futa K, Stern C (1988). Sr and Nd isotopic and trace element compsitions of Quaternary volcanic centers of the southern Andes. Earth Planet Sci Lett 88:253–263.Google Scholar
  58. Galland O, de Bremond d’Ars J, Cobbold PR, Hallot E (2003). Physical models of magmatic intrusion during thrusting. Terra Nova, doi: 10.1046/j.1365-3121.2003.00512.x.Google Scholar
  59. Galland O, Cobbold PR, de Bremond d’Ars J, Hallot E (2007a). Rise and emplacement of magma during horizontal shortening of the brittle crust: Insights from experimental modelling. J Geophys Res, doi:10.1029/2006JB004604.Google Scholar
  60. Galland O, Hallot E, Cobbold PR, Ruffet G, de Bremod d’Ars J (2007b). Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuquen province, Argentina). Tectonics, 26, TC4010, doi:10.1029/2006TC002011.Google Scholar
  61. García-Palomo A, Macias JL, Espindola JM (2004). Strike-slip faults and K-alkaline volcanism at El Chichon volcano, southeastern Mexico. J Volc Geotherm Res 136:247–268.Google Scholar
  62. García-Palomo A, Macías JL, Garduno VH (2000). Miocene to Recent structural evolution of the Nevado de Toluca volcano region, central Mexico. Tectonophysics 318:281–302.Google Scholar
  63. Ghisetti F (1979). Relazioni tra strutture e fasi trascorrenti e distensive lungo i sistemi Messina-Fiumefreddo, Tindari-Letojanni e Alia-Malvagna (Sicilia nord-orientale): uno studio microtettonico. Geol Rom 18:23–56.Google Scholar
  64. Gill JB (1974). Role of underthrust oceanic crust in the genesis of a Fijian talc-alkaline suite. Contr Mineral Petrol 43:29–45.Google Scholar
  65. Gioncada A, Mazzuoli R, Bisson M, Pareschi MT (2003). Petrology of volcanic products younger than 42 ka on the Lipari-Vulcano complex (Aeolian Islands, Italy): an example of volcanism controlled by tectonics. J Volcanol Geotherm Res 122:191–220.Google Scholar
  66. Girard G, van Wyk de Vries B (2005). The Managua Graben and Las Sierras-Masaya volcanic complex (Nicaragua); pull-apart localisation by an intrusive complex: results from analogue modelling. J Volcanol Geotherm Res 144:37–57.Google Scholar
  67. Glazner AF (1991). Plutonism, oblique subduction, and continental growth: An example from the Mesozoic of California. Geology 19:784–786.Google Scholar
  68. Glazner AF, Bartley JM (1994). Eruption of alkali basalts during crustal shortening in southern California. Tectonics 13:493–498.Google Scholar
  69. Godoy E, Yáñez G, Vera E (1999). Inversion of an Oligocene volcano-tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophysics 306 : 217–236.Google Scholar
  70. Groeber P (1929). Lıneas fundamentales de la geologıa del Neuquen, sur de Mendoza y regiones adyacentes, 110 pp., Ministerio de Agricultura, Direccion General de Minas, Geologıa y Hidrologıa, Buenos Aires.Google Scholar
  71. Gutscher MA, Lallemand S (1999). Birth of a major strike-slip fault in SW Japan. Terra Nova 11:203–209.Google Scholar
  72. Guzmán SR, Petrinovic IA, Brod JA (2006). Pleistocene mafic volcanoes in the Puna–Cordillera Oriental boundary, NW-Argentina. In: Tibaldi A, Lagmay AFM (Eds.), Interaction between volcanoes and their basement. J Volcanol Geotherm Res 158, pp. 51–69.Google Scholar
  73. Hamilton WB (1995). Subduction systems and magmatism. In: Smellie JR (Ed.), Volcanism Associated with Extension to Consuming Plate Margins. Geol Soc London Spec Publ 81, pp. 3–28.Google Scholar
  74. Hammerschmidt K, Döbel R, Friedrichsen H (1992). Implication of 40Ar/39Ar dating of Early Tertiary volcanic rocks from the north-Chilean Precordillera. Tectonophysics 202(1): 55–81.Google Scholar
  75. Hanus V, Vanek J, Spicak A (2000). Seismically active fracture zones and distribution of large accumulations of metals in the central part of Andean South America. Miner Depos 35:2–20.Google Scholar
  76. Hauser N, Matteini, M, Omarini R, Mazzuoli R, Vezzoli L, Acocella V, Uttini A, Dini A, Gioncada A (2005). Aligned extrusive andesitic domes in the southern sector of the Late Miocene Diego de Almagro Volcanic Complex, Salta, Argentina: evidence for transtensive tectonics in the Central Andes. Proceedings of the XVI Congreso Geologico Argentino, vol. II, pp. 153–158.Google Scholar
