Advertisement

3D Crustal Model of Western and Central Europe as a Basis for Modelling Mantle Structure

  • Magdala TesauroEmail author
  • Mikhail K. Kaban
  • Sierd A.P.L. Cloetingh
Chapter
Part of the International Year of Planet Earth book series (IYPE)

Abstract

EuCRUST-07 is a new 3D model of the crust for western and central Europe. It offers a starting point in any kind of numerical modelling, which requires an a priori removal of the crustal effect. The digital model (35ºN, 71ºN; 25ºW, 35ºE) consists of three layers: sediments and two layers of the crystalline crust. The latter are characterized by average P-wave velocities (V p ), which were defined based on seismic data. The model was obtained by assembling together at uniform 15×15 grid available results of deep seismic reflection, refraction and receiver function studies. The Moho depth variations were reconstructed by merging the most robust and recent Moho depth maps existing for the European region and compiled using published interpretations of seismic profiles. EuCRUST-07 demonstrates large differences in Moho depth with previous compilations: over ±10 km in some specific areas (e.g., the Baltic Shield). The basement is outcropping in some part of eastern Europe, while in western Europe it is up to ∼16 km deep, with an average value of 3–4 km, reflecting the presence of relatively shallow basins. The velocity structure of the crystalline crust turns out to be much more heterogeneous than demonstrated in previous compilations, having an average V p varying from 6.0 to 6.9 km/s. In comparison to existing models, the new model shows average crustal velocity values distributed over a larger and continuous range. The sedimentary thickness appears underestimated by CRUST2.0 by ∼10 km in several basins (e.g., the Porcupine basin), while it is overestimated by ∼3–6 km along part of the coastline (e.g., the Norwegian coast). EuCRUST-07 shows a Moho 5–10 km deeper than previous models in the orogens (e.g., the Cantabrian Mountains) and in the areas where the presence of magmatic underplating increases anomalously the crustal thickness. EuCRUST-07 predicts a Moho shallower 10–20 km along parts of the Atlantic margin, and in the basin (e.g., the Tyrrhenian Sea), where previous models overestimate the average crustal velocity. Furthermore, the results of EuCRUST-07 are used to make inferences on the lithology for various parts of Europe. The new lithology map shows the eastern European tectonic provinces represented by a granite-felsic granulite upper crust and a mafic granulite lower crust. By contrast, the younger western European tectonic provinces are mostly characterized by an upper and lower crust of granite-gneiss and dioritic composition, respectively.

Keywords

3D crustal model EuCRUST-07 

Notes

Acknowledgments

We would like to thank Pierre Dèzes and Peter Ziegler (University of Basel), Richard W. England (University of Leichester), Elena Kozlovskaja (University of Oulu), Federica Marone (University of California), Michael Martin and Joachim Ritter (University of Karlsruhe), Luis Matias (University of Lisboa), Forough Sodoudi and Rainer Kind (GFZ, Potsdam), for providing Moho data. We are grateful to Conxi Ayala (IGME), Olivier Bourgeois (Nantes University), Patrick Ledru (BRGM), Thomas Diehl (ETH), Laszlo Lenkey (Eötvös University) and Magdalena Scheck-Wenderoth (GFZ, Potsdam), for providing sedimentary thickness and basement depth compilations. We are grateful to Charlotte Krawczyk, Yuriy Maystrenko, Magdalena Scheck-Wenderoth (GFZ, Potsdam), Adele Manzella and Giovanni Ruggeri (Istituto di Geoscienze e Georisorse), Roland Oberhänsli (University of Potsdam) and Peter Ziegler (University of Basel) for fruitful discussions. Funds were kindly provided by NWO (Netherlands Organization for Scientific Research) and SRON (Space Research Organization Netherlands) DFG (German Research Foundation) Ro-2330/4-1.

