Ultradeep Rocks and Diamonds in the Light of Advanced Scientific Technologies

  • Larissa F. DobrzhinetskayaEmail author
  • Richard Wirth
Part of the International Year of Planet Earth book series (IYPE)


This is a review paper which summarizes recent achievements in studies of superdeep mantle rocks and diamonds from kimberlite and ultrahigh-pressure metamorphic (UHPM) terranes using advanced analytical techniques and instrumentations such as focused ion beam (FIB)-assisted transmission electron microscopy (TEM) and synchrotron-assisted infrared spectroscopy. In combination, they allow characterization of geological materials formed at varying pressures, temperatures, and stresses in different chemical environments, which has enabled us to make amazing advances in understanding large-scale processes operating in the Earth through plate tectonics. Mineralogical characterisations of the ultradeep earth materials using novel techniques with high spatial and energy resolution are resulting in unexpected discoveries of new phases, thereby providing better constraints on deep mantle processes. One of such results is that the nanometric fluid inclusions in diamonds from kimberlite and UHPM terranes contain similar elements such as Cl, K, P, and S. Such similarity reflects probably the high solubility of these elements in a diamond-forming C–O–H supercritical fluid at high pressures and temperatures. The paper emphasizes the necessity of further studies of diamonds occurred within geological setting (oceanic islands, foearcs and mantle sections of ophiolites) previously unrecognized as suitable places for high pressure minerals formation.


Mantle Ultrahigh-pressure metamorphism Diamond Synchrotron Focused ion beam Electron microscopy 



We thank student S. Augustin for preparing TEM foils with FIB at GFZ Potsdam. LFD is thankful to GFZ for her travel grant, and for a friendly and highly intellectual environment during her long-lasting collaborations with the Department of Chemistry of the Earth – (division of Experimental Geochemistry and Mineral Physics). Our thanks to Z. Liu for assistance in synchrotron related studies. IR measurements were performed at the U2A beam line at NSLS of Brookhaven National Laboratory, the U.S. Department of Energy (DOE), Contract DEAC02-98CH10886. The U2A beam line is supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under the U.S. NSF Cooperative Agreement Grant (EAR 01-35554) and DOE (CDAC, Contract No. DE-FC03-03N00144). This work is completed under auspices of the International Lithosphere Program, Task Force IV: “Ultradeep subduction of continental crust”. Part of the research is supported (to LFD) by the U.S. NSF grants: EAR 0521896.


  1. Aitchison, J.C., Abrajevitch, A., Ali, J.R., Badengzhu, D.A.M., Luo, H., Liu, J.B., McDermid, I.R.C., Ziabrev, S., 2002. New insight into the evolution of the Yarlung-Tsangpo suture zone, Xizang (Tibet), China. Episodes 25, 90–94.Google Scholar
  2. Akaogi, M., Akimoto, S., 1977. Pyroxene-garnet solid solution equilibria in the system Mg4Si4O12–Mg3Al2Si3O12 and Fe4Si4O12–Fe3Al2Si3O12 at high pressures and temperatures. Physics of the Earth and Planetary Interiors 15, 90–106.Google Scholar
  3. Bai, W.-J., Robinson, P.T., Fang, Q.-S., Yang, J.-S., Yan, B.-G., Zhang, Z.-M., Hu, X.-F., Zhou, M.-F., Malpas, J., 2000. The PGE and base metal alloys in the podiform chromitites of the Luobusa ophiolite, Southern Tibet. Canadian Mineralogist 38, 585–598.Google Scholar
  4. Basile, D.P., Boylan, R., Baker, B., Hayes, K., Soza, D., 1992. FIBXTEM-Focused ion beam milling for TEM sample preparation. Proceedings of the Materials Research Society: Specimen Preparation for Transmission Electron Microscopy of Materials III, Anderson, R., Tracy, B., Bravman, J. (Eds.), 254: 23–41, Pittsburgh, PA: Materials Research Society.Google Scholar
