Thermo-Mechanical Models for Coupled Lithosphere-Surface Processes: Applications to Continental Convergence and Mountain Building Processes

  • E. BurovEmail author
Part of the International Year of Planet Earth book series (IYPE)


Simple mechanical considerations show that many tectonic-scale surface constructions, such as mountain ranges that exceed certain critical height (about 3 km in altitude, depending on rheology and width) should flatten and collapse within few My as a result of gravitational spreading that may be enhanced by flow in the ductile part of the crust. The elevated topography is also attacked by surface erosion that, in case of static topography, would lead to its exponential decay on a time scale of less than 2.5 My. However, in nature, mountains or rift flanks grow and stay as localized tectonic features over geologically important periods of time (>10 My). To explain the long-term persistence and localized growth of, in particular, mountain belts, a number of workers have emphasized the importance of dynamic feedbacks between surface processes and tectonic evolution. Surface processes modify topography and redistribute tectonically significant volumes of sedimentary material, which acts as vertical loading over large horizontal distances. This results in dynamic loading and unloading of the underlying crust and mantle lithosphere, whereas topographic contrasts are required to set up erosion and sedimentation processes. Tectonics therefore could be a forcing factor of surface processes and vice versa. One can suggest that the feedbacks between tectonic and surface processes are realised via 2 interdependent mechanisms: (1) slope, curvature and height dependence of the erosion/deposition rates; (2) surface load-dependent subsurface processes such as isostatic rebound and lateral ductile flow in the lower or intermediate crustal channel. Loading/unloading of the surface due to surface processes results in lateral pressure gradients, that, together with low viscosity of the ductile crust, may permit rapid relocation of the matter both in horizontal and vertical direction (upward/downward flow in the ductile crust). In this paper, we overview a number of coupled models of surface and tectonic processes, with a particular focus on 3 representative cases: (1) slow convergence and erosion rates (Western Alpes), (2) intermediate rates (Tien Shan, Central Asia), and (3) fast convergence and erosion rates (Himalaya, Central Asia).


Mountain building Surface processes Continental collision Lithosphere rheology Modeling 



I am very much thankful to T. Yamasaki, the anonymous reviewer and M. Ter Voorde for their highly constructive comments.


  1. Ahnert, F., Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins, Am. J. Sci., 268, 243–263, 1970.CrossRefGoogle Scholar
  2. Ashmore, P. E., Laboratory modelling of gravel braided stream morphology, Earth Surf. Processes Landforms, 7, 201–225, 1982.CrossRefGoogle Scholar
  3. Andrews, D. J., R. C., Bucknam, Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res., 92, 12857–12867, 1987.CrossRefGoogle Scholar
  4. Avouac, Analysis of scarp profiles: evaluation of errors in morphologic dating, J. Geophys. Res., 98, 6745–6754, 1993.CrossRefGoogle Scholar
  5. Avouac, J. -P., P., Tapponnier, M., Bai, H., You, G., Wang, Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan, J. Geophys. Res., 98, 6755–6804, 1993.CrossRefGoogle Scholar
  6. Avouac, J. -P., P., Tapponnier, Kinematic model of active deformation in Central Asia, Geophys. Res. Lett., 20, 895–898, 1993.CrossRefGoogle Scholar
  7. Avouac, J. P., E. B., Burov, Erosion as a driving mechanism of intracontinental mountain growth, J. Geophys. Res., 101 (B8), 17747–17769, 1996.CrossRefGoogle Scholar
  8. Basile, C., P., Allemand, Erosion and flexural uplift along transform faults, Geophys. J. Int., 151, 646–653, 2002.CrossRefGoogle Scholar