  77. Hervè F (1994). The southern Andes between 39° and 44°S latitude: the geological signature of a transpressive tectonic regime related to a magmatic arc. In: Reutter KJ, Scheuber E, Wigger PJ (Eds.), Tectonics of the Southern Central Andes. Springer, Berlin, pp. 243–248.Google Scholar
  78. Hickey R, Frey F, Gerlach D, Lopez-Escobar L (1986). Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34 to 41S): Trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J Geophys Res 91:5963–5983.Google Scholar
  79. Hildreth W, Fierstein J, Godoy E, Drake R, Singer B (1999). The Puelche volcanic field: Extensive Pleistocene rhyolite lava flows in the Andes of central Chile. Rev Geol de Chile 26:275–309.Google Scholar
  80. Hildreth W, Moorbath S (1988). Crustal contributions to arc magmatism in the Andes of central Chile. Contributions Mineral Petrol 98:455–489.Google Scholar
  81. Hill DP (1977). A model for earthquake swarms. J Geophys Res 82:1347–1352.Google Scholar
  82. Holmberg E (1975). Descripcion geologica de la Hoja 32c, Buta Ranquil (Prov. Mendoza-Neuquen), Bull. 152, 71 pp., Serv. Nac. Min. Geol., Buenos Aires.Google Scholar
  83. Holohan EP, van Wyk de Vries B, Troll VR (2007). Analogue models of caldera collapse in strike-slip tectonic regimes. Bull Volcanol, doi 10.1007/s00445-007-0166–x.Google Scholar
  84. Hubbert MK, Willis DG (1957). Mechanics of hydraulic fracturing in Structural Geology, MK Hubbert (Ed.),, Macmillan, New York, pp. 175–190.Google Scholar
  85. Hungerbuhler D, Steinmann M, Winkler W, Seward D, Eguez A, Peterson DE, Helg U, Hammer C (2002). Neogene stratigraphy and Andean geodynamics of southern Ecuador. Earth-Sci Rev 57:75–124.Google Scholar
  86. INECEL (by Aguilera E, Almeida E, Balseca W, Barberi F, Ferrari L, Innocenti F. Pasquarè G, Tibaldi A) (1988). Mapa Geologico del Volcan El Reventador y Estudio Vulcanologico del El Reventador, Ministerio de Energia y Minas, Quito, Ecuador, 117 pp.Google Scholar
  87. James DE, Sacks IS (1999). Cenozoic formation of the Central Andes: A geophysical perspective. In : Skinner BJ (Eds.) Geology and Ore Deposits of the Central Andes. Society of Economic Geology, Special Publication, 7, 1–26.Google Scholar
  88. Jarrard RD (1986). Terrane motion by strike-slip faulting of forearc slivers. Geology 14:780–783.Google Scholar
  89. Johnson AM (1970). Physical Processes in Geology. W. H. Freeman, New York, 592 pp.Google Scholar
  90. Jordan T, Gardeweg M (1989). Tectonic evolution of the late Cenoizoic Central Andes (20–33°S). In : Abrahams B (Eds.), The Evolution of the Pacific Ocean Margins. Oxford University Press, New York, 193–207.Google Scholar
  91. Jordan T, Burns W, Veiga R, Pángano F, Copeland F, Kelley S, Mpodozis C (2001). Extensional basin formation in the southern Andes caused by incresed convergence rate: a mid-cenozoic trigger for the Andes. Tectonics 20(3) : 308–324.Google Scholar
  92. Jové CF, ColemanRG (1998). Extension and mantle upwelling within the San Andreas fault zone, San Francisco Bay area, California. Tectonics 17:883–890.Google Scholar
  93. Kanaori Y, Kawakami S, Yairi K (1994). Seismotectonics of the Median Tectonic Line in southwest Japan: Implications for coupling among major fault systems. Pure Appl Geophys 142:589–607.Google Scholar
  94. Karakhanian AS, Trifonov VG, Azizbekian OG, Hondkarian DG (1997). Relationship of Late Quaternary tectonics and volcanism in the Khanarassar active fault zone, the Armenian Upland. Terra Nova 9:131–134.Google Scholar
  95. Kay S, Godoy E, Kurtz A (2005). Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Amer Bull 117:67–88.Google Scholar
  96. Kay SM, Mpodozis C, Coira B (1999). Neogene magmatism, tectonism and mineral deposits of the Central Andes (22°–33°S Latitude). In : Skinner B (Ed.), Geology and ore deposits of the Central Andes. Society of Economic Geology, Special Publication, 7, 27–59.Google Scholar