  5. Bozilov, K.N., Green, H.W., Dobrzhinetskaya, L.F., 1999. Clinoenstatite in the Alpe Arami peridotite: Additional evidence of very high pressure. Science 284, 128–132.Google Scholar
  6. Brenker, F.E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens, K., Szaloki, I., Nasdala, L., Joswig, W., Kaminsky, F., 2007. Carbonates from the lower part of transition zone or even the lower mantle. Earth and Planetary Science Letters 260, 1–9.Google Scholar
  7. Bundy, F.P., 1989. Pressure temperature phase diagram of elemental carbon. Physica A: Statistical Mechanics and its Applications 158, 169–178.Google Scholar
  8. Carr, G.L., Hanfland, M., Williams, G.P., 1995. The mid-infrared beamline at the NSLS port U2B. Reviews of Scientific Instruments 66, 1643–1648.Google Scholar
  9. Cartigny P., Harris J.W., Javoy M. 2001. Diamond genesis, mantle fractionations and mantle nitrogen content: A study of d13C-N concentrations in diamonds. Earth and Planetary Science Letters 185, 85–98.Google Scholar
  10. Chernov, A.A., 1974. Stability of faceted shapes. Journal of Crystal Growth, 24/25, 11–31.Google Scholar
  11. Chopin, C., 1984. Coesite and pure pyrope in high-grade blueschists of the Western Alps: A first record and some consequences. Contributions to Mineralogy and Petrology, 86, 107–118.Google Scholar
  12. Chopin, C., 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth and Planetary Science Letters 212, 1–14.Google Scholar
  13. Collerson, K.D., Hapugoda, S., Kamber, B.S., Williams, Q., 2000. Rocks from the mantle transition zone: Majorite-bearing xenoliths from Malaita, Southwest Pacific. Science 288, 1215 – 1223.Google Scholar
  14. Costa, V.S., Gaspar, J.C., Pimentel, M.M., 2003. Peridotite and eclogite xenolith from the Juina Kimberlite province, Brazil. Eighth International Eclogitic Conference, long abstract no: 0336.Google Scholar
  15. de Corte, K., Cartigny, P., Shatsky, V.S., Sobolev, N.V., Javoy, M., 1998. First evidence of fluid inclusions in metamorphic microdiamonds from the Kokchetav massif, Northern Kazakhstan, Geochimica and Cosmochimica Acta 62, 3765–3777.Google Scholar
  16. Davis, R.M., Griffin, W.L., Pearson, N.J., Andrew, A.S., Doyle, B.J., O’Reilly, S.Y., 1999. Diamonds from the deep: Pipe DO-27, Slave craton, Canada. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H. (Eds.), Proceeding of the VIIth International Kimberlitic Conference, Red Rood Design, Cape Town, pp. 148–155.Google Scholar
  17. de Souza Martins, M., 2006. Geologia dos diamantes e carbonados aluvionares da Bacia do Rio Macaubas (MG). Ph. D. dissertation. Tese de Doutoramento, Universidade Federal de Minas Gerais, Instituto de Geociencias, Belo Horizonte, Brazil (in Spanish), 150 pp.Google Scholar
  18. Dixon, J.E., Clague, D.A., 2001. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: Evidence for a relatively dry plume component. Journal of Petrology, 42, 627–654.Google Scholar
  19. Dobrzhinetskaya, L.F., Eide, E.A., Larsen, R.B., Sturt, B.A., Tronnes, R.G., Smith, D.C., Taylor, W.R., Posukhova, T.V., 1995. Microdiamond in high-grade metamorphic rocks of the Western Gneiss Region, Norway. Geology 23, 597–600.Google Scholar
  20. Dobrzhinetskaya, L.F., Green, H.W., II, Wang, S., 1996. Alpe-Arami: A peridotite massif from depth of more than 300 kilometers. Science 271, 1841–1845.Google Scholar
  21. Dobrzhinetskaya, L.F., Bozhilov, K.N., Green, H.W., 2000. The solubility of TiO2 in olivine: Implication to the mantle wedge environment. Chemical Geology 163, 325–338.Google Scholar
  22. Dobrzhinetskaya, L.F., Green, H.W., Mitchell, T.E., Dickerson, R.M., 2001. Metamorphic diamonds: Mechanism of growth and inclusion of oxides. Geology 29, 263–266.Google Scholar