  9. Batchelor, G. K., An introduction to fluid dynamics, Cambridge University Press, Cambridge, 615 p., 1967.Google Scholar
  10. Beaumont, C., Foreland basins, R. Astr. Soc. Geophys. J., 65, 389–416, 1981.Google Scholar
  11. Beaumont, C., P., Fullsack, J., Hamilton, Erosional control of active compressional orogens, Thrust Tectonics, Ed. K. R. McClay, Chapman & Hall, London, 1–31, 1992.Google Scholar
  12. Beaumont, C., P., Fullsack, J., Hamilton, Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere, submitted to: Proceedings of 5th International Symposium on Seismic Reflection Probing of the Continents and their Margins, Eds.R. Clowes and A. Green, 1994.Google Scholar
  13. Beaumont, C., H., Kooi, S., Willett, Coupled tectonic-surface process models with applications to rifted margins and collisional orogens, in Geomorphology and Global Tectonics, Eds. M. A. Summerfield, pp. 29–55, John Wiley, New York, 2000.Google Scholar
  14. Bonnet, S., A., Crave, Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography, Geology, 31, 123–126, 2003.CrossRefGoogle Scholar
  15. Braun, J., M., Sambridge, Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization, Basin Res., 9, 27– 52, 1997.CrossRefGoogle Scholar
  16. Beekman, F., Tectonic modelling of thick-skinned compressional intraplate deformation, PhD thesis, Free University, Amsterdam, 1994.Google Scholar
  17. Bird, P., A. J., Gratz, A theory for buckling of the mantle lithosphere and Moho during compressive detachments in continents, Tectonophysics, 177, 325–336, 1990.CrossRefGoogle Scholar
  18. Bird, P., Lateral extrusion of lower crust from under high topography in the isostatic limit, J. Geophys. Res., 96, 10275–10286, 1991.CrossRefGoogle Scholar
  19. Brace, W. F., D. L., Kohlstedt, Limits on lithospheric stress imposed by laboratory experiments, J. Geophys. Res., 85, 6248–6252, 1980.CrossRefGoogle Scholar
  20. Byerlee, J. D., Friction of rocks, Pure Appl. Geophys., 116, 615–626, 1978.CrossRefGoogle Scholar
  21. Burbank, D. W., Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin, Nature, 357, 680–683, 1992.CrossRefGoogle Scholar
  22. Burbank, D. W., J., Vergés, Reconstruction of topography and related depositional systems during active thrusting, J. Geophys. Res., 99, 20281–20297, 1994.CrossRefGoogle Scholar
  23. Burov, E. V., M. G., Kogan, H., Lyon-Caen, P., Molnar, Gravity anomalies, the deep structure, and dynamic processes beneath the Tien Shan, Earth Planet. Sci. Lett., 96, 367–383, 1990.CrossRefGoogle Scholar
  24. Burov, E. B., M., Diament, Flexure of the continental lithosphere with multilayered rheology, Geophys. J. Int., 109, 449–468, 1992.CrossRefGoogle Scholar
  25. Burov, E. B., L. I., Lobkovsky, S., Cloetingh, A. M., Nikishin, Continental lithosphere folding in Central Asia (part 2), constraints from gravity and topography, Tectonophysics, 226, 73–87, 1993.CrossRefGoogle Scholar
  26. Burov, E. B., S., Cloetingh, Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins, Earth Planet Sci. Lett., 150, 7–26, 1997.CrossRefGoogle Scholar
  27. Burov, E. B., M., Diament, The effective elastic thickness (Te) of continental lithosphere: What does it really mean?, J. Geophys. Res., 100, 3905–3927, 1995.CrossRefGoogle Scholar
  28. Burov, E. B., L., Jolivet, L., Le Pourhiet, A., Poliakov, A thermemechanical model of exhumation of HP and UHP methamorphic rocks in Alpine mountain belts, Tectonophysics, 113–136, 2001.Google Scholar
  29. Burov, E., A. B., Watts, The long-term strength of continental lithosphere: “jelly-sandwich” or “crème-brûlé”?, GSA Today, 16, 1, doi: 10.1130/1052-5173(2006)016<4:TLTSOC, 2006.CrossRefGoogle Scholar
  30. Carson, M. A., M. J., Kirkby, Hillslope Form and Processes, Cambridge University Press, Cambridge, 475p., 1972.Google Scholar
  31. Carter, N. L., M. C., Tsenn, Flow properties of continental lithosphere, Tectonophysics, 36, 27–63, 1987.CrossRefGoogle Scholar
