Advertisement

Passive Seismic Monitoring of Natural and Induced Earthquakes: Case Studies, Future Directions and Socio-Economic Relevance

  • Marco BohnhoffEmail author
  • Georg Dresen
  • William L. Ellsworth
  • Hisao Ito
Chapter
Part of the International Year of Planet Earth book series (IYPE)

Abstract

An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully applied to study seismicity at different magnitude levels ranging from acoustic emissions generated in the laboratory under controlled conditions, to seismicity induced by hydraulic stimulations in geological reservoirs, and up to great earthquakes occurring along plate boundaries. In all these environments the appropriate deployment of seismic sensors, i.e., directly on the rock sample, at the earth’s surface or in boreholes close to the seismic sources allows for the detection and location of brittle failure processes at sufficiently low magnitude-detection threshold and with adequate spatial resolution for further analysis. One principal aim is to develop an improved understanding of the physical processes occurring at the seismic source and their relationship to the host geologic environment. In this paper we review selected case studies and future directions of PSM efforts across a wide range of scales and environments. These include induced failure within small rock samples, hydrocarbon reservoirs, and natural seismicity at convergent and transform plate boundaries. Each example represents a milestone with regard to bridging the gap between laboratory-scale experiments under controlled boundary conditions and large-scale field studies. The common motivation for all studies is to refine the understanding of how earthquakes nucleate, how they proceed and how they interact in space and time. This is of special relevance at the larger end of the magnitude scale, i.e., for large devastating earthquakes due to their severe socio-economic impact.

Keywords

Earthquakes Passive Seismic monitoring Borehole Seismology Crustal mechanics Physics of Faulting 

References

  1. Aki, K., Richards, P. (2002) Quantitative Seismology. 2nd Edition, University Science Books.Google Scholar
  2. Albright, J.N., Pearson, C.F. (1982) Acoustic Emissions as a Tool for Hydraulic Fracture Location: Experience at the Fenton Hill Hot Dry Rock Site. SPE J. 22, 4, 523–530.Google Scholar
  3. Ambraseys, N.N. (2002) The seismic activity of the Sea of Marmara region over the last 2000 years. Bull Seismol Soc Am. 92, 1–18.CrossRefGoogle Scholar
  4. Armijo, R., Meyer, B., Navarro, S., King, G., Barka, A. (2002) Asymmetric slip partitioning in the Sea of Marmara pull-apart: A clue to propagation processes of the North Anatolian fault? Terra Nova. 14, 2, 80–86.CrossRefGoogle Scholar
  5. Armijo, R. et al. (2005) Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian fault): Implications for seismic hazard in Istanbul. Geochem Geophysics Geosystems. doi:10.1029/2004GC000896.Google Scholar
  6. Baisch, S., Harjes, H.P. (2003) A model for fluid-injection-induced seismicity at the KTB, Germany. Geophys J Int. 152, 160–170.CrossRefGoogle Scholar
  7. Baisch, S., Bohnhoff, M., Ceranna, L., Tu, Y., Harjes, H.P. (2002) Probing the crust to 9 km depth: Fluid injection experiments and induced seismicity at the KTB superdeep drilling hole. Bull Seismol Soc Am. 92, 2369–2380.CrossRefGoogle Scholar