  23. Dobrzhinetskaya, L.F., Green, H.W., Weshler, M., Darus, M., 2002. Focused ion beam technique- a new avenue for transmission electron microscope studies of micro/nanoscale geological materials. Abstract, International Workshop, Geophysics, Structure and Geology of UHPM terranes. Beijin, China, Institute of Geology and Geophysics, Chinese Academy of Sciences, pp. 88–89.Google Scholar
  24. Dobrzhinetskaya, L.F., Green, H.W., Bozhilov, K.N., Mitchell, T.E., Dickerson R.M., 2003a. Crystallization environment of Kazakhstan microdiamonds: Evidence from their nanometric inclusions and mineral associations. Journal of Metamorphic Geology 21, 425–437.Google Scholar
  25. Dobrzhinetskaya, L.F., Green, H.W., Weschler, M., Darus, M., Wang, Y.-C., Massonne, H.-J., Stöckhert, B., 2003b. Focused ion beam technique and transmission electron microscope studies of microdiamonds from the Saxonian Erzgebirge, Germany. Earth and Planetary Science Letters 210, 399–410.Google Scholar
  26. Dobrzhinetskaya, L.F., Green II, H.W., Renfro, A.P., Bozhilov, K.N., Spengler, D., van Roermund, H.L.M., 2004. Precipitation of pyroxenes and olivine from majoritic garnet: Simulation of peridotite exhumation from great depth. Terra Nova 16, 325–330.Google Scholar
  27. Dobrzhinetskaya, L.F., Green II, H.W., Renfro, A.P., Bozhilov, K.N., 2005a. Decompression of majoritic garnet: Experimental investigation of the mantle peridotite exhumation. In: Chen, J., Wang, Y., Duffy, T.S., Shen, G., Dobrzhinetskaya, L.F. (Eds.), Advances in High-Pressure Technology for Geophysical Applications. Elsevier, pp. 265–287.Google Scholar
  28. Dobrzhinetskaya, L.F., Wirth, R. Green, H.W. II., 2005b. Direct observation and analysis of a trapped COH fluid growth medium in metamorphic diamond. Terra Nova 17, 472–477.Google Scholar
  29. Dobrzhinetskaya, L.F., Wirth, R., Green, H.W. II., 2006a. Nanometric inclusions of carbonates in Kokchetav diamonds from Kazakhstan: A new constraint for the depth of metamorphic diamond crystallization. Earth and Planetary Science Letters 243, 85–93.Google Scholar
  30. Dobrzhinetskaya, L.F. Liu, Z, Cartigny, P., Zhang, J., Tchkhetia, N.N., Green H.W. II, Hemley R.J., 2006b. Synchrotron infrared and Raman spectroscopy of microdiamonds from Erzgebirge, Germany. Earth and Planetary Science Letters 248, 325–334.Google Scholar
  31. Dobrzhinetskaya, L.F., Green, H.W., 2007a. Diamond synthesis from graphite in presence of water and SiO2: Implications for diamond formation in quartzites from Kazakhstan. Internationa. Geology Review 49, 389–400.Google Scholar
  32. Dobrzhinetskaya, L.F., Green, H.W., 2007b. Experimental studies of mineralogical assemblages of metasedimentary rocks at Earth’s mantle transition zone conditions. Journal of Metamorphic Geology 25, 83–96.Google Scholar
  33. Dobrzhinetskaya, L.F., Wirth, R., Green, H.W., 2007. A look inside of diamond-forming media in deep subduction zones. Proceedings of National Academy Sciences of the United States of America 104, 9128–9132.Google Scholar
  34. Ernst, W.G., Maruyama, S., Wallis, S., 1997. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental? crust. Proceedings of National Academies of Science 94, 9532–9537.Google Scholar
  35. Ernst, W.G., 2006. Preservation/exhumation of ultrahigh-pressure subduction complexes. Lithos 92, 321–335.Google Scholar
  36. Ernst, G., Liou, J.G, 2008. High- and ultrahigh-pressure metamorphism: Past results and future prospects. American Mineralogist 93, 1771–1786.Google Scholar
  37. Frezotti, M.-L., Peccerillo, A., 2007. Diamond-bearing COHS fluids in the mantle beneath Hawaii. Earth and Planetary Science Letters 262, 273–283.Google Scholar
  38. Frey, F., 1980. The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Ohahu, Hawaii. American Journal of Science 280, 427–449.Google Scholar
  39. Gasparik, T., 2003. Phase Diagrams for Geoscientists. An Atlas of the Earth’s Interior. Berlin, Heidelberg, New York: Springer-Verlag. 462 pp.Google Scholar