  32. Castelltort, S., G., Simpson, Growing mountain ranges and quenched river networks, CRAS, 2006.Google Scholar
  33. Chen, Y., J. P., Cogne, V., Courtillot, J. P., Avouac, P., Tapponnier, E., Buffetaut, G., Wang., M., Bai, H., You, M., Li, C., Wei, Paleomagnetic study of Mesozoic continental sediments along the northern Tien Shan (China) and heterogeneous strain in Central Asia, J. Geophys. Res., 96, 4065–4082, 1991.CrossRefGoogle Scholar
  34. Chéry, J., J. P., Vilotte, M., Daignieres, Thermomechanical evolution of a thinned continental lithosphere under compression: Implications for Pyrenees, J. Geophys. Res., 96, 4385–4412, 1991.CrossRefGoogle Scholar
  35. Chorley, R. J., S. A., Schumm, D. E., Sugden, Hillsopes in Geomorpholgy, 255–339, Methuen, London, 1984.Google Scholar
  36. Cloetingh, S., E., Burov, L., Matenco, G., Toussaint, G., Bertotti, Thermo-mechanical constraints for the continental collision mode in the SE Carpathians (Romania), Earth Planet Sci. Lett., 218 (1–2), pp. 57–76, 2004.CrossRefGoogle Scholar
  37. Copeland, P., T. M., Harrison, Episodic rapid uplift in the Himalya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan, Geology, 18, 354–357, 1990.CrossRefGoogle Scholar
  38. Crave, A., P., Davy, A stochastic ‘‘precipiton’ model for simulating erosion/sedimentation dynamics, Comput. Geosci., 27, 815– 827, 2001.CrossRefGoogle Scholar
  39. Crave, A., D., Lague, P., Davy, J., Kermarrec, D., Sokoutis, L., Bodet, R., Compagnon, Analogue modelling of relief dynamics, Phys. Chem. Earth A, 25 (6–7)), 549–553, 2000.CrossRefGoogle Scholar
  40. Culling, W. E. H., Analytical theory of erosion, J. Geol., 68, 336–344, 1960.CrossRefGoogle Scholar
  41. Culling, W. E. H., Theory of erosion on soil-covered slopes, J. Geol., 73, 230–254, 1965.Google Scholar
  42. Cundall, P. A., Numerical experiments on localization in frictional material: Ingenieur-Archiv, v. 59, p. 148–159, 1989.Google Scholar
  43. Davies, G. F., Thermomechanical erosion of the lithosphere by mantle plumes, J. Geophys. Res., 99, 15709–15722, 1994.CrossRefGoogle Scholar
  44. Davy, P., A., Crave, Upscaling local-scale transport processes in largescale relief dynamics, Phys. Chem. Earth A, 25 (6–7), 533–541, 2000.CrossRefGoogle Scholar
  45. Densmore, A. L., R. S., Anderson, B. G., McAdoo, M. A., Ellis, Hillslope evolution by bedrock landslides, Science, 275, 369–372, 1997.CrossRefGoogle Scholar
  46. Densmore, A. L., M. A., Ellis, R. S., Anderson, Landsliding and the evolution of normal fault-bounded mountain ranges, J. Geophys. Res., 103 (B7), 15203–15219, 1998.CrossRefGoogle Scholar
  47. Ellis, S., P., Fullsack, C., Beaumont, Oblique convergence of the crust driven by basal forcing: implications for length-scales of deformation and strain partitioning in orogens, Geophys. J. Int., 120, 24–44, 1995.CrossRefGoogle Scholar
  48. England, P. C., D. P., McKenzie, A thin viscous sheet model for continental deformation, Geophys. J. R. Astron. Soc., 73, 523–532, 1983.Google Scholar
  49. England, P., S. W., Richardson, The influence of erosion upon the mineral facies of rocks from different metamorphic environments, J. Geol. Soc. Lond., 134, 201–213, 1977.CrossRefGoogle Scholar
  50. Flint, J. J., Experimental development of headward growth of channel networks, Geol. Soc. Am. Bull., 84, 1087–1094, 1973.CrossRefGoogle Scholar
  51. Flint, J. -J., Stream gradient as a function of order magnitude, and discharge, Water Resour. Res., 10 (5), 969–973, 1974.CrossRefGoogle Scholar
  52. Fleitout, L., C., Froidevaux, Tectonics and topography for a lithosphere containing density heterogeneities, Tectonics, 1, 21–56, 1982.CrossRefGoogle Scholar
  53. Flemings, P. B., T. E., Jordan, A synthetic stratigraphic model of foreland basin development, J. Geophys. Res., 94, 3851–3866, 1989.CrossRefGoogle Scholar