References

  1. Aichrot, B., C. Prodehl, and H. Thybo: Crustal structure along the Central Segment of the EGT from seismic-refraction studies. Tectonophysics 207, 43–64 (1992)Google Scholar
  2. Akyol, N., L. Zhu, B. J. Mitchell, H. S. Ozbilir, and K. Kekovalı: Crustal structure and local seismicity in western Anatolia. Geophys. J. Int. 166, 1259–1269 (2006)Google Scholar
  3. Alessandrini, B., L. Beranzoli, G. Drakatos, C. Falcone, G. Karantonis, F. M. Mele, and G. Stavrakakis: Back arcs basins and P-wave crustal velocity in the Ionian and Aegean regions. Geophys. Res. Lett. 24, 5, 527–530 (1997)Google Scholar
  4. Amato, A., R. Azzara, A. Basili, C. Chiarabba, M. G. Ciaccio, G. B. Cimini, M. Di Bona, A. Frepoli, I. Hunstad, F. P. Lucente, L. Margheriti, M. T. Mariucci, P. Montone, C. Nostro, and G. Selvaggi: Geodynamic evolution of the northern Appenines from recent seismological studies. Mem. Soc. Geol. It. 52, 337–343 (1998)Google Scholar
  5. Artemieva, I. M. and W. D. Mooney: Thermal thickness and evolution of Precambrian lithosphere: A global study. J. Geophys. Res. 106B, 16387–16414 (2001)Google Scholar
  6. Ayala, C., M. Torne, and J. Pous: The lithosphere-asthenosphere boundary in the western Mediterranean from 3D joint gravity and geoid modeling: Tectonic implications. Earth Planet. Sci. Lett. 209, 275–290 (2003)Google Scholar
  7. Banda, E., J. Ansorge, M. Boloix, and D. Cordoba: Structure of the crust and upper mantle beneath the Balearic islands (western Mediterranean). Earth Planet. Sci. Lett. 49, 219–230 (1980)Google Scholar
  8. Banda, E., E. Surinach, A. Aparicio, and E. Ruiz de la Parte: Crust and upper mantle structure of the central Iberian Meseta (Spain). Geophys. J.R. Atr. Soc. 67, 779–789 (1981)Google Scholar
  9. Bassin, C., G. Laske, and G. Masters: The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81, F897 (2000)Google Scholar
  10. Bourgeois, O., M. Ford, M. Diraison, C. Le Carlier de Veslud, M. Gerbault, R. Pik, N. Ruby, and S. Bonnet: Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. Int. J. Earth Sci. (Geol Rundsch) DOI 10.1007/s00531-007-0202-2 (2007)Google Scholar
  11. Brück, E., T. Bodoky, E. Hegedüs, P. Hrubcová, A. Gosar, M. Grad, A. Guterch, Z. Hajnal, G. R. Keller, A. Pičák, F. Sumanovac, H. Thybo, and F. Weber and Alp 2002 Working Group: ALP 2002 SEISMIC EXPERIMENT. Stud. Geophys. Geod. 47, 671–679 (2003)Google Scholar
  12. Carminati, E., C. Doglioni, and D. Scrocca: Alps Vs Apennines. Special Volume of the Italian Geological Society for the IGC 32 Florence-2004 (2004)Google Scholar
  13. Channel, J. E. T., B. D’Argenio, and F. Horwath: Adria, the African promontory, Mesozoic Mediterranean paleogeography. Earth Sci. Rev. 15, 213–292 (1979)Google Scholar
  14. Chian, D., K. F. Louden, T. Minshull, and R. Whitmarsh: Deep structure of the ocean-continent transition in the southern Iberian Abyssal Plain from seismic refraction profiles: Ocean Drilling Program (Legs 149 and 173) transect. J. Geophys. Res. 104, B4, 7443–7462 (1999)Google Scholar
  15. Christensen, N. I. and W. D. Mooney: Seismic velocity structure and composition of the continental crust: A global view. J Geophys Res. 100, 9761–9788 (1995)Google Scholar
  16. Christiansson, P., J. I. Faleide, and A. M. Berge: Crustal structure in the northern North Sea: an integrated geophysical study, in: Nottvedt, A. (ed.), Dynamics of the Norwegian Margin. Geological Society of London, Special Publication, 167, 15–40 (2000)Google Scholar
  17. Cloetingh, S., G. Spadini, J. D. Van Wees, and F. Beekman: Thermo-mechanical modelling of Black Sea Basin (De)formation. Sedimentary Geology 156, 169–184 (2003)Google Scholar