  8. Bakun, W.H., McEvilly, T.V. (1979) Earthquakes near Parkfield, California: Comparing the 1934 and 199 Sequences. Science. 205, 4413, 1375–1377.CrossRefGoogle Scholar
  9. Bakun, W.H., McEvilly, T.V. (1984) Recurrence models and Parkfield, California, earthquakes. J Geophys Res. 89, B5, 3051–3058.CrossRefGoogle Scholar
  10. Bakun, W.H., Lindh, A.G. (1985) The Parkfield, California, Earthquake Prediction Experiment. Science. 229, 4714, 619–624.CrossRefGoogle Scholar
  11. Bakun, W.H. et al. (1987) Parkfield earthquake prediction scenarios and response plans. USGS Open-File Report 87–192.Google Scholar
  12. Bakun, W.H. et al. (2005) Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature. doi:10.1038/natures04067.Google Scholar
  13. Baris, S., Irmak, T.S., Grosser, H., Ozer, M.F., Woith, H., Ulutas, E., Tuncer, M.K. (2007) Monitoring seismicity in the eastern Marmara: the Armutlu Network. Geophys Res Abstr. 9, 10198.Google Scholar
  14. Barka, A. (1992) The North Anatolian fault zone. Annal Tectonicae. 6, 164–195.Google Scholar
  15. Barka, A. (1999) The 17 August Izmit earthquake. Science. 285, 1858–1859.CrossRefGoogle Scholar
  16. Barka, A. et al. (2002) The Surface Rupture and Slip Distribution of the 17 August 1999 Izmit Earthquake (M 7.4). Bull Seismol Soc Am. 92, 1, 43–60.CrossRefGoogle Scholar
  17. Barton, C.A., Zoback, M.D. (1994) Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near-complete stress drop and a new technique for stress magnitude measurement. J Geophys Res. 99, 9373–9390.CrossRefGoogle Scholar
  18. Bindi, D., Parolai, S., Grosser, H., Milkereit, C., Durukal, E. (2007) Empirical ground-motion prediction equations for northwerstern Turkey using the aftershocks of the 1999 Kocaeli earthquake. Geophys Res Lett. 34, L08305.CrossRefGoogle Scholar
  19. Bird, J.F., Bommer, J.J. (2004) Earthquake Losses Due to Ground Failure. Eng Geol. doi:10.1016/j.enggeo.05.006.Google Scholar
  20. Bohnhoff, M., Baisch, S., Harjes, H.P. (2004) Fault mechanisms of induced seismicity at the superdeep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field. J Geophys Res. doi:10.1029/2003JB002528.Google Scholar
  21. Bohnhoff, M., Grosser, H., Dresen, G. (2006) Strain Partitioning and Stress Rotation at the North Anatolian Fault Zone from aftershock focal mechanisms of the 1999 Izmit Mw=7.4 Earthquake. Geophys J Int. 166, 373–385.CrossRefGoogle Scholar
  22. Bohnhoff, M., Bulut, F., Aktar, M., Childs, D.M., Dresen, G. (2007) The North Anatolian Fault Zone in the broader Istanbul/Marmara region: Monitoring a ,seimic gap‘. AGU Fall Meeting T51C-0688.Google Scholar
  23. Brudy, M., Zoback, M.D., Fuchs, K., Rummel, F., Baumgärtner, J. (1997) Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength. J Geophys Res. 102, B8, 18453–18475.CrossRefGoogle Scholar
  24. Chavarria, J.A., Malin, P., Catchings, R.D., Shalev, E. (2003) A Look Inside the San Andreas fault at Parkfield Through Vertical Seismic Profiling. Science. 302, 5651, 1746–1748.CrossRefGoogle Scholar
  25. Chavarria, J.A., Malin, P.E., Shaley, E. (2004) The SAFOD Pilot Hole seismic array: Wave propagation effects as a function of sensor depth and source location. Geophys Res Lett. doi:10.1029/2003GL019382.Google Scholar
  26. Davidson, J., Stanchits, S., Dresen, G. (2007) Scaling and Universality in Rock Fracture. Phys Rev Lett. doi: 10.1103/PhysRevLett.98.125502.Google Scholar
  27. Dresen, G., Duyster, J., Stoeckhert, B., Wirth, R., Zulauf, G. (1997) Quartz dislocation microstructure between 7000 m and 9100 m depth from the Continental Deep Drilling Program KTB. J. Geophys. Res. 102, B8, 18443–18452.CrossRefGoogle Scholar