  54. Flemings, P. B., T. E., Jordan, Stratigraphic modelling of foreland basins: interpreting thrust deformation and lithosphere rheology, Geology, 18, 430–434, 1990.CrossRefGoogle Scholar
  55. Fletcher, C. A. J., Computational techniques for fluid dynamics 2, Springer-Verlag, Berlin Heidelberg, 552 pp., 1988.Google Scholar
  56. Fournier, F., Climat et Erosion: la relation entre l’érosion du sol par l’eau et les précipitations atmosphériques, Presse Universitaire de France, Paris, 201 pp., 1960.Google Scholar
  57. Gaspar-Escribano, J. M., M., Ter Voorde, E., Roca, S., Cloetingh, Mechanical (de-)coupling of the lithosphere in the Valencia Through (NW Mediterranean): What does it mean? Earth and Planet Sci. Lett, 210, 291–303, 2003.Google Scholar
  58. Garcia-Castellanos, D., J., Vergés, J., Gaspar-Escribano, S., Cloetingh, Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia), J. Geophys. Res., VOL. 108, NO. B7, 2347, doi:10.1029/2002JB002073, 2003.CrossRefGoogle Scholar
  59. Garcia-Castellanos, D., Interplay between lithospheric flexure and river transport in foreland basins, Basin Res., 14, 89–104, 2002.CrossRefGoogle Scholar
  60. Garcia-Castellanos, D., M., Fernàndez, M., Torne, Modeling the evolution of the Guadalquivir foreland basin (southern Spain), Tectonics, 21, (3), 1018, doi:10.1029/2001TC001339, 2002.CrossRefGoogle Scholar
  61. Gossman, H., Slope modelling with changing boundary conditions – effects of climate and lithology, Z. Geomoph. N.F., Suppl. Bd. 25, 72–88, 1976.Google Scholar
  62. Govers, G., Evaluation of transporting capacity formulae for overland flow, in Overland Flow: Hydraulics and Erosion Mechanics, edited by A. J. Parsons and A. D. Abrahams, pp. 243 – 273, UCL Press, London, 1992a.Google Scholar
  63. Govers, G., Relationship between discharge, velocity and flow area for rills eroding loose, non-layered materials, Earth Surf. Processes Landforms, 17, 515–528, 1992b.CrossRefGoogle Scholar
  64. Gratton, J., Crustal shortening, root spreading, isostasy, and the growth of orogenic belts: a dimensional analysis, J. Geophys. Res., 94, 15627–15634, 1989.CrossRefGoogle Scholar
  65. Gregory, K. M., C., Chase, Tectonic and climatic significance of a late Eocene low-relief, high-level geomorphic surface, Colorado, J. Geophys. Res., 99, 20141–20160, 1994.CrossRefGoogle Scholar
  66. Hamilton, J. M., J., Kim, F., Waleffe, Regeneration mechanisms of near-wall turbulence structures, J. Fluid. Mech., 287, 317–348, 1995.CrossRefGoogle Scholar
  67. Hanks, T. C., R. C., Buckham, K. R., LaJoie, R. E., Wallace, Modification of wave-cut and fault-controlled landforms, J. Geophys. Res., 89, 5771–5790, 1984.CrossRefGoogle Scholar
  68. Hansen, E. B., M. A., Kelmanson, An integral equation justification of the boundary conditions of the driven-cavity problem, Comput. Fluids, 23 (1), 225–240, 1994.CrossRefGoogle Scholar
  69. Hairsine, P. B., C. W., Rose, Modeling water erosion due to overland flow using physical principles, 1, Sheet flow, Water Resour. Res., 28(1), 237–243, 1992.CrossRefGoogle Scholar
  70. Hancock, G., G., Willgoose, Use of a landscape simulator in the validation of the SIBERIA catchment evolution model: Declining equilibrium landforms, Water Resour. Res., 37(7), 1981– 1992, 2001.CrossRefGoogle Scholar
  71. Hasbargen, L. E., C., Paola, Landscape instability in an experimental drainage basin, Geology, 28(12), 1067–1070, 2000.CrossRefGoogle Scholar
  72. Hendrix, M. S., S. A., Graham, A. R., Caroll, E. R., Sobel, C. L., McKnight, B. J., Schulein, Z., Wang, Sedimentary record and climatic implications of recurrent deformation in the Tien Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China, Geol. Soc. Am. Bull., 104, 53–79, 1992.CrossRefGoogle Scholar
  73. Hendrix, M. S., T. A., Dumitru, S. A., Graham, Late Oligocene-early Miocene unroofing in the Chinese Tian Shan: An early effect of the India Asia collision, Geology, 22, 487–490, 1994.CrossRefGoogle Scholar