  18. Córdoba, D., E. Banda, and J. Ansorge: The Hercynian crust in northwestern Spain: A seismic survey. Tectonophysics 132, 321–333 (1987)Google Scholar
  19. Contrucci, I., A. Nercessian, N. Béthoux, A. Mauffret, and G. Pascal: A Ligurian (Western Mediterranean Sea) geophysical transect revisited. Geophys. J. Int. 146, 74–97 (2001)Google Scholar
  20. Chulick, G. S. and W. D. Mooney: New maps of North American crustal structure. Seismol. Res. Lett. 69, 160 (1998)Google Scholar
  21. Çakir, O. and M. Erduran: Constraining crustal and uppermost mantle structure beneath station TBZ (Trabzon, Turkey) by receiver function and dispersion analysis.. Geophys. J. Int. 158, 955–971 (2004)Google Scholar
  22. Darbyshire, F. A., I. Th. Bjarnason, R. S. White, and O. G. Flóvenz: Crustal structure above the Iceland mantle plume imaged by the ICEMELT refraction profile. . Geophys. J. Int. 135, 1131–1149 (1998)Google Scholar
  23. DEKORP Research Group: Wide-angle Vibrosesis data from the western Rhenish Massif. Tectonophysics 173, 83–93 (1990)Google Scholar
  24. Diehl, T. and J. R. R. Ritter and the CALIXTO Group: The crustal structure beneath SE Romania from teleseismic receiver functions. Geophys. J. Int. 163, 238–251 (2005)Google Scholar
  25. Di Stefano, R., C. Chiarabba, F. Lucente, and A. Amato: Crustal and uppermost mantle structure in Italy from the inversion of P-wave arrival times: geodynamic implications. Geophys. J. Int. 139, 483–498 (1999)Google Scholar
  26. Doglioni, C.: A proposal for the kinematic modelling of W-dipping subductions-possible applications to the Tyrrhenian-Apennines system. Terra Nova 3, 423–434 (1991)Google Scholar
  27. Edel, G. B., K. Fuchs, C. Gelbke, and C. Prodehl: Deep structure of the southern Rhinegraben area from seismic refraction investigations. J. Geophys. 41, 333–356 (1975)Google Scholar
  28. Ekström, G. and A. M. Dziewonski: The unique anisotropy of the Pacific upper mantle. Nature 394, 168–172 (1998)Google Scholar
  29. Enderle, U., K. Schuster, C. Prodhel, A. Schulze, and J. Bribach: The refraction seismic experiment GRANU 95 in the Saxothuringin Belt, southeastern Germany. . Geophys. J. Int. 133, 245–259 (1998)Google Scholar
  30. Exxon: Tectonic map of the World, Scale 1:10,000,000. Exxon Prod. Research Co., AAPGF, Tulsa, OK, USA (1985)Google Scholar
  31. Fernández-Viejo, G.: The ESCI-N Project after a decade: a synthesis of te results and open questions. Trabajos de Geologia Univ. de Oviedo 25, 9–25 (2005)Google Scholar
  32. Finetti, I. R.: CROP Project, Deep Seismic Exploration of the Central Mediterranean and Italy. edited by Finetti, I.R., Elsevier, pp. 606 (2005a)Google Scholar
  33. Finetti, I. R.: Depth contour Map of the Moho discontinuity in the Central Mediterranean region from new CROP seismic data, in CROP Project, Deep Seismic Exploration of the Central Mediterranean and Italy, edited by I. R. Finetti, pp. 597–606, Elsevier (2005b)Google Scholar
  34. Franke, W., R. K. Bortfeld, M. Brix, G. Drozdewski, H. J. Duerbaum, P. Giese, W. Janoth, H. Jödicke, Ch. Reichert, A. Scherp, J. Schmoll, R. Thomas, M. Thuenker, K. Weber, M. G. Wiesner, and H. K. Wong: Crustal structure of the Rhenish Massif: results of the deep seismic reflection lines DEKORP 2-North and 2North-Q. Geologische Rundschau 79/3, 523–566 (1990)Google Scholar
  35. Fullea, J., M. Fernàndez, H. Zeyen, and J. Vergés: A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones. Tectonophysics 430, 97–117 (2007)Google Scholar