  97. Kay SM, Ramos VA (Eds.) (2006). Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquen Basin. Geol Soc Am Special Paper 407 : 343 pp.Google Scholar
  98. Kendrick E, Bevis M, Smalley Jr R, Brooks B (2001). An integrated crustal velocity field for the central Andes. Geochem Geophys Geosyst 2 : XX, 2001GC000191.Google Scholar
  99. Koçyigit A, Yılmaz AY, Adamia S, Kuloshvili S (2001). Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta 14:177–195.Google Scholar
  100. Koshiya S, Ohtani M (1999). Earthquake fault of the M6.1 earthquakes occurred at the northern part of Iwate Prefecture on September 3, 1998. Chikyu, 21, 307–311, (in Japanese).Google Scholar
  101. Kostyuchenko SL, Morozov AF, Stephenson RA, Solodilov LN, Vedrentsev AG, Popolitov KE, Aleshina AF, Vishnevskaya VS, Yegorova TP (2004). The evolution of the southern margin of the East European Craton based on seismic and potential field data. Tectonophysics 381:101–118.Google Scholar
  102. Kozlowski EE, Cruz CE, Sylwan CA (1996). Geologıa estructural de la zona de Chos Malal, Cuenca Neuquina, Argentina, paper presented at XIII Congreso Geologico Argentino y III Congreso de Exploracion de Hidrocarburos, 15–26.Google Scholar
  103. Lagmay AMF, Tengonciang A, Uy H (2005). Structural setting of the Bicol Basin and kinematic analysis of fractures in Mayon Volcano, Philippines. J Volcanol Geotherm Res 144:23–36.Google Scholar
  104. Lagmay AMF, van Wyk de Vries B, Kerle N, Pyle DM (2000). Volcano instability induced by strike-slip faulting. Bull Volcanol 62:331–346.Google Scholar
  105. Lanphere M, Sisson T (2003). Episodic Volcano Growth at Mt. Rainier, Wasthington: A product of tectonic throttling? Geol. Soc. Am. Abstracts with Programs, vol. 35, no. 6, 644 pp.Google Scholar
  106. Lara LE, Lavenu A, Cembrano J, Rodríguez C (2006). Structural controls of volcanism in transversal chains: Resheared faults and neotectonics in the Cordón Caulle–Puyehue area (40.5°S), Southern Andes. In: Tibaldi A, Lagmay AFM (Eds.), Interaction Between Volcanoes and Their Basement, Spec. Issue, J Volcanol Geotherm Res 158, pp. 70–86.Google Scholar
  107. Lavenu A, Noblet C, Bonhomme MG., Egüez A, Dugas F, Vivier G (1992). New K-Ar age dates of Neogene and Quaternary volcanic rocks from the Ecuadorian Andes: implications for the relationship between sedimentation, volcanism, and tectonics. J South Am Earth Sci 5 : 309–320.Google Scholar
  108. Lavenu A, Cembrano J (1999). Compressional and transpressional stress pattern for Pliocene and Quaternary brittle deformation in forearc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 21:1669–1691.Google Scholar
  109. Lécuyer F, Bellier O, Gourgaud A, Vincent PM (1997). Tectonique active du nord-est de Sulawesi (Indonesie) et controle structural de la caldeira de Tondano: Paris, Acadáme des Sciences, Comptes Rendues 325: 607–613.Google Scholar
  110. Legrand D, Calahorrano A, Guillier B, Rivera L, Ruiz M, Villagomez D, Yepes H (2002). Stress tensor analysis of the 1998-1999 tectonic swarm of northern Quito related to the volcanic swarm of Guagua Pichincha volcano, Ecuador. Tectonophysics 344:15–36.Google Scholar
  111. Litherland M, Aspden JA (1992). Terrane-boundary reactivation: a control on the evolution of the Northern Andes. J South Am Earth Sci 5(1): 71–76.Google Scholar
  112. Llambıas EJ, Palacios M, Danderfer JC (1982). Las erupciones holocenas del volcan Tromen (Provincia del Neuquen) y su significado en un perfil transversal E-O a la latitud de 37°S, paper presented at Quinto Congreso Latinoamericano de Geologia, Buenos Aires, pp. 537–545.Google Scholar
  113. Lopez-Escobar L, Cembrano J, Moreno H (1995). Geochemistry and tectonics of the Chilean Southern Andes Quaternary volcanism (37°–46°S). Rev Geol de Chile 22:219–234.Google Scholar
  114. Lopez-Escobar L, Frey F, Vergara M (1977). Andesites and High-alumina basalts from the central-south Chilean high Andes: Geochemical evidence bearing on their petrogeneis. Contrib Mineral Petrol 63:199–228.Google Scholar