  74. Hirano, Simulation of developmental process of interfluvial slopes with reference to graded form, J. Geol., 83, 113-123, 1975.CrossRefGoogle Scholar
  75. Howard, A. D., Long profile development of bedrock channels: Interaction of weathering, mass wasting, bed erosion and sediment transport, in Rivers Over Rock: Fluvial Processes in Bedrock Channels, Geophys. Monogr. Ser., vol. 107, edited by K. J. Tinkler and E. E. Wohl, pp. 297– 319, AGU, Washington, D.C., 1998.Google Scholar
  76. Howard, A. D., W. E., Dietrich, M. A., Seidl, Modeling fluvial erosion on regional to continental scales, J. Geophys. Res., 99(B7), 13971 – 13986, 1994.CrossRefGoogle Scholar
  77. Huppert, H. E., The propagation of two dimensional and axisymmetric gravity currents over a rigid horizontal surface, J. Fluid. Mech., 121, 43–58, 1982.CrossRefGoogle Scholar
  78. Hurtrez, J. -E., F., Lucazeau, J., Lave’, J. -P., Avouac, , Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, central Nepal, J. Geophys. Res., 104(B6), 12779–12796, 1999.CrossRefGoogle Scholar
  79. Kaufman, P. S., L. H., Royden, Lower crustal flow in an extensional setting: Constraints from the Halloran Hills region, eastern Mojave Desert, California, J. Geophys. Res., 99, 15723–15739, 1994.CrossRefGoogle Scholar
  80. King, G. C. P., R. S., Stein, J. B., Rundle, The growth of geological structures by repeated earthquakes, 1. Conceptual framework, J. Geophys. Res., 93, 13307–13318, 1988.CrossRefGoogle Scholar
  81. King, G., M., Ellis, The origin of large local uplift in extensional regions, Nature, 348, 689–693, 1990.CrossRefGoogle Scholar
  82. Kirby, S. H., Rheology of the lithosphere, Rev. Geophys., 21, 1458–1487, 1983.CrossRefGoogle Scholar
  83. Kirby, S. H., A. K., Kronenberg, Rheology of the lithosphere: Selected topics, Rev. Geophys., 25, 1219–1244, 1987.CrossRefGoogle Scholar
  84. Kirkby, M. J., Hillslope process-response models based on the continuity equation, Spec. Publ. Inst. Br. Geogr., 3, 15– 30, 1971.Google Scholar
  85. Kirkby, M. J., A two-dimensional model for slope and stream evolution, in Abrahams, A. D. ed., Hillslope Processes, Boston, Allen and Unwin., 203–224, 1986.Google Scholar
  86. Kirkby, M., M., Leeder, N., White, The erosion of actively extending tilt-blocks: a coupled for topography and sediment budgets, application to the B&R, 13 pp., 1993.Google Scholar
  87. Kohlstedt, D. L., B., Evans, S. J., Mackwell, Strength of the lithosphere: Constraints imposed by laboratory experiments, J. Geophys. Res., 100, 17587–17602, 1995.CrossRefGoogle Scholar
  88. Kooi, H., C., Beaumont, Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection and reaction, J. Geophys. Res., 99, 12191–12209, 1994.CrossRefGoogle Scholar
  89. Kooi, H., C., Beaumont, Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model, J. Geophys. Res., 101(B2), 3361– 3386, 1996.CrossRefGoogle Scholar
  90. Kruse, S., M., McNutt, J., Phipps-Morgan, L., Royden, Lithospheric extension near lake Mead, Nevada: A model for ductile flow in the lower crust, J. Geophys. Res., 96(3), 4435–4456, 1991.CrossRefGoogle Scholar
  91. Kusznir, N. J., D. H., Matthews, Deep seismic reflections and the deformational mechanics of the continental lithosphere, J. Petrol. Spec., Lithosphere Issue, 63–87, 1988.Google Scholar
  92. Kusznir, N. J., The distribution of stress with depth in the lithosphere: thermo-rheological and geodynamic constraints, Phil. Trans. R. Soc. Lond. A, 337, 95–110, 1991.CrossRefGoogle Scholar
  93. Lague, D., P., Davy, A., Crave, Estimating uplift rate and erodibility from the area– slope relationship: Examples from Brittany (France) and numerical modelling, Phys. Chem. Earth A, 25(6–7), 543–548, 2000.CrossRefGoogle Scholar
  94. Lague, D., A., Crave, Ph., Davy, Laboratory experiments simulating the geomorphic response to tectonic uplift, J. Geophys. Res., VOL. 108, NO. B1, 2008, doi:10.1029/2002JB001785, 2003.CrossRefGoogle Scholar