  28. Dresen, G., Aktar, M., Bohnhoff, M., Eyidogan, H. (2007) Drilling the North Anatolian Fault. Sci Drill Spec Iss. doi:10.2204/iodp.sd.s01.17.2007.Google Scholar
  29. Eaton, J.P., O’Neill, M.E., Murdock, J.N. (1970) Aftershocks of the 1966 Parkfield-Cholame, California, earthquake: a detailed study. Bull Seismol Soc Am. 60, 1151–1197.Google Scholar
  30. Ellsworth, W.L., Hickman, S.H., Zoback, M.D., Imanishi, K., Thurber, C.H., Roecker, S.W. (2007a) Micro- Nano- and Picoearthquakes at SAFOD: Implications for Earthquake Rupture and Fault Mechanics. AGU S12B-05.Google Scholar
  31. Ellsworth, W.L., Malin, P.E., Imanishi, K., Roecker, S.W., Nadeau, R., Oye, V., Thurber, C.H., Waldhauser, F., Boness, N.L., Hickman, S.H., Zoback, M.D. (2007b) Seismology inside the Fault Zone: Applications to Fault-Zone Properties and Rupture Dynamics. Sci Drill Spec Iss. doi:10.2204/iodp.sd.s01.04.2007.Google Scholar
  32. Emmermann R. Lauterjung J. (Eds.) (1997) The German Continental Deep Drill Program KTB: Overview and major results. J Geophys Res 102(B8):18179–18201.Google Scholar
  33. Evans, D. (1966) Denver area earthquakes and the Rocky Mountain Arsenal disposal well. Mountain Geologist. 3, 1, 23–26.Google Scholar
  34. Flerit, F., Armijo, R., King, G., Meyer, B. (2004) The mechanical interaction between the propagating North Anatolian Fault and the back-arc extension in the Aegean. Earth Plant Sci Lett. 224, 347–362.CrossRefGoogle Scholar
  35. Fortin, J., Stanchits, S., Dresen, G., Guéguen, Y. (2006) Acoustic emission and velocities associated with the formation of compaction bands in sandstone. J Geophys Res. doi:10.1029/2005JB003854.Google Scholar
  36. Gibbs, J.F., Healy, J.H., Raleigh, C.B., Coakley, J.M. (1973) Seismicity in the Rangely, Colorado, area: 1962–1970. Bull Seismol Soc Am. 63, 1557–1570.Google Scholar
  37. Gutenberg, B. (1945) Amplitudes of surface waves and magnitudes of shallow earthquakes. Bull Seismol Soc Am. 35, 3–12.Google Scholar
  38. Gutenberg, B., Richter, C.F. (1941) Seismicity of the Earth. Geol Soc Am Spec Pap. 34, 1–133.Google Scholar
  39. Graham, C.C., Stanchits, S.,  Main, I.G., Dresen, G. (2009) Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data, Int. J. Rock Mech. Min. Sci. doi:10.1016/j.ijrmms.2009.05.002’.Google Scholar
  40. Harris, R.A., Arrowsmith, J.R. (2006) Introduction to the Special Issue on the 2004 Parkfield Earthquake and the Parkfield Earthquake Prediction Experiment. Bull Seismol Soc Am. doi:10.1785/0120050831.Google Scholar
  41. Healy, J.H., Rubey, W.W., Griggs, D.T., Raleigh, C.B. (1968) The Denver Earthquakes. Science. 161, 3848, 1301–1310.CrossRefGoogle Scholar
  42. Hickman, S.H., Zoback, M.D., Ellsworth, W.L. (2004) Introduction to special sections: Preparing for the San Andreas Fault Observatory at Depth. Geophys Res Lett. doi:10.1029/2004GL020688.Google Scholar
  43. Hickman, S.H., Zoback, M.D., Ellswoth, W.L., Boness, N., Malin, P., Roecker, S., Thurber, C. (2007) Structure and Properties of the San Andreas Fault in Central California: Recent Results from the SAFOD Experiment. Sci Drill. doi:10.2204/iodp.sd.s01.39.2007.Google Scholar
  44. Hill, D.P., Eaton, J.P., Jones, L.M. (1990) 5. Seismicity, 1980–86, in The San Andreas Fault System, California. Wallace RE (ed.) U.S. Geological Survey Professional Paper 1515, United States Government, Printing Office, Washington.Google Scholar