  115. Mann P (2007). Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems. Geol Soc London Spec Publ 290:13–142.Google Scholar
  116. Marcotte SB, Klepeis KA, Clarke GL, Gehrels G, Hollis JA (2005). Intra-arc transpression in the lower crust and its relationship to magmatism in a Mesozoic magmatic arc. Tectonophysics 407:135–163.Google Scholar
  117. Marques MO, Cobbold P (2002). Topography as a major factor in the development of arcuate thrust belts: Insights from sandbox experiments. Tectonophysics 348:247–268.Google Scholar
  118. Marra F (2001). Strike-slip faulting and block rotation: A possible triggering mechanism for lava flows in the Alban Hills? J Struct Geol 23:127–141.Google Scholar
  119. Marrett RA, Allmendiger RW, Alonso RN, Drake RE (1994). Late Cenozoic tectonic evolution of the Puna Plateau and adjacent foreland, northwestern Argentine Andes. J South Am Earth Sci 7:179–207.Google Scholar
  120. Matteini M, Mazzuoli R, Omarini R, Cas R, Maas R (2002a). The geochemical variations of the upper Cenozoic volcanism along the Calama-Olocapato-El Toro transversal fault system in central Andes (24°S): petrogenetic and geodynamic implications. Tectonophysics 345:211–227.Google Scholar
  121. Matteini M, Mazzuoli R, Omarini R, Cas R, Maas R (2002b). Geodynamical evolution of the central Andes at 24°S as inferred by magma composition along the Calama-Olocapato-El Toro transversal volcanic belt. J Volcanol Geotherm Res 118:225–228.Google Scholar
  122. Matteini M, Gioncada A, Mazzuoli R, Acocella V, Dini A, Guillou H, Omarini R, Uttini A, Vezzoli L, Hauser N (2005a). The magmatism in the easternmost sector of the Calama- Olocapato-El Toro transversaul fault system in the Central Andes at 24°S: Geotectonic significance. Proceedings of the 6th International Symposium on Andean Geodynamics, Barcelona, Spain, pp. 499–501.Google Scholar
  123. Matteini M, Acocella V, Vezzoli L, Dini A, Gioncada A, Guillou, H, Mazzuoli R, Omarini R, Uttini, A, Hauser, N (2005b). Geology and petrology of the Las Burras-Almagro magmatic complex, Salta Argentina. Proceedings of the XVI Congreso Geologico Argentino I, pp. 479–484.Google Scholar
  124. Mazzuoli R, Tortorici L, Ventura G (1995). Oblique rifting in Salina, Lipari and Vulcano islands (Aeolian islands, southern Italy). Terra Nova 7:444–452.Google Scholar
  125. McCaffrey KJW (1992). Igneous emplacement in the transpressive shear zone; Ox Mountains igneous complex. J Geol Soc London 149 : 221–235.Google Scholar
  126. Meneses-Rocha JJ (1991). Tectonic Development of the Ixtapa Graben, Chiapas, Mexico. PhD, University of Texas, Austin, 308 pp.Google Scholar
  127. Merle O, Vidal N, van Wyk de Vries B (2001). Experiments on vertical basement fault reactivation below volcanoes. J Geophys Res 106:2153–2162.Google Scholar
  128. Miranda F, Folguera A Leal PL, Naranjo JA, Pesce A (2006). Upper Pliocene to Lower Pleistocene volcanic complexes and Upper Neogene deformation in the south-central Andes (36°30’–38°S). Geol Soc Am Spec Paper 407:287–298.Google Scholar
  129. Mitchell J, Westaway R (1999). Chronology of Neogene and Quaternary uplift and magmatism in the Caucasus: constraints from K-Ar dating of volcanism in Armenia. Tectonophysics 304:157–186.Google Scholar
  130. Miura S, Ueki S, Sato T, Tachibana K, Hamaguchi H (2000). Crustal deformation associated with the 1998 seismo-volcanic crisis of Iwate Volcano, Northeastern Japan, as observed by a dense GPS network. Earth Planet Space 52:1003–1008.Google Scholar
  131. Moore I, Kokelaar P (1998). Tectonically controlled piecemeal caldera collapse; a case study of Glencoe Volcano, Scotland. Geol Soc Amer Bull 110:1448–1466.Google Scholar
  132. Muñoz J, Troncoso R, Duhart P, Crignola P, Farmer L, Stern CR (2000). The relationship of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Revista Geológica de Chile 27(2) : 177–203.Google Scholar
  133. Nakahara H, Nishimura T, Sato H, Ohtake M, Kinoshita S, Hamaguchi H (2002). Broad-band source process of the 1998 Iwate Prefecture, Japan, earthquakes as revealed from inversion analyses of seismic waveforms and envelopes. Bull Soc Seismol Am 92:1708–1720.Google Scholar