  95. Lavé, J., J. P., Avouac, Fluvial incision and tectonic uplift across the Himalayas of central Nepal, J. Geophys. Res., 106(B11), 26561– 26591, 2001.CrossRefGoogle Scholar
  96. Leeder, M. R., Denudation, vertical crustal movements and sedimentary basin infill, Geologische Rundschau, Stuttgart, 80(2), 441–458, 1991.CrossRefGoogle Scholar
  97. Le Pourhiet, L., E., Burov, I., Moretti, Rifting through a stack of inhomogeneous thrusts (the dipping pie concept), Tectonics, 23, 4, TC4005, doi:10.1029/2003TC001584, 2004.CrossRefGoogle Scholar
  98. Lobkovsky, L. I., Geodynamics of Spreading and Subduction zones, and the two-level plate tectonics, Nauka, Moscow, 251 pp., 1988.Google Scholar
  99. Lobkovsky, L. I., V. I., Kerchman, A two-level concept of plate tectonics: application to geodynamics, Tectonophysics, 199, 343–374, 1991.CrossRefGoogle Scholar
  100. Luke, J. C., Mathematical models for landform evolution, J. Geophys. Res., 77, 2460–2464, 1972.CrossRefGoogle Scholar
  101. Luke, J. C., Special Solutions for Nonlinear Erosion Problems, J. Geophys. Res., 79, 4035–4040, 1974.CrossRefGoogle Scholar
  102. Ma, X., Lithospheric dynamic Atlas of China, China Cartographic Publishing House, Beijing, China, 1987.Google Scholar
  103. Makeyeva, L. I., L. P., Vinnik, S. W., Roecker, Shear-wave splitting and small scale convection in the continental upper mantle, Nature, 358, 144–147, 1992.CrossRefGoogle Scholar
  104. Masek, J. G., B. L., Isacks, E. J., Fielding, Rift flank uplift in Tibet: Evidence for a viscous lower crust, Tectonics, 13, 659–667, 1994a.CrossRefGoogle Scholar
  105. Masek, J. G., B. L., Isacks, T. L., Gubbels, E. J., Fielding, Erosion and tectonics at the margins of continental plateaus, J. Geophys. Res., 99, 13941–13956, 1994b.CrossRefGoogle Scholar
  106. Metivier, F., Y., Gaudemer, Mass transfer between eastern Tien Shan and adjacent basins (centralAsia): constraints on regionaltectonics and topography, Geophys. J. Int., 128, 1–17, 1997.CrossRefGoogle Scholar
  107. Molnar, P., Climate change, flooding in arid environments, and erosion rates, Geology, 29(12)), 1071– 1074, 2001.CrossRefGoogle Scholar
  108. Molnar, P., Q., Deng, Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia, J. Geophys. Res., 89, 6203–6228, 1984.CrossRefGoogle Scholar
  109. Molnar, P., H., Lyon-Caen, Some simple physical aspects of the support, structure, and evolution of mountain belts, in: Processes in continental lithospheric deformation, Geol. Soc. Am. Spec. Rap., 218, 179–207, 1988.Google Scholar
  110. Molnar, P., P., Tapponnier, A possible dependence of the tectonic strength on the age of the crust in Asia, Earth Planet. Sci. Lett., 52, 107–114, 1981.CrossRefGoogle Scholar
  111. Molnar, P., P., England, Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg, Nature, 346, 29–34, 1990.CrossRefGoogle Scholar
  112. Mizutani, T., Laboratory experiment and digital simulation of multiple fillcut terrace formation, Geomorphology, 24, 353–361, 1998.CrossRefGoogle Scholar
  113. Nash, D. B., Morphologic dating of degraded normal fault scarps, J. Geol., 88, 353–360, 1980.CrossRefGoogle Scholar
  114. Newman, W. I., Nonlinear diffusion: Self-similarity and travelling-waves, PAGEOPH, 121(3), 417–441, 1983.CrossRefGoogle Scholar
  115. Newman, W. I., D. L., Turcotte, Cascade model for fluvial geomorphology, Geophys. J. Int., 100, 433–439, 1990.CrossRefGoogle Scholar
  116. Parson, B., J., Sclater, An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res., 93, 8051–8063, 1977.Google Scholar
  117. Patriat, P., J., Achache, India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates, Nature, 311, 615–621, 1984.CrossRefGoogle Scholar
  118. Pelletier, J. D., Persistent drainage migration in a numerical landscape evolution model, Geophys. Res. Lett., 31, doi:10.1029/2004GL020802, 2004.Google Scholar