  36. Galindo-Zaldivar, J., A. Jabaloy, F. Gonzáles-Lodeiro, and F. Aldaya: Crustal structure of the central sector of the Betic Cordillera (SE Spain). Tectonics 16 , (1) , 18–37 (1997)Google Scholar
  37. Gallart, J., J. Diaz, A. Nercessian, A. Mauffret, and T. Dos Reis: The eastern end of the Pyrenees: Seismic features at the transition to the NW Meidterrenean. Geophs. Res. Lett. 28, 11, 2277–2280 (2001)Google Scholar
  38. Gajewski, D., W. S. Holbroock, and C. Prodehl: A three-dimensional crustal model of southwest Germany derived from seismic refraction data. Tectonophysics 142, 49–70 (1987)Google Scholar
  39. Georgiev, G., C. Dabovski, and G. Stanisheva-Vassileva: East Srednogorie-Balkan Rift Zone, in Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins, vol. 186, edited by P. A. Ziegler, et al., pp. 259– 293. Memoires Museum National d’Histoire Naturelle, Paris (2002)Google Scholar
  40. Goes, S. and S. van der Lee: Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res. 107, 10:1029/2000JB000049 (2002)Google Scholar
  41. González-Fernández, A., D. Cordoba, L. Matias, and M. Torné: Seismic crustal structure in the Gulf of Cadiz (SW Iberian Peninsula. Marine Geophys. Res. 22, 207–223 (2001)Google Scholar
  42. Grad, M., A. Guterch, and A. Polkowska-Purys: Crustal structure of the Trans-European Suture Zone in Central Poland reinterpretation of the LT-2, LT-4 and LT-5 deep seismic sounding profiles. Geol. Quart. 49, (3), 243–252 (2005)Google Scholar
  43. Grad, M., T. Janik, A. Guterch, P. Oeroda, and W. Czuba: EUROBRIDGE’94–97, POLONAISE’97 , CELEBRATION 2000 Seismic Working Groups,. Lithospheric structure of the western part of the East European Craton investigated by deep seismic profiles. Geol. Quart. 50, 1, 9–22 (2006)Google Scholar
  44. Grad, M., A. Pičák, G. R. Keller, A. Guterch, M. Bro., and E. Hegedüs, and SUDETES 2003 Working Group: SUDETES 2003 seismic experiment. Stud. Geophys. Geod. 47, 681–689 (2003)Google Scholar
  45. Granet, M., M. Wilson, and U. Achauer: Imaging a mantle plume beneath the Massif Central (France). Earth Planet. Sci. Lett. 136, 281–296 (1995)Google Scholar
  46. Guterch, A. and M. Grad: Lithospheric structure of the TESZ in Poland based on modern seismic experiments. Geol. Quart. 50, (1), 23–32 (2006)Google Scholar
  47. Guterch, A., M. Grad, A. Pičák, E. Brückl, E. Hegedüs, G. R. Keller, and H. Thybo and Celebration 2000, Alp 2002, Sudetes 2003 Working Groups: An overview of recent seismic refraction experiments in central Europe. Stud. Geophys. Geod. 47, 651–657 (2003)Google Scholar
  48. Horváth, F., G. Bada, P. Szafián, G. Tari, A. Adám, and S. Cloetingh: Formation and deformation of the Pannonian Basin: constraints from observational data, in European Lithosphere Dynamics. vol. 32, edited by D. Gee and R. Stephenson, pp. 191–206, Geological Society, London, Memoirs (2006)Google Scholar
  49. Hurtig, E., Cermak, V., Haenel, R., Zui, V. (Eds.): Geothermal Atlas of Europe, International Association for Seismology and Physics of the Earth’s Interior. 156 pp, Hermann Haack Verlagsgesellschaft mbH-Geographisch-Kartographische Anstalt Gotha(1992)Google Scholar
  50. Kaban, M. K., P. Schwintzer, and P. S. A. Tikhotsky: Global isostatic gravity model of the Earth. Geophys. J. Int. 136, 519–536 (1999)Google Scholar
  51. Kaban, M. K.: A gravity model of the North Eurasia crust and upper mantle: 1. Mantle and Isostatic Residual Gravity Anomalies.. Russian Journal of Earth Sciences, (maintained and distributed by AGU, http://www.agu.org/wps/rjes/), 3, (2), 143–163 (2001)Google Scholar
  52. Kaban, M. K. and P. Schwintzer: Oceanic upper mantle structure from experimental scaling of Vs and density at different depths. Geophys. J. Int. 147, 199–214 (2001)Google Scholar