  45. Ide, S., Beroza, G.C. (2001) Does apparent stress vary with earthquake size, Geophys. Res. Lett. 28, 3349–3352.CrossRefGoogle Scholar
  46. Imamura, A., Kodaira, T., Imamura, H. (1932) The earthquake swarms of Nagusa and vicinity. Bull Earthquake Res Inst Univ Tokyo. 10, 636–648.Google Scholar
  47. Imanishi, K., Ellsworth, W.L. (2006) Scaling Relationships of Microearthquakes at Parkfield, CA, Determined Using the SAFOD Pilot Hole Seismic Array. Abercrombie RE McGarr A Di Toro G Kanamori H (eds.) Earthquakes: radiated energy and the physics of faulting, American Geophysical Union Monograph 170.Google Scholar
  48. Ishimoto, M., Ida, K. (1939) Observations sur les seismes enrigstres par le microsismographe construit dernierement (I). Bull Earthquake Inst Univ Tokyo 17:443–478 (in Japanese with French abstract).Google Scholar
  49. Ito, H. (2007) Long-term monitoring in deep boreholes in the Nankai subduction zone. Sci Drill Spec Iss. 1, 117–119.Google Scholar
  50. Janssen, C., Wagner, C., Zang, A., Dresen, G. (2001) Fracture Process Zone in Granite-a Microstructural Analysis. Int J Earth Sci. 90, 46–59.CrossRefGoogle Scholar
  51. Jones, R.H., Stewart, R.C. (1997) A method for determining significant structures in a cloud of earthquakes. J Geophys Res. 102, B4, 8245–8254.CrossRefGoogle Scholar
  52. Jost, M.L., Büsselberg, T., Jost, Ö., Harjes, H.P. (1998) Source parameters of injection-induced microearthquakes at 9 km depth at the KTB Deep Drilling site, Germany. Bull Seismol Soc Am. 88, 815–832.Google Scholar
  53. Karabulut, H., Bouin, M.P., Bouchon, M., Dietrich, M., Cornou, C., Aktar, M. (2002) The Seismicity in the Eastern Marmara Sea after the 17 August 1999 Izmit Earthquake. Bull Seismol Soc Am. 92, 1, 387–393.CrossRefGoogle Scholar
  54. Kikuchi, M., Nakamura, M., Yoshikawa, K. (2003) Fault asperity of large earthquakes in Japan inferred from low-gain historical seismograms. Earth Plan Space. 55, 159–172.Google Scholar
  55. Korneev, V.A., McEvilly, T.V., Karageorgi, E.D. (2000) Seismological Studies at Parkfield VIII: Modeling the Observed Travel-Time Changes. Bull Seismol Soc Am. 90, 702–708.CrossRefGoogle Scholar
  56. Kostrov, B.V. Selfsimilar problems of propagation of shear cracks (Tengential rupture crack propagation in medium under shearing stress). PPM-J Appl Meth Mech. 28, 5, 1077–1087. (1964).CrossRefGoogle Scholar
  57. Kovach, R.L. (1974) Source mechanisms for Wilmington oil field, California, subsidence earthquakes. Bull Seismol Soc Am. 64, 699–711.Google Scholar
  58. Lee WHK Stewart SW (1981) Principles and Applications of Microearthquake Networks. Academic Press, New York.Google Scholar
  59. Lei, X., Nishizawa, O., Kusunose, K., Satoh, T. (1992) Fractal Structure of the Hypocenter Distributions and Focal Mechanism Solutions of Acoustic Emission in Two Granites of Different Grain Sizes. J Phys Earth. 40, 617–634.Google Scholar
  60. Lei, X., Kusunose, K., Rao, M.V.M.S., Nishizawa, O., Satoh, T. (2000) Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J Geophys Res 105. 6127–6139.Google Scholar
  61. LePichon, X. et al. (2001) The active Main Marmara Fault. Earth Plant Sci Lett. 192, 595–616.CrossRefGoogle Scholar
  62. Lisowski, M., Prescott, W.H. (1981) Short-range distance measurements along the San Andreas fault system in central California, 1975 to 1979. Bull Seismol Soc Am. 71, 1607–1624.Google Scholar