  119. Persson, K. S., D., Garcia-Castellanos, D., Sokoutis, River transport effects on compressional belts: First results from an integrated analogue-numerical model, J.Geophys. Res., VOL. 109, B01409, doi:10.1029/2002JB002274, 2004.CrossRefGoogle Scholar
  120. Pinet, P., M., Souriau, Continental erosion and large-scale relief, Tectonics, 7(3)), 563–582, 1988.CrossRefGoogle Scholar
  121. Poliakov, A.N.B., P., Cundall, Y., Podladchilov, V., Laykhovsky, An explicit inertial method for the simulation of visco-elastic flow: an evaluation of elastic effects on diapiric flow in two- or three-layers models, in D. B. Stone and S. K. Runcorn (Eds), Flow and creep in the solar system: observations, modelling and theory. Dynamic Modelling and Flow in the Earth and Planet Series, 175–195, 1993.Google Scholar
  122. Ranalli, G., Rheology of the Earth, Chapman & Hall, Sec. Edition, London, 413 pp., 1995.Google Scholar
  123. Roecker, S. W., T. M., Sabitova, L. P., Vinnik, Y. A., Burmakov, M. I., Golvanov, R., Mamatkanova, L., Minirova, Three dimensional elastic wave velocity structure of the western and central Tien Shan, J. Geophys. Res., 98, 15779–15795, 1993.CrossRefGoogle Scholar
  124. Roering, J. J., J. W., Kirchner, L. S., Sklar, W. E., Dietrich, Hillslope evolution by nonlinear creep and landsliding: An experimental study, Geology, 29(2), 143– 146, 2001.CrossRefGoogle Scholar
  125. Schmid, S. M., O. A., Pffifner, G., Schönborg, N., Froitzheim, E., Kissling, Integrated cross-sections and tectonic evolution of the Alps along the Eastern Traverse. In: Deep structures of the Swiss Alps, O. A. Pffifner, P. Lehner, P. Heitzmann, S. Mueller and A. Steck (Editors), Birkhäuser, Basel, pp. 289–304, 1997.Google Scholar
  126. Schorghofer, N., D. H., Rothman, Acausal relations between topographic slope and drainage area, Geophys. Res. Lett., 29(13), 1633, doi:10.1029/2002GL015144, 2002.CrossRefGoogle Scholar
  127. Schumm, S. A., M. P., Mosley, W. E., Weaver, Experimental Fluvial Geomorphology, John Wiley, New York, 1987.Google Scholar
  128. Seidl, M. A., W. E., Dietrich, The problem of channel erosion into bedrock, Catena Suppl., 23, 101– 124, 1992.Google Scholar
  129. Sheperd, R. G., S. A., Schumm, Experimental study of river incision, Geol. Soc. Am. Bull., 85, 257– 268, 1974.CrossRefGoogle Scholar
  130. Simpson, G., F., Schlunegger, Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport, J. Geophys. Res., VOL. 108, NO. B6, 2300, doi:10.1029/2002JB002162, 2003.CrossRefGoogle Scholar
  131. Sklar, L., W. E., Dietrich, River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply, in Rivers Over Rock: Fluvial Processes in Bedrock Channels, Geophys. Monogr. Ser., vol. 107, edited by K. J. Tinkler and E. E. Wohl, pp. 237–260, AGU, Washington, D.C., 1998.Google Scholar
  132. Sklar, L. S., W. E., Dietrich, Sediment and rock strength controls on river incision into bedrock, Geology, 29(12), 1087–1090, 2001.CrossRefGoogle Scholar
  133. Smith, C. E., Modeling high sinuosity meanders in a small flume, Geomorphology, 25, 19– 30, 1998.CrossRefGoogle Scholar
  134. Smith, T. R., F. P., Bretherton, Stability and the conservation of mass in drainage basin evolution, Water Resour. Res., 8fA two-dimensional model, 6, 1506–1529, 1972.CrossRefGoogle Scholar
  135. Snyder, N. P., Bedrock channel response to tectonic, climatic, and eustatic forcing, Ph.D thesis, Dep. of Earth, Atmos., and Planet. Sci., Mass. Inst. of Technol., Cambridge, Mass., 2001.Google Scholar
  136. Snyder, N. P., K. X., Whipple, G. E., Tucker, D. J., Merritts, Landscape response to tectonic forcing: DEM analysis of stream profiles in the Mendocino triple junction region, northern California, Geol. Soc. Am. Bull., 112, 1250– 1263, 2000.CrossRefGoogle Scholar
  137. Simpson, G., Role of river incision in enhancing deformation, Geology, 32, 2004, 341–344.CrossRefGoogle Scholar