  53. Kaban, M. K., O. G. Flovenz, and G. Palmason: Nature of the crust-mantle transition zone and the thermal state of the upper mantle beneath Iceland from gravity modelling. Geophys. J. Int. 149, 281–299 (2002)Google Scholar
  54. Kaban, M. K., P. Schwintzer, and Ch. Reigber: A new isostatic model of the lithosphere and gravity field. J. Geod. 78, 368–385 (2004)Google Scholar
  55. Kelly, A., R. W. England, and P. K. H. Maguire: A three-dimensional seismic velocity model for northwestern Europe. Geophys. J. Int. 171, 1172–1184 (2007)Google Scholar
  56. Kimbell, G. S., R. W. Gatliff, J. D. Ritchie, A. S. D. Walker, and J. P. Williamson: Regional three-dimensional gravity modelling of the NE Atlantic margin.. Basin Research 16, 259–278, doi: 10.1111/j.1365-2117.2004.00232 (2004)Google Scholar
  57. Korja, A., R. Lahtinen, and M. Nironen: The Svecofennian orogen: a collage of microcontinents and island arcs, in European Lithosphere Dynamics. vol. 32, edited by D. Gee and R. Stephenson, pp. 11–41, Geological Society, London, Memoirs (2006)Google Scholar
  58. Koulakov, I. and S. V. Sobolev: Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data. Geophys. J. Int. 164, 218–235 (2006)Google Scholar
  59. Kozlovskaja, E. G., E. Elo, S. -E. Hjelt, J. Yliniemi, and M. Pittijärvi: SVEKALAPKO Seismic Tomography Working Group: 3-D density model of the crust of southern and central Finland obtained from joint interpretation of the SVEKALAPKO crustal P-wave velocity models and gravity data. Geophys. J. Int. 158, 827–848 (2004)Google Scholar
  60. Kumar, P., R. Kind, K. Priestley, and T. Dahl-Jensen: Crustal structure of Iceland and Greenland rom receiver function studies. J. Geophys. Res. 112, B03301, doi:10.1029/2005JB003991 (2007)Google Scholar
  61. Lassen, A.: Structure and evolution of the pre-Permian basement in the Danish Area. PhD-thesis, Copenhagen University, pp. 130 (2005)Google Scholar
  62. Lenkey, L.: Geothermics of the Pannonian basin and its bearing on the tectonics of Basin evolution. PhD Thesis,Vrije Universiteit, Amsterdam, pp. 215 (1999)Google Scholar
  63. Lippitsch, R., E. Kissling, and J. Ansorge: Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J. Geophys. Res. doi:10.1029/2002JB002016, 108, B8, 2376 (2003)Google Scholar
  64. Lyngsie, S. B. and H. Thybo: A new tectonic model for the Laurentia – Avalonia – Baltica sutures in the North Sea: A case study along MONA LISA profile 3. Tectonophysics 429, 201–227 (2007)Google Scholar
  65. Majdanski, M., M. Grad, and A. Guterch and SUDETES 2003 Working Group: 2-D seismic tomographic and ray tracing modelling of the crustal structure across the Sudetes Mountains basing on SUDETES 2003 experiment data. Tectonophysics 413, 249–269 (2006)Google Scholar
  66. Mariotti, G. and C. Doglioni: The dip of the foreland monocline in the Alps and Apennines. Earth Planet. Sci. Lett. 181, 191–202 (2000)Google Scholar
  67. Martin, M. and J. R. R. Ritter, and the CALIXTO working group: High-resolution teleseismic body-wave tomography beneath SE Romania – I. Implications for three- dimensional versus one-dimensional crustal correction strategies with a new crustal velocity model. Geophys. J. Int.162, 448–460 (2005)Google Scholar
  68. Martin, M. and J. R. R. Ritter, and the CALIXTO working group: High-resolution teleseismic body wave tomography beneath SE-Romania – II. Imaging of a slab detachment scenario. Geophys. J. Int. 164, 579–595 (2006)Google Scholar