  134. Nakamura K (1977). Volcanoes as possible indicators of tectonic stress orientation: principle and proposal. J Volcanol Geotherm Res 2:1–16.Google Scholar
  135. Nakamura K, Uyeda S (1980). Stress gradient in arc–back arc regions and plate subduction. J Geophys Res 85:6419–6428.Google Scholar
  136. Nakanishi M (1989). Mesozoic magnetic anomaly lineations and sea-floor spreading of the NW Pacific. J Geophys Res 94:15, 437–15,446.Google Scholar
  137. Nelson MR, Forsythe R, Arit I (1994). Ridge collision tectonics in terrane development. J South Am Earth Sci 7:271–278.Google Scholar
  138. Norabuena E, Leffler-Griffin L, Mao A, Dixon T, Stein S, Sacks S, Ocola L, Ellis M (1998). Space geodetic observations of Nazca-South America convergence across the Central Andes. Science 279:358–362.Google Scholar
  139. Norini G, Lagmay AMF (2005). Deformed symmetrical volcanoes. Geology 33:605–608.Google Scholar
  140. Olivier P, Ameglio L, Richen H, Vadeboin F (1999). Emplacement of the Aya Variscan granitic pluton (Basque Pyrenees) in a dextral transcurrent regime inferred from a combined magneto-structural and gravimetric study. J Geol Soc London156:991–1002.Google Scholar
  141. Pasquarè G, Poli S, Vezzoli L, Zanchi A (1988). Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. Tectonophysics 146:217–230.Google Scholar
  142. Pasquarè FA, Tibaldi A (2003). Do transcurrent faults guide volcano growth? The case of NW Bicol Volcanic Arc, Luzon, Philippines. Terra Nova 15:204–212.Google Scholar
  143. Pasquarè G, Tibaldi A, Ferrari L (1990). Relationships between plate convergence and tectonic evolution of the Ecuadorian active Thrust Belt. In: Agusthithis SS (Ed.), Critical Aspects of Plate Tectonic Theory, Theophrastus Publications, pp. 365–387.Google Scholar
  144. Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Güner Y, Saroglu F, Yilmaz Y, Moorbath S Mitchell JG (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volc Geoth Res 44:189–229.Google Scholar
  145. Peterson U (1999). Magmatic and metallogenic evolution of the Central Andes. In : Skinner B. (Ed.), Geology and ore deposits of the Central Andes. Society of Economic Geology, Special Publication, 7, 109–153.Google Scholar
  146. Petford N, Atherton MP (1995). Crustal segmentation and the isotopic significance of the Abancay Deflection Northern Central Andes, 9°–20°S. Revista Geológica de Chile 22 : 235–243.Google Scholar
  147. Petrinovic IA, Riller U, Brod JA (2005). The Negra Muerta Volcanic Complex, southern central Andes: geochemical characteristics and magmatic evolution of an episodically active volcanic centre. J Volcanol Geotherm Res 140:295–320.Google Scholar
  148. Petrinovic IA, Riller U, Brod JA, Alvarado G, Arnosio M (2006). Bimodal volcanism in a tectonic transfer zone: Evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina. J Volcanol Geotherm Res 152:240–252.Google Scholar
  149. Putirka K, Busby CJ (2007). The tectonic significance of high-K2O volcanism in the Sierra Nevada, California. Geology 35:923–926.Google Scholar
  150. Ramelow J, Riller U, Romer RL, Oncken O (2006). Kinematic link between episodic trapdoor collapse of the Negra Muerta Caldera and motion on the Olacapato-El Toro Fault Zone, southern central Andes. Int J Earth Sci (Geol Rundsch) 95:529–541.Google Scholar
  151. Ramos V, Cegarra M, Cristallini E (1996). Cenozoic tectonics of the high Andes of west-central Argentina (30º–36.5ºS). Tectonophysics 259:185–200.Google Scholar
  152. Ramos V, Cristallini E, Pérez D (2002). The Pampean flat-slab of the Central Andes. J South Am Earth Sci 15 : 59–78.Google Scholar
  153. Rebai S, Philip H, Dorbath L, Borissoff B, Haessler H, Cisternas A (1993). Active tectonics in the Lesser Caucasus: coexistence of compressive and extensional structures. Tectonics 12:1089–1114.Google Scholar
  154. Riller U, Petrinovic I, Ramelow J, Strecker M, Oncken O (2001). Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes. Earth Planet Sci Lett 188:299–311.Google Scholar