  40. Gerya, T.V., Stöckhert, B., Perchuk, A.L., 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel – a numerical simulation. Tectonics 21, 6–1 - 6–19.Google Scholar
  41. Gerya T.V., Perchuk L.L., Burg J.-P., 2008. Transient hot channels: Perpetrating and regurgitating ultrahigh-pressure, high-temperature crust–mantle associations in collision belts. Lithos 103, 236–256.Google Scholar
  42. Giannuzzi, L.A., Prenitzer, B.I., Kempshall, B.W., 2005. Ion-solid interactions. In Giannuzzi L.A., Stevie F.A. (Eds.), Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer, pp. 13–52.Google Scholar
  43. Graham, G.A., Grant, P.G., Chater, R.J., Westphal, A.J., Kearsley, A.T., Snead, C., Domínguez, G., Butterworth, A.L., MCphail, D.S., Bench, G., Bradley, J.P., 2004. Investigation of ion beam techniques for the analysis and exposure of particles encapsulated by silica aerogel: Applicability for stardust. Meteoritics and Planetary Science 39, 1461–1473.Google Scholar
  44. Haggerty, S.E., Sautter, V., 1990. Ultradeep (greater than 300 km) ultramaphic upper mantle xenoliths. Science 248, 993–996.Google Scholar
  45. Harris, J.W., Hutchison, M.T., Hursthouse, M., Light, M., Harte, B., 1997. A new tetragonal silicate mineral occurring as inclusions in lower mantle diamonds. Nature 387, 486–488.Google Scholar
  46. Harte, B., Harris, J.W., 1994. Lower mantle mineral assemblages preserved in diamonds. Mineralogical Magazine 58A, 384–385.Google Scholar
  47. Harte, B., Harris, J.W., Hutchison, M.T., Watt, J.R., Willding, M.S., 1999. Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Fei, Y., Bertka, C.M., Mysen B.O (Eds.), Mantle petrology: Field observations and high pressure experimentation: a tribute to Fransis R. (Joe) Boyd. Geochemical Society, Special Publication 16. pp. 125–163.Google Scholar
  48. Harte, B., Cayzer, N., 2007. Decompression and unmixing of crystals included in diamonds from the mantle transition zone. Physics and Chemistry of Minerals 34, 647–656.Google Scholar
  49. Hayman, P.C., Kopylova, M.G., Kaminsky, F.V., 2005. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contribution to Mineralogy and Petrology 149, 430–445.Google Scholar
  50. Heaman, L.M., Bruce A. Kjarsgaard, B.A., Creaser, R.A., 2004. The temporal evolution of North American kimberlites. Lithos 76, 377–379.Google Scholar
  51. Heaney, P.J., Vicenzi, E.P., Giannuzzi, L.A., Livi, K.J.T., 2001. Focused ion beam milling: A method of site-specific sample extraction for microanalysis of Earth and planetary materials. American Mineralogist 86, 1094–1099.Google Scholar
  52. Heide K., Woermann E., Ulmer, G., 2008. Volatiles in pillows of the Mid-Ocean-Ridge Basalt (MORB) and vitreous basaltic rims. Chemie der Erde-Geochemistry 68, 3537–368.Google Scholar
  53. Holman, H.-Y.N., Bjornstad, A., McNamara, P., Martin, C., McKinney, R., Blakely, A., 2002. Synchrotron infrared spectromicroscopy as a novel bioanalytical microprobe for individual living cells: Cytotoxicity considerations. Journal of Biomedical Optics 7, 417–424.Google Scholar
  54. Huttchison, M.T., Hursthouse, M.B., Light, M.E., 2001. Mineral inclusions in diamonds: Associations and chemical distinctions around the 670 discontinuity. Contribution to Mineralogy and Petrology 142, 372–382.Google Scholar
  55. Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., Lin, C.C., 2001. Genesis of microdiamonds from melt and associated multiphase inclusions in garnet of ultrahigh-pressure gneiss from Erzgebirge, Germany. Earth Planetary Science Letter 188, 915–919.Google Scholar
  56. Irifune, T., 1997. An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Physics of the Earth and Planetary Interiors 45, 324–336.Google Scholar
  57. Jones, R., Briddon, P.R. & Oberg, S., 1992. First-principles theory of nitrogen aggregates in diamond. Philosophical Magazine Letters 66, 67–74.Google Scholar