  69. Matias, L. M.: A Sismologia Experimental na Modelação da Estrutura da Crosta em Portugal Continental. PhD thesis, Faculdade de Ciências, Universidade de Lisboa, 390 pp (in Portuguese) (1996)Google Scholar
  70. Menke, W., M. West, B. Brandsdóttir, and D. Sparks: Compressional and shear velocity structure of the lithosphere in Northern Iceland. Bull. Seism. Soc. Am. 88, 1561–1571 (1998)Google Scholar
  71. Mjelde, R., T. Raum, B. Myhren, H. Shimamura, Y. Murai, T. Takanami, R. Karpuz, and U. Næss: Continent-ocean transition on the Vøring Plateau, NE Atlantic, derived from densely sampled ocean bottom seismometer data. J. Geophys. Res. 110, B4, doi:10.1029/2004JB003026 (2005)Google Scholar
  72. Mooney, W. D., G. Laske, and T. G. Masters: CRUST 5.1: A global crustal model at 5°X5°. J. Geophys. Res 103B, 727–747 (1998)Google Scholar
  73. Morelli, C.: Lithospheric structure and geodynamics of the Italian Peninsula derived from geophysical data: A review. Mem. Soc. Geol. It. 52, 113–122 (1998)Google Scholar
  74. Morgan, P.: Crustal radiogenic heat production and the selective survival of ancient continental crust, Proc. Lunar Planet. Sci. Conf. 15th, Part 2. J. Geophys. Res. suppl. 90, C561–C570 (1985)Google Scholar
  75. Neprochnov, Y. P., I. P. Kosminskaya, and Y. P. Malovitsky: Structure of the crust and upper mantle of the Black and Caspian seas. Tectonophysics 10, 517–538 (1970)Google Scholar
  76. Nielsen, L., H. Thybo, and M. Glendrup: Seismic tomography interpretation of Paleozoic sedimentary sequences in the southeastern North Sea. Geophysics 70, (4), 45–56 (2005)Google Scholar
  77. O’Reilly, B. M., F. Hauser, A. W. B. Jacob, P. M. Shannon, J. Makris, and U. Vogt: The transition between the Erris and the Rockall basins: new evidence from wide-angle seismic data. Tectonophysics 241, 143–163 (1995)Google Scholar
  78. Paulssen, H. and J. Visser: The crustal structure in Iberia inferred from P-wave coda. Tectonophysics 221, 111–123 (1991)Google Scholar
  79. Papazachos, C. B., P. M. Hatzidimitriou, D. G. Panagiotopoulos, and G. N. Tsokas: Tomography of the crust and upper mantle in southeast Europe. J. Geophys. Res. 100, 12405–12422 (1995)Google Scholar
  80. Pedreira, D., J. A. Pulsar, J. Gallart, and J. Dıaz: Seismic evidence of Alpine crustal thickening and wedging from the western Pyrenees to the Cantabrian Mountains (north Iberia).. J. Geophys. Res. 108, B4, doi:10.1029/2001JB001667 (2003)Google Scholar
  81. Pieri, M. and G. Groppi Subsurface geological structure of the Po plain, Italy. Consiglio Nazionale delle Ricerche – Progetto finalizzato geodinamica, sottoprogetto “modello strutturale”, pubblicazione 414, 13 pp (1981)Google Scholar
  82. Pinet, B., L. Montadert, R. Curnelle, M. Cazes, F. Marillier, J. Rolet, A. Tomssino, A. Galdeno, Ph. Patriat, F. Brunet, J. L. Olivet, M. Schaming, J. P. Lefort, A. Arrieta, and C. Riaza: Crustal thinning on the Aquitaine shelf, Bay of Biscay, from deep seismic data. Nature 325, 513–516 (1987)Google Scholar
  83. Piromallo, C. and A. Morelli: P wave tomography of the mantle under the Alpine-Mediterranean area.. J. Geophys. Res. 108, B2 2065, doi:10.1029/2002jb001757 (2003)Google Scholar
  84. Polyak, B. G., M. Fernàndez, M. D. Khutorskoy, J. I. Soto, I. A. Basov, M. C. Comas, V. Ye, B. Khain Alonso, G. V. Agapova, I. S. Mazurova, A. Negredo, V. O. Tochitsky, J. de la Linde, N. A. Bogdanov, and E. Banda: Heat flow in the Alboran Sea, western Mediterranean. Tectonophysics 263, 191–218 (1996)Google Scholar
  85. Raum, T., R. Mjelde, H. Shimamura, Y. Murai, E. Bråstein, R. M. Karpuz, K. Kravik, and H. J. Kolstø: Crustal structure and evolution of the southern Vøring Basin and Vøring Transform Margin, NE Atlantic. Tectonophysics 415, 167–202 (2006)Google Scholar