  155. Roman DC, Moran SC, Power JA, Cashman KV (2004). Temporal and spatial variation of local stress fields before and after the 1992 eruptions of Crater Peak vent, Mount Spurr volcano, Alaska. Bull Seismol Soc Am 94:2366–2379.Google Scholar
  156. Roman-Berdiel T (1999). Geometry of granite emplacement in the upper crust: Contribution of analogue modeling. In: Castro A, Fernandez C, Vigneresse JL (Eds.), Understanding Granites: Integrating New and Classical Techniques. Geol Soc Lond Spec Publ 174:77–94.Google Scholar
  157. Rosenau M (2004). Tectonics of the southern Andean intra-arc zone (38°–42°S). Ph.D. Thesis, Freie Universitat Berlin, 159 pp.Google Scholar
  158. Rosenau M, Melnick D, Echtler H (2006). Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38°S and 42°S latitude. Tectonics, doi:10.1029/2005TC001943.Google Scholar
  159. Rosenberg CL (2004). Shear zones and magma ascent: A model based on a review of the Tertiary magmatism in the Alps. Tectonics, doi:10.1029/2003TC001526.Google Scholar
  160. Rossetti F, Storti F, Salvini F (2000). Cenozoic noncoaxial transtension along the western shoulder of the Ross Sea, Antarctica, and the emplacement of McMurdo dyke arrays. Terra Nova 12:60–66.Google Scholar
  161. Rovere E (1993). K/Ar ages of magmatic rocks and geochemical variations of volcanics from South Andes (37° to 37°15’S-71°W). Proceedings 2nd Japan Volcanological Society Congress, 107.Google Scholar
  162. Rovida A, Tibaldi A (2005). Propagation of strike-slip faults across Holocene volcano-sedimentary deposits, Pasto, Colombia. J Struct Geol 27:1838–1855.Google Scholar
  163. Saint Blanquat M, Tikoff B, Teyssier C, Vigneresse JL (1998). Transpressional kinematics and magmatic arcs. In: Holdsworth RE, Strachan RA, Dewey JF (Eds.), Continental Transpressional and Transtensional Tectonics. Geol Soc London Spec Publ 135, pp. 327–340.Google Scholar
  164. Salfity JA (1985). Lineamentos transversales al rumbo andino en el noroeste argentino, IV Congreso Geologico Chileno, 2:119–137.Google Scholar
  165. Salvini F, Brancolini G Busetti M, Storti F, Mazzarini F, Coren F (1997). Cenozoic geodynamics of the Ross Sea region, Antarctica: Crustal extension, intraplate strike-slip faulting, and tectonic inheritance. J Geophys Res 102:24, 669–24,696.Google Scholar
  166. Schafer KH, Dannapfel M (1994). State of in situ Stress in Northern Chile and in Northwestern Argentina. In: Reuter KJ, Scheuber E, Wigger PJ (Eds.), Tectonics of the Southern Central Andes. Structure and Evolution of an Active Continental Margin. Springer, New York, pp. 103–110.Google Scholar
  167. Scheuber E, Reutter K (1992). Magmatic arc tectonics in the Central Andes between 21° and 25°S. Tectonophysics 205:127–140.Google Scholar
  168. Schurr B, Asch G, Rietbrock A, Kind R, Pardo M, Heit B (1999). Seismicity and average velocities beneath the Argentine Puna plateau. Geophys Res Lett 26:3025–3028.Google Scholar
  169. Sebrier M, Soler P (1991). Tectonics and Magmatism in the Peruvian Andes from Late Oligocene to Present. Geol Soc Am Spec Paper 265:259–278.Google Scholar
  170. Serra S, Nelson RA (1988). Clay modeling of rift asymmetry and associated structures. Tectonophysics 153:307–312.Google Scholar
  171. Shaw HR (1980). The fracture mechanisms of magma transport from the mantle to the surface. In: Hargraves RB (Ed.), Physics of Magmatic Processes. Princeton University Press, Princeton, NJ, pp. 201–264.Google Scholar
  172. Sibson RH (2003). Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes. Am Assoc Pet Geol Bull 87:901–908.Google Scholar
  173. Sieh K, Natawidjaja D (2000). Neotectonics of the Sumatran fault, Indonesia. J Geophys Res 105:28,295–28,326.Google Scholar
  174. Simkin T, Siebert L, McClelland L, Bridge D, Newhall C, Latter JH (1981). Volcanoes of the world: A regional directory, gazetteer, and chronology of volcanism during the last 10,000 years. U.S. Hutchinson Ross Publishing, 232 pp.Google Scholar
