Thermal and Rheological Model of the European Lithosphere

  • Magdala TesauroEmail author
  • Mikhail K. Kaban
  • Sierd A.P.L. Cloetingh
Part of the International Year of Planet Earth book series (IYPE)


A thermal and rheological model of the European lithosphere (10°W-35E; 35 N-60 N) is constructed based on a combination of new geophysical models. To determine temperature distribution a tomography model is used, which was improved by corrections for the crustal effect using a new digital model of the European crust (EuCRUST-07). The uppermost mantle under western Europe is generally characterized by temperatures ranging between 900 and 1,100°C, with the hottest areas corresponding to basins, that experienced recent extension (e.g., Tyrrhenian Sea and Pannonian Basin). By contrast, upper mantle temperatures at this depth under eastern Europe are about 550–750°C, whereby the lowest values are found in the northeastern part of the study area. EuCRUST-07 and the new thermal model are used to calculate the strength distribution within the European lithosphere. Differently from previous approaches, lateral variations of lithology and density derived from EuCRUST-07 are used to construct the new strength distribution model. Following the approach of Burov and Diament (1995), the lithospheric rheology is employed to calculate variations of the elastic thickness of the lithosphere. According to these estimates, in western Europe the lithosphere is more heterogeneous than in eastern Europe. Western Europe, with dominantly crust-mantle decoupling is mostly characterized by lower values of strength and elastic thickness. The crustal strength provides a large contribution to the integrated strength (∼50% of the integrated strength for the whole lithosphere) in most part of the study area (∼60%). The new results are important in view of recent disputes on the strength distribution between crust and mantle lithosphere.


Crust and mantle lithosphere 



We are grateful to Forough Sodoudi and Rainer Kind (GFZ, Potsdam), for providing receiver functions data. Wim Spakman (Department of Earth Science, Utrecht) is thanked for supplying seismic tomography data.

Funds were kindly provided by NWO (Netherlands Organization for Scientific Research), SRON (Space Research Organization Netherlands) and DFG (German Research Foundation) RO-2330/4–1.


  1. Afonso, J.C., Ranalli, G.: Crustal and mantle strengths in continental lithosphere: is the jelly sandwich model obsolete?. Tectonophysics 394, 221– 232 (2004)CrossRefGoogle Scholar
  2. Anderson, D.L.: Theory of the Earth. Blackwell, Boston, pp. 360 (1989)Google Scholar
  3. Anderson, O.L.: Equation of State of Solids for Geophysics and Ceramic Science. Oxford University Press, New York, pp. 405 (1995)Google Scholar
  4. Anderson, D.L., Given, J.W.: Absorption band Q model for the Earth. J. Geophys. Res. 87, 3893–3904 (1982)CrossRefGoogle Scholar
  5. Arlitt, R.: Teleseismic body wave tomography across the Trans-European Suture Zone between Sweden and Denmark. Ph.D. Thesis of ETH Zurich No. 13501, 110 pp (1999)Google Scholar
  6. Artemieva, I., Mooney, W.: Thermal thickness and evolution of Precambrian lithosphere: a global study. J. Geophys. Res. 106, 16387–16416 (2001)CrossRefGoogle Scholar
  7. Babuška, V., Plomerová, J.: European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Phys. Earth Planet. Int. 158, 264–280 (2006)CrossRefGoogle Scholar
  8. Banks, R.J., Parker, R.L., Huestis, S.P.: Isostatic compensation on a continental scale: Local versus regional mechanisms. Geophys. J. R. Astron. Soc. 51, 431–452 (1977)Google Scholar
  9. Barrell, J.: The strength of the Earth’s crust. Part I: Geologic tests of the limits of the strength. J. Geol. 22, 28–48 (1914)CrossRefGoogle Scholar
  10. Bass, J.D., Anderson, D.L.: Composition of the upper-mantle: geophysical test of two petrological models. Geophys. Res. Lett. 11, 237–240 (1984)CrossRefGoogle Scholar