  86. Richardson, K. R., J. R. Smallwood, R. S. White, D. B. Snyder, and P. K. H. Maguire: Crustal structure beneath the Faroe Islands and the Faroe–Iceland Ridge. Tectonophysics 300, 159–180 (1998)Google Scholar
  87. Sandoval, S., E. Kissling, and J. Ansorge and the SVEKALAPKO Seismic TomographyWorking Group: High-resolution body wave tomography beneath the SVEKALAPKO array: I. A priori three-dimensional crustal model and associated traveltime effects on teleseismic wave fronts. Geophys. J. Int. 153, 75–87 (2003)Google Scholar
  88. Scarascia, S. and R. Cassinis: Crustal structures in the central-eastern Alpine sector: a revision of the available DSS data. Tectonophysics 271, 157–188 (1997)Google Scholar
  89. Scarascia, S., R. Cassinis, and F. Federici: Gravity modelling of deep structures in the northern-central Apennines. Mem. Soc Geol. It. 52, 231–246 (1998)Google Scholar
  90. Scarascia, S., A. Lozej, and R. Cassinis: Crustal structures of the Ligurian, Tyrrhenian and Ionian seas and adjacent onshore areas interpreted from wide-angle seismic profiles. Boll. Geofis. Teor. XXXVI, 141–144, 5–19(1994 ) Google Scholar
  91. Scheck, M., U. Bayer, V. Otto, J. Lamarche, D. Banka, and T. Pharaoh: The Elbe Fault System in North Central Europe – a basement controlled zone of crustal weakness. Tectonophysics 360, 281– 299 (2002)Google Scholar
  92. Scheck-Wenderoth, M. and J. Lamarche: Crustal memory and basin evolution in the Central European Basin System—new insights from a 3D structural model. Tectonophysics 397, 143–165 (2005)Google Scholar
  93. Simancas, J. F., R. Carbonell, F. Gonzáles Lodeiro, A. Pérez Estaun, C. Juhlin, P. Ayarza, A. Kashubin, A. Azor, D. Martinez Poyatos, R. Sáez, G. R. Almódovar, E. Pascual, I. Flecha, and D. Marti: Transpressional collision tectonics and mantle plume dynamics: the Variscides of southwestern Iberia, in European Lithosphere Dynamics. vol. 32, edited by D. Gee and R. Stephenson, pp. 11–41, Geological Society, London, Memoirs (2006)Google Scholar
  94. Sodoudi, F., R. Kind, D. Hatzfeld, K. Priestley, W. Hanka, K. Wylegalla, G. Stavrakakis, A. Vafidis, H. -P. Harjes, and M. Bohnhof: Lithospheric structure of the Aegean obtained from P and S receiver functions. J. Geophys. Res. 111, (B12), doi:10.1029/2005JB003932 (2006)Google Scholar
  95. Środa, P., W. Czuba, M. Grad, A. Guterch, A. K. Tokarski, T. Janik, M. Rauch, G. R. Keller, E. Hegedus, and J. Vozar, CELEBRATION 2000 Working Group: Crustal and upper mantle structure of the Western Carpathians from CELEBRATION 2000 profiles CEL01 and CEL04: seismic models and geological implications. Geohys. J. Int.167, 737–760 (2006)Google Scholar
  96. Starostenko, V., V. Buryanov, I. Makarenko, O. Rusakov, R. Stephenson, A. Nikishin, G. Georgiev, M. Gerasimov, R. Dimitriu, O. Legostaeva, V. Pchelarov, and C. Sava: Topography of the crust–mantle boundary beneath the Black Sea Basin. Tectonophysics 381, 211–233 (2004)Google Scholar
  97. Suriñach, E. and R. Vegas: Lateral inhomogeneities of the Hercynian crust in central Spain. Phys. Earth Planet. Int. 51, 226–334 (1988)Google Scholar
  98. Svenningsen, L., N. Balling, B. H. Jacobsen, R. Kind, K. Wyllegalla, and J. Schweitzer: Crustal root beneath the highlands of Southern Norway resolved by teleseismic receiver functions.. Geophys. J. Int. 170, 3, 1129–1138 (2007)Google Scholar
  99. Tesauro, M., M. K. Kaban, and S. A. P. L. Cloetingh: EuCRUST-07: A new reference model for the European crust. Geophys. Res. Lett. 35, L05313, doi:10.1029/2007GL032244 (2008)Google Scholar