  58. Kaminsky, F.V., Zakharchenko O.D., Davies R., Griffin W.L., Shiryaev A.A., 2001. Superdeep diamonds from the Juina area, Mato Grosso State, Brazil, Contribution to Mineralogy and Petrology140, 734–753.Google Scholar
  59. Kanda, H., 1985. Effect of metal and water on growth and dissolution morphologies of diamond crystals [thesis]. Sendai, Japan, Tohoku University, 137 p.Google Scholar
  60. Klein-BenDavid, O., Wirth, R., Navon, O., 2006. TEM imaging and analysis of microinclusions in diamonds; a close look at diamond-growing fluids. American Mineralogist 91, 353–365.Google Scholar
  61. Klein-BenDavid, O., Wirth, R., Navon, O., 2007. Micrometer-scale cavities in fibrous and cloudy diamonds - a glance into diamond dissolution events. Earth and Planetary Science Letters 264, 89–103.Google Scholar
  62. Kvasnytsya, V.M., Taran, M.M, Wirth, R., Wiedenbeck, M., Thomas, R., Lupashko, T.M., Il`chenko, K.O., 2005. New data about Ukrainian diamonds. Mineralogical Journal (Ukraine) 27, 41–47.Google Scholar
  63. Kvasnytsya, V., Wirth, R., Thomas, R., Taran, M., 2006. Ukrainian Geologist, 2, 11–16.Google Scholar
  64. Lee, M.R., Bland, P.A., Graham, G., 2003. Preparation of TEM samples by focused ion beam (FIB) techniques: Applications to the study of clays and phyllosilicates in meteorites. Mineralogical Magazine 67, 581–592.Google Scholar
  65. Liou, J.G., Zhang, R.Y., Ernst, G.W., 2007. Very high-pressure orogenic garnet peridotites. Proceeding of National Academy of Sciences of the United States of America 104, 9116–9121.Google Scholar
  66. Liu, Z., Hu, J., Yang H., Mao, H.K., Hemley, R.J., 2002. High-pressure synchrotron X-ray diffraction and infrared microspectroscopy: Applications to dense hydrous phases. Journal of Physics of Condensed Matters 14, 10641–10646.Google Scholar
  67. Liu, L., Zhang, J., Green, H.W., Jin, Z-M, Bozhilov, K.N., 2007. Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km. Earth and Planetary Science Letters 263, 180–191.Google Scholar
  68. Logvinova, A.M., Wirth, R., Sobolev, N.V., 2006. Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: New insights on diamond formation. Abstract IMA, Kobe, Japan, p. 134.Google Scholar
  69. Logvinova, A.M., Wirth, R., Sobolev, N.V., Seryotkin, Y.V., Yefimova, E.S., Floss, C.,Taylor, L.A., 2008. Eskolaite associated with diamond from the Udachnaya kimberlite pipe, Yakutia, Russia. American Mineralogist, 93, 685–690.Google Scholar
  70. Logvinova, A.M., Wirth, R., Fedorova, E.N., Sobolev, N.V., 2008a. Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. European Journal of Mineralogy 20, 317–331.Google Scholar
  71. Malpas, J., Zhou, M.-F., Robinson, P.T., Reynolds, P.H., 2003, Geochemical and geochronological constraints on the origin and emplacement of the Yarlung-Zangbo ophiolites, Southern Tibet. In: Dilek, Y., Robinson, P.T. (Eds.), Ophiolites in Earth History, Geological Society of London Special Publication 218, 191–206.Google Scholar
  72. Massonne, H.-J., 1999. A new occurrence of microdiamonds in quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany, and the metamorphic evolution. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H. (Eds.), The P.H. Nixon Volume. Proceddings of 7th International Kimberlitic Conference, Red Roof Design CC, Capetown, pp. 533–539.Google Scholar
  73. Massonne, H.-J., Bautsch, H.-J., 2002. An Unusual Garnet Pyroxenite from the Granulitgebirge, Germany: Origin in the Transition Zone (>400 km depths) or in a Shallower Upper Mantle Region? International Geology Review 44, 779–796.Google Scholar
  74. McCammon, C., 2001. Geophysics – deep diamond mysteries. Sciences 293, 813–814.Google Scholar
  75. Mposkos, E.D., Kostopoulos, D.K., 2001. Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: A new ultrahigh-pressure metamorphic province established. Earth and Planetary Science Letters 192, 497–506.Google Scholar