  11. Bassin, C., Laske, G., Masters, G.: The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans. AGU 81, F897 (2000)Google Scholar
  12. Bijwaard, H., Spakman, W.: Non-linear global P-wave tomography by iterated linearized inversion. Geophys. J. Int. 141, 71– 82 (2000)CrossRefGoogle Scholar
  13. Birch, F.: Elasticity of igneous rocks at temperature and pressures. Geol. Soc. Am. Bull. 54, 263–286 (1943)Google Scholar
  14. Brace, W.F., Kohlstedt, D.L.: Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. 94, 3967–3990 (1980)Google Scholar
  15. Burov, E.B., Diament, M.: The effective elastic thickness of (Te) continental lithosphere. What does it really means?. J. Geophys. Res. 100, (B3), 3905–3927 (1995)CrossRefGoogle Scholar
  16. Burov, E.B., Lobkovsky, L.I., Cloetingh, S., Nikishin, S.: Continental lithosphere folding in Central Asia (part 2), Constraints from gravity and topography. Tectonophysics 226, 73–87 (1993)CrossRefGoogle Scholar
  17. Burov, E.B., Watts, A.B.: The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”?. GSA Today 16, 1, 4–10 (2006)CrossRefGoogle Scholar
  18. Byerlee, J.D.: Friction of rocks. Pure Appl. Geophys. 116, 615–626 (1978)CrossRefGoogle Scholar
  19. Calcagnile, G., Panza, G.F.: Crustal and upper mantle structure of the Mediterranean area derived from surface-wave data. Phys. Earth Planet. Int. 60, 163–168 (1990)CrossRefGoogle Scholar
  20. Cammarano, F., Goes, S., Vacher, P., Giardini, D.: Inferring upper-mantle temperatures from seismic velocities. Phys. Earth Planet. Int. 138, 197–222 (2003)CrossRefGoogle Scholar
  21. Carter, N.L., Tsenn, M.C.: Flow properties of continental lithosphere. Tectonophysics 136, 27–63 (1987)CrossRefGoogle Scholar
  22. Cermak, V.: Lithospheric thermal regimes in Europe. Phys. Earth Planet. Int. 79, 179–193 (1993)CrossRefGoogle Scholar
  23. Chapman, D.S.: Thermal gradients in the continental crust, in: The Nature of the Lower Continental Crust. In: J.B. Dawson et al. (eds.), pp. 63–70, Geol. Soc., London (1986)Google Scholar
  24. Christensen, N.I., Mooney, W.D. : Seismic velocity structure and composition of the continental crust: A global view. . J. Geophys. Res. 100, 9761–9788 (1995)CrossRefGoogle Scholar
  25. Cloetingh, S., Burov, E.B.: Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates. Geophys. J. Int. 124, 695–723 (1996)CrossRefGoogle Scholar
  26. Cloetingh, S., Ziegler, P.A., Beekman, F., Andriessen, P.A.M., Maţenco, L., Bada, G., Garcia-Castellanos, D., Hardebol, N., Dèzes, P., Sokoutis, D.: Lithospheric memory, state of stress and rheology: neotectonic controls on Europe’s intraplate continental topography. Quat. Sci. Rev. 24, 241–304 (2005)CrossRefGoogle Scholar
  27. Cotte, N., Pedersen, H.A. and TOR Working Group: Sharp contrast in lithospheric structure across the Sorgenfrei–Tornquist Zone as inferred by Rayleigh wave analysis of TOR1 project data. Tectonophysics 360, 75–88 (2002)CrossRefGoogle Scholar
  28. Deschamps, F., Trampert, J., Snieder, R.: Anomalies of temperatures and iron in the uppermost mantle inferred from gravity data and tomographic models. Phys. Earth Planet. Int. 129, 245–264 (2002)CrossRefGoogle Scholar
  29. Fernàndez, M., Marzám, I., Correia, A., Ramalho, E.: Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula. Tectonophysics 291, 29–53 (1998)CrossRefGoogle Scholar
  30. Fernàndez, M., Ranalli, G.: The role of rheology in extensional basin formation modeling. Tectonophysics 282, 129–145 (1997)CrossRefGoogle Scholar
  31. Goes, S., Govers, R., Vacher, P.: Shallow mantle temperatures under Europe from P and S wave tomography.. J. Geophys. Res. 105, (B5), 11153–11169 (2000)CrossRefGoogle Scholar
  32. Goetze, C., Evans, B.: Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astron. Soc. 59, 463–478 (1979)Google Scholar
  33. Grünthal, G., Stromeyer, D.: The Recent crustal stress field in Central Europe, trajectories and finite element modelling. J. Geophys. Res. 97, 11805–11820 (1992)CrossRefGoogle Scholar