  100. Thybo, H., A. Sandrin, L. Nielsen, H. Lykke-Andersen, and G. R. Keller: Seismic velocity structure of a large mafic intrusion in the crust of central Denmark from project ESTRID. Tectonophysics 420, 105–122 (2006)Google Scholar
  101. Thiebot, E. and M. -A. Gutscher: The Gibraltar Arc seismogenic zone (part 1): Constraints on a shallow east dipping fault plane source for the 1755 Lisbon earthquake provided by seismic data, gravity and thermal modelling. Tectonophysics 426, 135–152 (2006)Google Scholar
  102. Thinon, I., L. Matias, J. P. Réhault, A. Hirn, L. Fidalgo-Gonzales, and F. Avedick: Deep structure of the Armorican Basin (Bay of Biscay): a review of Norgasis seismic reflection and refraction data. J. Geol. Soc. London 160, 99–116 (2003)Google Scholar
  103. Tsikalas, F., T. O. Eldholm, and J. I. Faleide: Crustal structure of the Lofoten–Vesterålen continental margin, off Norway. Tectonophysics 404, 151– 174 (2005)Google Scholar
  104. van der Lee, S. and G. Nolet: Upper-mantle S-velocity structure of North America. J. Geophys. Res. 102, 22815–22838 (1997)Google Scholar
  105. Waldhauser, F., R. Lippitsch, E. Kissling, and J. Ansorge: High-resolution teleseismic tomography of upper mantle structure using an a priori 3D crustal model. Geophys. J. Int. 150, 141–403 (2002)Google Scholar
  106. Wilde-Piorko, M., M. Grad and TOR Working Group: Crustal structure variation from the Precambrian to Palaeozoic platforms in Europe imaged by the inversion of teleseismic receiver functions—project TOR. Geophys. J. Int. 150, 261–270 (2002)Google Scholar
  107. Whitmarsh, R. B., R. S. White, S. J. Horsefield, J. C. Sibuet, M. Recq, and V. Louvel: The ocean-continent boundary off the western continental margin of Iberia: Crustal structure west of Galicia Bank. J. Geophys. Res 101, B12, 28291–28314 (1996)Google Scholar
  108. Whitmarsh, R. B., L. M. Pinheiro, P. R. Miles, M. Recq, and J. -C. Sibuet: Thin crust at the Western Iberia ocean-continent transition and ophiolites. Tectonics 12, 5, 1230–1239 (1993)Google Scholar
  109. Yegorova, T. P. and V. I. Starostenko: Lithosphere structure of Europe and Northern Atlantic from regional three-dimensional gravity modelling. Geophys. J. Int. 151, 11–31 (2002)Google Scholar
  110. Zeyen, H., O. Novak, M. Landes, C. Prodehl, L. Driad, and A. Him: Refraction seismic investigations of the northern Massif Central, France. In: K. Fuchs, R. Altherr, B. Mueller, C. Prodehl, (Eds.), Stress and Stress Release in the Lithosphere. Structure and Dynamic Processes in the Rifts of Western Europe. Tectonophysics, 275, 99–118 (1997)Google Scholar
  111. Ziegler, P. A. and P. Dèzes, 2006. Crustal evolution of Western and Central Europe. In: European Lithosphere Dynamics, vol. 32. edited by: Gee, D. and Stephenson, R., Geological Society, London, Memoirs, pp. 43–56.Google Scholar
  112. Zito, G., F. Mongelli, S. de Lorenzo, and C. Doglioni: Heat flow and geodynamics in the Tyrrhenian Sea. Terra Nova 15, 425–432 (2003)Google Scholar
  113. Zucca, J. J.: The crustal structure of the southern Rhinegraben from re-interpretation of seismic refraction data. J. Geophys. 55, 13–22 (1984)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Magdala Tesauro
    • 1
    • 2
    Email author
  • Mikhail K. Kaban
    • 3
  • Sierd A.P.L. Cloetingh
    • 1
  1. 1.Faculty of Earth and Life SciencesNetherlands Research Centre for Integrated Solid Earth ScienceAmsterdamThe Netherlands
  2. 2.GeoForschungsZentrum Potsdam (GFZ)PotsdamGermany
  3. 3.Helmholtz-Zentrum Potsdam, Deutsches GeoforschungsZentrum (GFZ)PotsdamGermany

Personalised recommendations