  138. Sobel, E., T. A., Dumitru, Exhumation of the margins of the western Tarim basin during the Himalayan orogeny, Tectonics, in press, 1995.Google Scholar
  139. Summerfield, M. A., N. J., Hulton, Natural control on fluvial denudation rates in major world drainage basins, J. Geophys. Res., 99, 13871–13883, 1994.CrossRefGoogle Scholar
  140. Talbot, C. J., R. J., Jarvis, Age, budget and dynamics of an active salt extrusion in Iran, J. Struct. Geology, 6, 521–533, 1984.CrossRefGoogle Scholar
  141. Tapponnier, P., P., Molnar, Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia and Baykal regions, J. Geophys. Res., 84, 3425–3459, 1979.CrossRefGoogle Scholar
  142. Ter Voorde, M., R. T., Van Balen, G., Bertotti, S. A. P. L., Cloetingh, The influence of a stratified rheology on the flexural response of the lithosphere to (un)loading by extensional faulting, Geophys. J. Int., 134, 721–735, 1998.CrossRefGoogle Scholar
  143. Toussaint, G., E., Burov, L., Jolivet, Continental plate collision: unstable versus stable slab dynamics, Geology, 32(No. 1), 33–36, 2004a.CrossRefGoogle Scholar
  144. Toussaint, G., E., Burov, J. -P., Avouac, Tectonic evolution of a continental collision zone: a thermo mechanical numerical model, Tectonics, 23, TC6003, doi:10.1029/2003TC001604, 2004b.CrossRefGoogle Scholar
  145. Tsenn, M. C., N. L., Carter, Flow properties of continental lithosphere, Tectonophysics, 136, 27–63, 1987.CrossRefGoogle Scholar
  146. Tucker, G. E., R. L., Bras, Hillslope processes, drainage density, and landscape morphology, Water Resour. Res., 34(10), 2751– 2764, 1998.CrossRefGoogle Scholar
  147. Tucker, G. E., R. L., Bras, A stochastic approach to modeling the role of rainfall variability in drainage basin evolution, Water Resour. Res, 36(7), 1953– 1964, 2000.CrossRefGoogle Scholar
  148. Turcotte, D. L., G., Schubert, Geodynamics. Applications of continuum physics to geological problems, J. Wiley & Sons, New York, 450 p., 1982.Google Scholar
  149. Vinnik, L. P., A. M., Saipbekova, Structure of the lithosphere and asthenosphere of the Tien Shan, Ann. Geophys., 2, 621–626, 1984.Google Scholar
  150. Vinnik, L. P., I. M., Aleshin, M. K., Kaban, S. G., Kiselev, G. L., Kosarev, S. I., Oreshin, Ch., Reigber, Crust and Mantle of the Tien Shan from Data of the Receiver Function Tomography, Izvestiya, Phys. Solid Earth, 42, pp. 639–651, Pleiades Publishing, Inc., 2006.CrossRefGoogle Scholar
  151. Vilotte, J. P., M., Daignières, R., Madariaga, Numerical modeling of intraplate deformation: simple mechanical models of continental collision, J. Geophys. Res., 87, 10709–10728, 1982.CrossRefGoogle Scholar
  152. Vogt, P. R., Bermuda and Applachian-Labrador rises, common hotspot processes, Geology, 19, 41–44, 1991.CrossRefGoogle Scholar
  153. Yamato, P., E., Burov, P., Agard, L., Le Pourhiet, L., Jolivet, 2008, HP-UHP exhumation during slow continental subduction: Self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps, Earth Planet Sci. Lett., 271, 63–74.CrossRefGoogle Scholar
  154. Wang, J. N., B. E., Hobbs, A., Ord, T., Shimamoto, M., Toriumi, Newtonian dislocation creep in quartzites: Implications for the rheology of the lower crust, Science, 265, 1204–1206, 1994.CrossRefGoogle Scholar
  155. Westaway, R., Evidence for dynamic coupling of surface processes with isostatic compensation in the lower crust during active extension of western Turkey, J. Geophys. Res., 99, 20203–20223, 1994.CrossRefGoogle Scholar
  156. Willett, S. D., Orogeny and orography: The effects of erosion on the structure of mountain belts, J. Geophys. Res., 104(B12), 28957–28982, 1999.CrossRefGoogle Scholar
  157. Windley, B. F., M. B., Allen, C., Zhang, Z. Y., Zhao, G. R., Wang, Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, central Asia, Geology, 18, 128–131, 1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.University Paris VIParisFrance

Personalised recommendations