  34. Gudmundsson, O., Sambridge, M.: A regionalized upper mantle (RUM) seismic model. J. Geophys. Res. 103, B4, 7121–7136 (1998)CrossRefGoogle Scholar
  35. Hill, R.: Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)CrossRefGoogle Scholar
  36. Hirschmann, M.M.: Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst. 1, paper no. 2000GC000070 (2000)Google Scholar
  37. Hughes, D.S., Cross, J.H.: Elastic wave velocities at high pressures and temperatures. Geophysics 16, 577–593 (1951)CrossRefGoogle Scholar
  38. Hurtig, E., Cermak, V., Haenel, R. and Zui, V. (Eds.), 1992. Geothermal Atlas of Europe, International Association for Seismology and Physics of the Earth’s Interior, 156 pp, Hermann Haack Verlagsgesellschaft mbH -Geographisch -Kartographische Anstalt Gotha.Google Scholar
  39. Irifune, T., Ringwood, A.E.: Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth Planet. Sci. Lett. 86, 365–376 (1987)CrossRefGoogle Scholar
  40. Isacks, B.L., Oliver, J., Sykes, L.R.: Seismology and the new global tectonics.. J. Geophys. Res. 73, 5855–5899 (1968)CrossRefGoogle Scholar
  41. Jackson, J.: Strength of the continental lithosphere: Time to abandon the jelly sandwich?. GSA Today 12, 410 (2002)CrossRefGoogle Scholar
  42. Jordan, T.H.: Composition and development of the continental tectosphere. Nature 274, 544–548 (1978)CrossRefGoogle Scholar
  43. Jordan, T.H.: Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications, in The Mantle Sample: Inclusions in Kimberlites and Other Volcanos, ed. By F.R. Boyd and H.O.A. Myer, pp. 1–14, AGU Washington, D.C. (1979)Google Scholar
  44. Kaban, M.K., Schwintzer, P., Artemieva, I.M., Mooney, W.D.: Density of the continental roots: compositional and thermal contributions. Earth Planet. Sci. Lett. 209, 53–69 (2003)CrossRefGoogle Scholar
  45. Kaban, M.K., Tesauro, M., Cloetingh, S.A.P.L.: A new gravity model of the crust and upper mantle of Europe.. Earth Planet. Sci. Lett., (2009) (under review)Google Scholar
  46. Karato, S.I.: Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993)CrossRefGoogle Scholar
  47. Karato, S., Jung, H.: Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper-mantle. Earth Planet. Sci. Lett. 157, 193–207 (1998)CrossRefGoogle Scholar
  48. Karato, S., Spetzler, H.A.: Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev. Geophys. 28, 399–421 (1990)CrossRefGoogle Scholar
  49. Kennett, B.L.N., Engdahl, E.R., Buland, R.: Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995)CrossRefGoogle Scholar
  50. Kohlstedt, D.L., Evans, B., Mackwell, S.J.: Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res. 100, 17587–17602 (1995)CrossRefGoogle Scholar
  51. Korja, T., Hjelt, S.-E., Kaikkonen, P., Kozlovskaya, E., Lahti, I., Pajunpiaia, K., Pulkkinen, A., Viljanen, A. BEARWorking Group: Crustal and upper mantle beneath Fennoscandia as imaged by the Baltic Electromagnetic Array Research (BEAR), In: Lahtinen, R., Korja, A., Arhe, K., Eklund, O., Hjelt, S.E., Pesonen, L.J. (Eds.),, Second Symposium on the Structure, Composition and Evolution of the Lithosphere in Finland. Institute of Seismology, University of Helsinki, pp. 41–48, (Report S-42) (2002)Google Scholar
  52. Koulakov, I., Kaban, M.K., Tesauro, M., Cloetingh, S.: P and S velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data.. Geophys. J. Int., (2009) (in press)Google Scholar
  53. Kruse, S., Royden, L.: Bending and unbending of an elastic lithosphere: The Cenozoic history of the Apennine and Dinaride foredeep basins. Tectonics 13, 278–302 (1994)CrossRefGoogle Scholar
  54. Lankreijer, A.C., 1998. Rheology and basement control on extensional basin evolution in Central and Eastern Europe: Variscan and Alpine-Carpathian-Pannonian tectonics. Ph.D. Thesis, Vrije Universiteit, Amsterdam, pp. 158.Google Scholar