  63. Lockner, D.A. (1993) The Role of Acoustic Emission in the Study of Rock Fracture. Int J Rock Mech Min Sci Geomech. 30, 7, 883–899.CrossRefGoogle Scholar
  64. Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A., Sidorin, A. (1991) Quasi-static fault growth and shear fracture energy in granite. Nature. 350, 6313, 39–42.CrossRefGoogle Scholar
  65. Lockner, D.A., Byerlee, J.D. (1991) Precursory AE patterns leading to rock fracture. 5th Conf Acoust Emiss Geol Struct Mat 45–58 Trans Tech Publications Clausthal-Zellerfeld-Germany and Pennsylvania State University.Google Scholar
  66. Lockner, D.A., Byerlee, J.D. (1992) Fault growth and acoustic emissions in confined granite. Proceedings of the 22nd Midwestern Mechanics Conf 165–173 Appl Mech Rev Rolla Missouri.Google Scholar
  67. Malin, P.E., Blakeslee, S.N., Alvarez, M.G., Martin, A.J. (1989) Microearthquake Imaging of the Parkfield Asperity. Science. 244, 4904, 557–559.CrossRefGoogle Scholar
  68. McGarr, A. (1991) On a possible connection between three major earthquakes in California and oil production. Bull Seismol Soc Am. 81, 948–970.Google Scholar
  69. McGarr, A., Simpson, D., Seeber, L. (2002) Case Histories of Induced and Triggered Seismicity. In: International handbook of earthquake and engineering seismology Part A (International geophysics, Vol.81 A), p 647–661.Google Scholar
  70. Muller, J.R., Aydin, A. (2005) Using mechanical modelling to constrain fault geometries proposed for the northern Marmara sea. J Geophys Res. doi:10.1029/2004JB003226.Google Scholar
  71. Murray, J., Langbein, J. (2006) Slip on the San Andreas Fault at Parkfield, California, over Two Earthquake Cycles, and the Implications for Seismic Hazard. Bull Seismol Soc Am. 96, S283–S303.CrossRefGoogle Scholar
  72. Nadeau, R.M., Dolenc, D. (2005) Nonvolcanic tremor Deep Beneath the San Andreas Fault. Science. 307, 5708, 389.CrossRefGoogle Scholar
  73. Nadeau, R.M., Foxall, W., McEvilly, T.V. (1995) Clustering and periodic recurrence of microearthquakes on the San Andreas fault at Parkfield, California. Science. 267, 503–507.CrossRefGoogle Scholar
  74. Namba, Y., Ito, H., Kato, K., Higuchi, K., Kyo, M. (2008) Engineering specifications on LTBMS telemetry system for NanTroSEIZE 3.5 km riser hole. JAMSTEC Rep Res Dev. 7, 43–58.Google Scholar
  75. Oppenheimer, D.H., Iyer, H.M. (1980) Frequency-wavenumber analysis of geothermal microseisms at Norris Geyser basin, Yellowstone National Park, Wyoming. Geophysics. 45, doi:10.1190/1.1441099.Google Scholar
  76. Özalaybey, S., Ergin, M., Aktar, M., Tapirdamaz, C., Bicmen, F., Yörük, A. (2002) The 1999 Izmit Earthquake Sequence in Turkey: Seismological and Tectonic Aspects. Bull Seismol Soc Am. 92, 1, 376–386.CrossRefGoogle Scholar
  77. Park, J.-O., Tsuru, T., Kodaira, S., Cummins, P.R., Kaneda, Y. (2002) Splay fault branching along the Nankai subduction zone, Science 297, 1157–1160.CrossRefGoogle Scholar
  78. Parolai, S., Richwalski, S.M., Zschau, J., Durukal, E., Özel, O., Birgören, G., Ansal, A., Erdik, M. (2007) Project ‘Megacity Istanbul’: Estimation of site effects and ground motion scenarios. Geophys Res. Abstr 8 07038.Google Scholar
  79. Parsons, T. (2004) Recalculated probability of M≥7 earthquakes beneath the Sea of Marmara, Turkey. J Geophys Res. doi:10.1029/2003JB002667.Google Scholar
  80. Phillips, W.S., Fairbanks, T.D., Rutledge, J.T., Anderson, D.W. (1998) Induced microearthquake patterns and oil-producing fracture systems in the Austin chalk. Tectonophysics. doi:10.1016/S0040-1951(97)00313-2.Google Scholar