  76. Menneken, M., Nemchin, A.A., Geisler, T., Pidgeon, R.T., Wilde, S.A., 2007. Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448, 917–920.Google Scholar
  77. Mizukami, T., Wallis, S., Enami, M., Kagi, H., 2008. Forearc diamond from Japan. Geology 36, 219–222.Google Scholar
  78. Neal, C.R., Haggerty, S.E., Sutter, V., 2001. “Majorite” and “silicate perovskite” mineral compositions in xenoliths from Malaita. Science 292, 1015.Google Scholar
  79. Nixon, P.H., 1987. Mantle xenoliths. Chichester: John Wiley, 844 pp.Google Scholar
  80. Obst, M., Gasser, P., Mavrocordatos, M., Dittrich, D., 2005. TEM-specimen preparation of cell/mineral interfaces by Focused Ion Beam milling. American Mineralogist 90, 1270–1277.Google Scholar
  81. O’Keefe, M.A., Nelson, E.C., Wang, Y.C., Thust, A., 2001. Sub-Ångstrom resolution of atomistic structures below 0.8 Å. Philosophical Magazine B 81(11), 1861–1878.Google Scholar
  82. Ogasawara, Y., 2005. Microdiamonds in ultrahigh-pressure metamorphic rocks. Element 1, 1–6.Google Scholar
  83. Ogasawara, Y., Fukasawa, K., Maruyama, S., 2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist 87, 454–461.Google Scholar
  84. Orloff, J., Utlaut, M. Swanson, L., 2003. High resolution Focused Ion Beams: FIB and its Applications. NewYork: Kluwer Academic/Plenum Publishers, 300 pp.Google Scholar
  85. Overwijk, M.H.E., van den Heuvel, F.C., Bulle-Lieuwma, C.W.T., 1993. Novel scheme for the preparation of transmission electron microscopy specimens with a focused ion beam. Journal of Vacuum Science and Technology 11, 2021–2024.Google Scholar
  86. Phaneuf, M.W., 1999. Applications of focused ion beam microscopy to materials science specimens. Micron 30, 277–288.Google Scholar
  87. 8.
    Pal’yanov, Y., Sokol, A., Borzdov, Y., Khokhryakov, A., Sobolev, N., 1999. Diamond formation from mantle carbonate fluids. Nature 400, 417–418.Google Scholar
  88. Parkinson I.J., Arculus R.J., 1999. The redox state of subduction zones: Insight from arc peridotites. Chemical Geology 160, 409–423.Google Scholar
  89. Pearson, D.G., Canil, D., Shirey, S.B., 2005. Mantle samples included in volcanic rocks: Xenoliths and diamonds. In: Carlson, R.W. (Ed.), The Mantle and Core. Elsewier, pp. 171–275.Google Scholar
  90. Perraki, M., Proyer, A., Mposkos, E., Kaindl, R., Hoinkes, G., 2006. Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece. Earth and Planetary Science Letters 241, 672–685.Google Scholar
  91. Puretz, J., Orloff, J., Swanson, L., 1984. Application of focused ion beams to electron beam testing of integrated circuits. Proceedings of the International Society for Optical Engineering 471, 38–46.Google Scholar
  92. Reffner, J.A., Martoglio, P.A., Williams, G.P., 1995. Fourier transform infrared microscopical analysis with synchrotron radiation - the microscope optics and system performance. Reviews of Scientific Instruments 66, 1298–1302.Google Scholar
  93. Ringwood, A.E., 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica and Cosmochimica Acta 55, 2083–2110.Google Scholar
  94. Risold, A.Ch., Trommsdorff, W., Grobety, B., 2003. Morphology of oriented ilmenite inclusions in olivine from garnet peridotites (Central Alps, Switzerland). European Journal of Mineralogy 15, 289-294.Google Scholar
  95. Robinson, P.T., Bai, W.-J., Malpas, J., Yang, J.-S., Zhou, M.-F., Fang, Q.-S., Hu, X-F., Cameron, S., 2004, Ultrahigh pressure minerals in the Luobusa ophiolite, Tibet and their tectonic implications. In: Tectonics of China, Geological Society of London Special Publication 226, 247–271.Google Scholar
  96. Sautter, V., Haggerty, S.E., Field S., 1991. Ultradeep (>300kilometers) ultramaphic xenoliths: Petrological evidence from the mantle transition zone. Science 252, 827–830.Google Scholar
  97. Scott-Smith, B.H., Danchin, T.V., Harris, J.W., Stracke K.J., 1984. Kimberlites near Orroroo, South Australia. In: Kornprobst, J. (Ed.), Kimberlites: The Mantle and Crust-Mantle Relationships. Elsevier, Amsterdam, pp 121–142.Google Scholar