  175. Skulski T, Francis D, Ludden JN (1987). The Tertiary lavas of SW Yukon and NW British Columbia; transform fault related magmatism? Geol Assoc Canada Programs Abstr 12:89.Google Scholar
  176. Skulski T, Francis D, Ludden JN (1991). Arc transform magmatism in the Wrangell volcanic Belt. Geology 19:11–14.Google Scholar
  177. Soler P, Bonhomme M (1990). Relations of magmatic activity to plate dynamics in central Perú from Late cretaceous to Present. In : Kay SM, Rapela CW (Eds.), Plutonism from Antarctica to Alaska . Geological Society of America, Special Paper, 241, 173–191.Google Scholar
  178. Spikings R, Seward D, Winkler W, Ruiz G (2000). Low temperature thermochronology of the northern Cordillera Real, Ecuador: Tectonic insights from zircon and apatite fission track analysis. Tectonics 19:649–668.Google Scholar
  179. Spinks KD, Acocella V, Cole JW, Bassett KN (2005). Structural control of volcanism and caldera development in the transtensional Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 144:7–22.Google Scholar
  180. Steinmann M (1997). The Cuenca Basin of Southern Ecuador: tectono-sedimentary history and the Tertiary Andean evolution. PhD Thesis, Swiss Federal Institute of Technology, Zurich, n. 12297, 185 pp.Google Scholar
  181. Stern CR (2004). Active Andean volcanism: its geologic and tectonic setting. Rev Geol de Chile 31:161–206.Google Scholar
  182. Sylvester AG (1988). Strike-slip faults. Geol Soc Am Bull 100:1666–1703.Google Scholar
  183. Tatar O, Yurtmen S, Temiz H, Gursoy H, Kocbulut F, Mesci BL, Guezou JC (2007). Intracontinental Quaternary Volcanism in the Niksar Pull-Apart Basin, North Anatolian Fault Zone, Turkey. Turkish J Earth Sci 16:417–440.Google Scholar
  184. Tibaldi A (1995). Morphology of pyroclastic cones and tectonics. J Geophys Res 100:24,521–24, 535.Google Scholar
  185. Tibaldi A (2005a). Quaternary compressional deformation around the Cotopaxi Volcano, Ecuador. AGU Chapman conference on “The Effects of Basement, Structure, and Stratigraphic Heritages on Volcano Behaviour”, 16–20 November 2005, Taal volcano, Tagaytay City, Philippines.Google Scholar
  186. Tibaldi A (2005b). Volcanism in compressional settings: is it possible? Geophys Res Lett, doi:10.1029/2004GL021798.Google Scholar
  187. Tibaldi A (2008). Contractional tectonics and magma paths in volcanoes. J Volcanol Geotherm Res, in press.Google Scholar
  188. Tibaldi A, Corazzato C, Rovida A (2007). Late Quaternary kinematics, slip-rate and segmentation of a major Cordillera-parallel transcurrent fault: The Cayambe-Afiladores-Sibundoy system, NW South America. J Struct Geol 29:664–680.Google Scholar
  189. Tibaldi A, Ferrari L (1992). Latest Pleistocene-Holocene tectonics of the Ecuadorian Andes. Tectonophysics 205:109–125.Google Scholar
  190. Tibaldi A, Romero-Leon JL (2000). Morphometry of Late Pleistocene- Holocene faulting and volcano-tectonic relationships in the southern Andes of Colombia. Tectonics 19:358–377.Google Scholar
  191. Tibaldi A, Vezzoli L, Pasquarè FA, Rust D (2008). Strike-slip fault tectonics and the emplacement of sheet-laccolith systems: The Thverfell case study (SW Iceland). J Struct Geol 30:274–290.Google Scholar
  192. Tibaldi A (2008). Contractional tectonics and magma paths in volcanoes. J Volcanol Geotherm Res 176 : 291–301.Google Scholar
  193. Toprak, V (1998). Vent distribution and its relation to regional tectonics, Cappadocian Volcanics, Turkey. J Volcanol Geotherm Res 85:55–67.Google Scholar
  194. Tormey DR, Hickey-Vargas R, Frey F, Lopez-Escobar L (1991). Recent lavas from the Andean volcanic Front (33 to 42S): Interpretations of along-arc compositional variations. Geol Soc Am Spec Paper 265:57–78.Google Scholar
  195. Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, van Calsteren P, Deng W (1996). Post-collision, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71.Google Scholar
  196. Van der Werff W (2000). Backarc deformation along the eastern Japan Sea margin, offshore northern Honshu. J Asian Earth Sci 18:71–95.Google Scholar