  81. Phillips, W.S., Rutledge, J.T., House, L.S., Fehler, M.M.C. (2002) Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: Six Case Studies. PAGEOPH. 159, 345–369.CrossRefGoogle Scholar
  82. Plenkers, K., Kwiatek, G. JAGUARS-group (2008) JAGUARS-Project: Spectral analysis of microseismicity and acoustic emission in a deep South African gold mine. Seismol Res Lett. 79, 330.Google Scholar
  83. Raleigh, C.B., Healy, J.H., Bredehoeft, J.D. (1972) Faulting and crustal stress at Rangely, Colorado. Flow and Fracture of rocks. Am Geophys Union Geophys Monograph. 16, 275–284.Google Scholar
  84. Reid, H.F. (1910) The mechanics of the earthquake. Carnegie Institution of Washington.Google Scholar
  85. Reilinger, R. et al. (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications fort he dynamics of plate interactions. J Geophys Res. doi:10.1029/2005JB004051.Google Scholar
  86. Richter, C.F. (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am. 25, 1–32.Google Scholar
  87. Roecker, S., Thurber, C., McPhee, D. (2004) Joint inversion of gravity and arrival time data from Parkfield: New constraints on structure and hypocenter locations near the SAFOD drill site. Geophys Res Lett. doi:10.1029/2003GL019396.Google Scholar
  88. Rubin, A.M., Gillard, D., Got, J.L. (1999) Streaks of microearthquakes along creeping faults. Nature.doi:10.1038/23196.Google Scholar
  89. Rutledge, J.T., Phillips, W.S., Roff, A., Albright, J.N., Hamilton-Smith, T., Jones, S., Kimmich, K. (1994) Subsurface fracture mapping using microearthquakes detected during primary oil production, Clinton County, Kentucky, paper SPE 28384, Soc. of Petro. Eng. Ann. Tech. Conf.Google Scholar
  90. Rutledge, J.T., Phillips, W.S., Mayerhofer, M.J., (2004) Faulting Induced by Forced Fluid Injection and Fluid Flow Forced by Faulting: An Interpretation of Hydraulic-Fracture Microseismicity, Carthage Cotton Valley Gas Field, Texas. Bull Seismol Soc Am doi:10.1785/012003257.Google Scholar
  91. Sato, T., Kasahara, J., Taymaz, T., Ito, M., Kamimura, A., Hayakawa, T., Tan, O. (2004) A study of microearthquake seismicity and focal mechanisms within the Sea of Marmara (NW Turkey) using ocean bottom seismometers (OBSs. Tectonophysic. 391, 303–314.CrossRefGoogle Scholar
  92. Schaff, D.P., Bokelmann, G.H.R., Beroza, G.C. (2002) High-resolution image of Calaveras Fault seismicity. J Geophys Res. doi:10.1029/2001JB000633.Google Scholar
  93. Schaff, D.P., Bokelmann, G.H.R., Ellsworth, W.L., Zanzerkia, E., Waldhauser, F., Beroza, G.C. (2004) Optimizing Correlation Techniques for Improved Earthquake Location. Bull Seosmol Soc Am. doi:10.1785/0120020238.Google Scholar
  94. Scholz, C.H. (1968) The Frequency – Magnitude Relation of Microfracturing in Rock and its Relation to Earthquakes. Bull Seismol Soc Am. 58, 1, 399–415.Google Scholar
  95. Simpson, R.W., Barall, M., Langbein, J., Murray, J.R., Rymer, M.J. (2006) San Andreas Fault Geometry in the Parkfield, California. Region Bull Seismol Soc Am. doi:10.1785/0120050824.Google Scholar
  96. Stanchits, S., Vinciguerra, S., Dresen, G. (2006) Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. PAGEOPH. 163, 974–993.CrossRefGoogle Scholar
  97. Stanchits, S., Dresen, G. (2003) Separation of Tensile and Shear Cracks Based on Acoustic Emission Analysis of Rock Fracture. Proc Int Symposium: Non-Destructive Testing in Civil Engineering (NDT-CE) Berlin 107.Google Scholar