  55. Lenkey, L., 1999. Geothermics of the Pannonian basin and its bearing on the tectonics of Basin evolution. PhD Thesis, Vrije Universiteit, Amsterdam, pp. 215.Google Scholar
  56. Leven, J.H., Jackson, I., Ringwood, A.E.: Upper mantle seismic anisotropy and lithospheric decoupling. Nature 289, 235–239 (1981)CrossRefGoogle Scholar
  57. Mackwell, S.J., Zimmerman, M.E., Kohlstedt, D.L.: High-temperature deformation of dry diabase with applications to tectonics on Venus. J. Geophys. Res. 103, 975–984 (1998)CrossRefGoogle Scholar
  58. Maggi, A., Jackson, J.A., Priestley, K., Backer, C.: A re-assesement of focal depth distribution in southern Iran , the Tien Shan and northern India: Do earthquakes occur in the continental mantle? Geophys. J. Int. 143, 629–661 (2000)CrossRefGoogle Scholar
  59. Martin, M., Ritter, J.R.R. & the CALIXTO working group: High-resolution teleseismic body wave tomography beneath SE-Romania – II. Imaging of a slab detachment scenario. Geophys. J. Int. 164, 579–595 (2006)CrossRefGoogle Scholar
  60. Mavko, G.M.: Velocity and attenuation in partially molten rocks. J. Geophys. Res. 85, 5173–5189 (1980)CrossRefGoogle Scholar
  61. Minster, J.B., Anderson, D.L.: A model of dislocation-controlled for the mantle. Philos. Trans. R. Soc. London 299, 319–356 (1981)CrossRefGoogle Scholar
  62. Moisio, K., Kaikkonen, P., Beekman, F.: Rheological structure and dynamical response of the DSS profile BALTIC in the SE Fennoscandian shield. Tectonophysics 320, 175–194 (2000)CrossRefGoogle Scholar
  63. Mooney, W.D., Laske, G., Masters, T.G.: CRUST 5.1: A global crustal model at 5°X5°. J. Geophys. Res. 103, 727–747 (1998)CrossRefGoogle Scholar
  64. Monsalve, G., Sheehan, A., Shulte-Pelkum, V., Rajaure, S., Pandey, M.R., Wu, F.: Seismicity and one-dimensional velocity structure of the Hymalayan collision zone: Earthquakes in the crust and upper mantle. J. Geophys. Res. 111, (doi: 10.1029/2005JB004062) (2006)Google Scholar
  65. Nolet, G., Grand, S.P., Kennett, B.L.N.: Seismic heterogeneity in the upper mantle. J. Geophys. Res. 99, 23753–23766 (1994)CrossRefGoogle Scholar
  66. Nolet, G., Zielhuis, A.: Low S-velocities under the Tornquist–Teisseyre zone—evidence for water injection into the transition zone by subduction. J. Geophys. Res. 99, 15813–15820 (1994)CrossRefGoogle Scholar
  67. Panza, G.F., Raykova, R.B.: Structure and rheology of lithosphere in Italy and surrounding. Terra Nova 20, 194–199 (2008)CrossRefGoogle Scholar
  68. Pavlenkova, G.A., Pavlenkova, N.I.: Results of Joint Processing of Data on Nuclear and Chemical Explosions Recorded on the Long-Range Quartz Profile (Murmansk–Kyzyl). Phys. S. Earth 44, 4, 316–326 (2008)CrossRefGoogle Scholar
  69. Pérez-Gussinyé, M., Watts, A.B.: The long-term strength of Europe and its implications for plate-forming processes. Nature 436 (2005), doi:10.1038/nature03854Google Scholar
  70. Pollack, H.N., Chapman, D.S.: On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 38, 279–296 (1977)CrossRefGoogle Scholar
  71. Pollack, H.N., Hurter, S.J., Johnson, J.R.: Heat flow from the Earth’s interior: Analysis of the global data set. Rev. Geophys. 31, 267–280 (1993)CrossRefGoogle Scholar
  72. Popp, T., Kern, H.: Thermal hydration reaction characterized by combined measurements of electrical conductivity and elastic wave velocities. Earth Planet. Sci. Lett. 120, 43–57 (1993)CrossRefGoogle Scholar
  73. Plomerová, J., Kouba, D., Babuška, V.: Mapping the lithosphere–asthenosphere boundary (LAB) through chang- es in surface-wave anisotropy. Tectonophysics 358, 175–185 (2002)CrossRefGoogle Scholar
  74. Poudjom Djomani, Y.H., Fairhead, J.D., Griffin, , W.L.: The flexural rigidity of Fennoscandia: Reflection of the tectonothermal age of the lithospheric mantle. Earth Planet. Sci. Lett. 174, 139–154 (1999)CrossRefGoogle Scholar
  75. Praus, O., Pĕčová, J., Petr, V., Babuška, V., Plomerová, J.: Magnetotelluric and seismological determination of the lithosphere asthenosphere transition in Central Europe. Phys. Earth Planet. Int. 60, 212–228 (1990)CrossRefGoogle Scholar