  197. van Wyk de Vries B, Merle O (1998). Extension induced by volcanic loading in regional strike-slip zones. Geology 26:983–986.Google Scholar
  198. van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001). A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225– 247.Google Scholar
  199. Ventura G (1994). Tectonics, structural evolution and caldera formation on Vulcano island (Aeolian archipelago, southern Tyrrhenian Sea). J Volcanol Geotherm Res 60:207–224.Google Scholar
  200. Ventura G, Vilardo G, Milano G, Pino NA (1999). Relationships among crustal structure, volcanism and strike-slip tectonics in the Lipari-Vulcano Volcanic Complex (Aeolian Islands, Southern Tyrrhenian Sea, Italy). Phys Earth Planet Inter 116:31–52.Google Scholar
  201. Victor P, Oncken O, Glodny J (2004). Uplift of the western Altiplano plateau: Evidence from the Precordillera between 20° and 21°S (northern Chile). Tectonics, 23, 4, TC4004 10.1029/2003TC001519.Google Scholar
  202. Vidal N, Merle, O (2000). Reactivation of basement fault beneath volcanoes: a new model of flank collapse. J Volcanol Geotherm Res 99:9–26.Google Scholar
  203. Wall RW, Lara LE (2001). Lavas Las Pataguas: volcanismo alcalino en el antearco andino del Mioceno Inferior, Chile central. Revista Geológica de Chile 28(2) : 243–258.Google Scholar
  204. Watanabe T, Koyaguchi T, Seno T (1999). Tectonic stress controls on ascent and emplacement of magmas. J Volcanol Geotherm Res 91:65–78.Google Scholar
  205. Weinberg RF, Sial AN, Mariano G (2004.) Close spatial relationship between plutons and shear zones. Geology 32:377–380.Google Scholar
  206. Westaway R (1990). Seismicity and tectonic deformation rate in Soviet Armenia: Implications for local earthquake hazard and evolution of adjacent regions. Tectonics 9:477–503.Google Scholar
  207. Williams H, McBirney A (1979). Volcanology. Freeman, Cooper & Co., 397pp.Google Scholar
  208. Winkler W, Villagomez D, Spikingsc R, Abegglend P, Toblere St, Eguezb A (2005). The Chota basin and its significance for the inception and tectonic setting of the inter-Andean depression in Ecuador. J South Am Earth Sci 19:5–19.Google Scholar
  209. Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000b). Geochronology (40Ar/39Ar, K-Ar and He-exposure ages) of Cenozoic magmatic rocks from northern Chile (18–22°S): implications for magmatism and tectonic evolution of the central Andes. Revista Geológica de Chile 27: 205–240.Google Scholar
  210. Xu J, Zhu G, Tong W, Cui K, Liu Q (1987). Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northwest of the Pacific ocean. Tectonophysics134:273–310.Google Scholar
  211. Yilmaz Y (1990). Comparison of young volcanic associations of western and eastern Anatolia formed under a compressional regime: a review. J Volcanol Geotherm Res 44:69–87.Google Scholar
  212. Yılmaz Y, Guner Y, Saroglu F (1998). Geology of Quaternary volcanic centers of east Anatolia. J Volcanol Geotherm Res 85:173–210.Google Scholar
  213. Yoshida T (2001). The evolution of arc magmatism in the NE Honshu arc, Japan. Tohoku Geophys J 32:131–149.Google Scholar
  214. Ziv A, Rubin AM (2000). Stability of dyke intrusion along preexisting fractures. J Geophys Res 105:5947–5961.Google Scholar
  215. Zapata TR, Brisson I, Dzelalija F (1999). La estructura de la faja plegada y corrida andina en relacion con el control del basamento de la Cuenca Neuquina, Boletın de Informaciones Petroleras, December 1999, pp. 112–121.Google Scholar
  216. Zollner W, Amos AJ (1973). Descripcion geologica de la Hoja 32b, Chos Malal (Prov. Neuquen), Bull. 143, 91 pp., Serv. Nac. Min. Geol., Buenos Aires.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alessandro Tibaldi
    • 1
    Email author
  • Federico Pasquarè
    • 2
  • Daniel Tormey
    • 3
  1. 1.Department of Geological Sciences and GeotechnologiesUniversity of Milan-BicoccaMilan-BicoccaItaly
  2. 2.Department of Chemical and Environment SciencesUniversity of InsubriaInsubriaItaly
  3. 3.ENTRIX IncVenturaUSA

Personalised recommendations