  98. Stein, R.S., Barka, A., Dieterich, J.H. (1997) Progressive failure ob the North Anatolian fault since 1939 by earthquake stress triggering. Geophys J Int. 128, 594–604.CrossRefGoogle Scholar
  99. Thurber, C., Roecker, S., Zhang, H., Baher, S., Ellsworth, W.L. (2004) Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes. Geophys Res Lett. doi:10.1029/2003GL019398.Google Scholar
  100. Thurber, C., Zhang, H., Waldhauser, F., Hardebeck, J., Michael, A., Eberhart-Phillips, D. (2006) Three-Dimensional Compressional Wavespeed Model, Earthquake Relocations, and Focal Mechanisms for the Parkfield, California, Region. Bull. Seismol. Soc. Am. doi:10.1785/0120050825.Google Scholar
  101. Tobin, H., Kinoshita, M. (2006) The IODP Nankai Trough seismogenic zone experiment. Sci Drill. doi:10.2204/iodp.sd.2.06.2006.Google Scholar
  102. Waldhauser, F., Ellsworth, W.L., Cole A. (1999) Slip-parallel seismic lineations on the Northern Hayward Fault, California. Geophys. Res. Lett. 26, 3525–3528.CrossRefGoogle Scholar
  103. Waldhauser, F., Ellsworth, W.L. (2000) A Double-Difference Earthquake Location Algorithm: Method and Applications to the Northern Hayward Fault, California. Bull Seismol Soc Am. doi:10.1785/0120000006.Google Scholar
  104. Waldhauser, F., Ellsworth, W.L. (2002) Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations. J Geophys Res. doi: 10.1029/2000JB000084.Google Scholar
  105. Waldhauser, F., Ellsworth, W.L., Schaff, D.P., Cole, A. (2004) Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity. Geophys Res Lett. doi:10.1020/2004GL020649.Google Scholar
  106. Yalciner, A.C., Alpar, B., Altinok, Y., Özbay, I., Imamura, F. (2002) Tsunamis in the Sea of Marmara: Historical documents for the past, models for the future. Mar Geol. 190, 445–463.CrossRefGoogle Scholar
  107. Young, R.P., Collins, D.S. (2001) Seismic studies of rock fracture at the Underground Research Laboratory, Canada. Int J Rock Mech Mining Sc. 38, 787–799.CrossRefGoogle Scholar
  108. Zang, A., Wagner, F.C., Stanchits, S., Janssen, C., Dresen, G. (2000) Fracture process zone in granite. J Geophys Res. 105, 23651–23661.CrossRefGoogle Scholar
  109. Zang, A., Wagner, F.C., Stanchits, S., Dresen, G., Andresen, R., Haidekker, M.A. (1998) Source analysis of acoustic emissions in granite cores under symmetric and asymmetric compressive load. Geophys J Int. 135, 1113–1130.CrossRefGoogle Scholar
  110. Zang, A., Wagner, F.C., Dresen, G. (1996) Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure. J Geophys Res. 101, 17507–17521.CrossRefGoogle Scholar
  111. Zhang, H., Thurber, C.H. (2003) Double-Difference Tomography: The Method and Its Application to the Hayward Fault, California. Bull Seismol Soc Am. doi:10.1785/ 0120020190.Google Scholar
  112. Zoback , M.D., Harjes , H.P. (1997) Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. J Geophys Res. 102, B8, 18477–18491.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Marco Bohnhoff
    • 1
    Email author
  • Georg Dresen
    • 2
  • William L. Ellsworth
    • 3
  • Hisao Ito
    • 4
  1. 1.Department of GeophysicsStanford UniversityStanfordUSA
  2. 2.Helmholtz-Zentrum Potsdam, Deutsches GeoforschungsZentrum (GFZ)PotsdamGermany
  3. 3.United States Geological SurveyMenlo ParkUSA
  4. 4.Center for Deep Earth Exploration, Japan Agency for Marine-Earth Science and TechnologyYokohama KanagawaJapan

Personalised recommendations