  76. Ranalli, G.: Rheology of the crust and its role in tectonic reactivation. J. Geodyn. 30, 3–15 (2000)CrossRefGoogle Scholar
  77. Ranalli, G., Murphy, D.C.: Rheological stratification of the lithosphere. Tectonophysics 132, 281–295 (1987)CrossRefGoogle Scholar
  78. Sato, H., Sacks, I.S., Murase, T.: The use of laboratory data for estimating temperature and partial melt fraction in the low-velocity zone: Comparison with heat flow and electrical conductivity studies. . J. Geophys. Res. 94, 5689–5704 (1989)CrossRefGoogle Scholar
  79. Schmeling, H.: Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks, part 1, Elasticity and anelasticity. Phys. Earth Planet. Inter. 41, 34– 57 (1985)CrossRefGoogle Scholar
  80. Silver, P.: Seismic anisotropy beneath the continents: Probing the depths of geology. Ann. Rev. Earth Planet. Sci. 2, 385–432 (1996)CrossRefGoogle Scholar
  81. Sobolev, S.V., Babeyko, A.Y.: Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks. Surv. Geophys. 15, 515–544 (1994)CrossRefGoogle Scholar
  82. Sobolev, S.V., Zeyen, H., Granet, M., Achauer, U., Bauer, C., Werling, F., Altherr, R., Fuchs, K.: Upper mantle temperatures and lithosphere–asthenosphere system beneath the French Massif Central constrained by seismic, gravity, petrologic and thermal observations. Tectonophysics 275, 143–164 (1997)CrossRefGoogle Scholar
  83. Sobolev, S.V., Zeyen, H., Stoll, G., Werling, F., Altherr, R., Fuchs, K.: Upper-mantle temperatures from teleseismic tomography of French massif central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Planet. Sci. Lett. 139, 147–163 (1996)CrossRefGoogle Scholar
  84. Sodoudi, F., Kind, R., Hatzfeld, D., Priestley, K., Hanka, W., Wylegalla, K., Stavrakakis, G., Vafidis, A., Harjes, H.-P., Bohnhof, M.: Lithospheric structure of the Aegean obtained from P and S receiver functions. J. Geophys. Res. 111, (B12) (2006), doi:10.1029/2005JB003932Google Scholar
  85. Sodoudi, F., Geissler, W.H., Kind, R.: The thickness of the European Lithosphere as seen by S receiver functions. EGU (poster presentation) (2008)Google Scholar
  86. Tesauro, M., Kaban, M.K., Cloetingh, S.A.P.L., Hardebol, N.J., Beekman, F.: 3D strength and gravity anomalies of the European lithosphere. Earth Planet. Sci. Lett. 263, 56–73 (2007)CrossRefGoogle Scholar
  87. Waldhauser, F., Lippitsch, R., Kissling, E., Ansorge, J.: High-resolution teleseismic tomography of upper mantle structure using an a priori 3D crustal model. Geophys. J. Int. 150, 141–403 (2002)CrossRefGoogle Scholar
  88. Watts, A.B.: An analysis of isostasy in the world’s oceans: 1. Hawaiian-Emperor Seamount Chain. J. Geophys. Res. 83, 5989–6004 (1978)CrossRefGoogle Scholar
  89. Watts, A.B., Bodine, J.H., Steckler, M.S.: Observations of flexure and the state of stress in the oceanic lithosphere. J. Geophys. Res. 85, 6369–6376 (1980)CrossRefGoogle Scholar
  90. Watts, A.B.: Isostasy and Flexure of the Lithosphere. Cambridge University Press,Cambridge 458 pp (2001)Google Scholar
  91. Watts, A.B., Burov, E.B.: Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth Planet. Sci. Lett. 213, 113–131 (2003)CrossRefGoogle Scholar
  92. Wilks, K.R., Carter, N.L.: Rheology of some continental lower crustal rocks. Tectonophysics 182, 57– 77 (1990)CrossRefGoogle Scholar
  93. Zoback, M.L.: First- and Second-Order Patterns of Stress in the Lithosphere: The World tress Map Project. J. Geophys. Res. 97, B8, 11703–11728 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Magdala Tesauro
    • 1
    • 2
    Email author
  • Mikhail K. Kaban
    • 2
  • Sierd A.P.L. Cloetingh
    • 1
  1. 1.Faculty of Earth and Life SciencesNetherlands Research Centre for Integrated Solid Earth Science, VU UniversityAmsterdamThe Netherlands
  2. 2.Helmholtz-Zentrum Potsdam, Deutsches GeoforschungsZentrum (GFZ)PotsdamGermany

Personalised recommendations