  98. Sen, G., 1988. Petrogenesis of spinel lherzolites and pyroxenite suite xenoliths from the Koolau shield, Oahu, Hawaii: Implications for petrology of post-eruptive lithosphere beneath Oahu. Contribution to Mineralogy and Petrology 100, 61–91.Google Scholar
  99. Sen, G., Keshav, S., Bizimis, M., 2005. Hawaiian mantle xenoliths and magmas: Composition and thermal character of the lithosphere. American Mineralogist 90, 871 – 887.Google Scholar
  100. Shi, R., Alard, O., Zhi, X., O‘Reilly, S.Y., Pearson, N.J., Griffin, W.L., Zhang, M., Chen, X., 2007. Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth and Planetary Science Letters 261, 33–48.Google Scholar
  101. Smith, D., 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310, 641–644.Google Scholar
  102. Smith, N.S., Kinion, D.E., Tesch, P.P., Boswell R.W., 2007. A high brightness plasma source for focused ion beam applications. Microscopy and Microanalysis 13, 180–181.Google Scholar
  103. Smith, J.V., Mason, B., 1970. Pyroxene-garnet transformation in Coorara meteorite. Science 168, 832–833.Google Scholar
  104. Sobolev, N.V., Shatsky V.S., 1990. Diamond inclusions in garnets from metamorphic rocks: A new environment of diamond formation. Nature 343, 742–746.Google Scholar
  105. Spengler, D., van Roermund, H.L.M., Drury, M., Ottolini, L., Maso, P.R.D., Davies, G., 2006. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature 440, 913–917.Google Scholar
  106. Stachel, T., Brey, G.P., Harris, J.W., 2005. Inclusions in sublithospheric diamonds: Glimpses of deep Earth. Elements 1, 73–78.Google Scholar
  107. Stöckhert, B., Duyster, J., Trepmann, C., Massonne, H.-J., 2001. Microdiamond daughter crystals precipitated from supercritical COH+silicate fluids included in garnet, Erzgebirge, Germany. Geology 29, 391–394.Google Scholar
  108. Stöckhert, B., Gerya, T., 2005. Pre-collisional high pressure metamorphism and nappe tectonics at active continental margins: A numerical simulation. Terra Nova 17, 102–110.Google Scholar
  109. Sunagawa, I., 1990. Growth and morphology of diamond crystals under stable and metastable conditions. Journal of Crystals Growth 99, 1156–1161.Google Scholar
  110. Sunagawa, I., 1997. Natural crystallization. Journal of Crystal Growth 42, 214–223.Google Scholar
  111. Tinkler D., Lesher, C.E., 2001. Solubility of TiO2 in olivine from 1 to 8 GPa. American Geophysical Union, Fall Meeting 2001, San Francisco, abstract #V51B–1001.Google Scholar
  112. van Roermund, H.L.M., Drury, M.R., 1998. Ultra-high pressure (P > 6 GPa) garnet peridotites in Western Norway: Exhumation of mantle rocks from >185 km depth. Terra Nova 10, 295–301.Google Scholar
  113. van Roermund, H.L.M., Carswell, D.A., Drury, M.R., Heijboer, T.C., 2002. Microdiamonds in megacrystic garnet websterite pod from Bardane on the island of Fjortoft, western Norway: Evidence for diamond formation in mantle rocks during deep continental subduction. Geology 30, 959–962.Google Scholar
  114. Vicenzi, E.P., Heaney, P.J., 1999. Examining Martian alteration products using in situ TEM sectioning: A novel application of the Focused Ion Beam (FIB) for the study of extraterrestrial materials. 30th Annual Lunar and Planetary Science Conference, March 15–29, 1999, Houston, TX, abstract no. 2005.Google Scholar
  115. Williams, D.B., Carter, C.B., 1996. Transmission Electron Microscopy for Materials Science. New York and London: Plenum Press, 729 pp.Google Scholar
  116. Wirth, R., Rocholl, A., 2003. Nanocrystalline diamond from the Earth’s mantle underneath Hawaii. Earth and Planetary Science Letters 211(3–4), 357–369.Google Scholar
  117. Wirth, R., 2004. Focused Ion Beam (FIB>): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. European Journal of Mineralogy 16, 863–876.Google Scholar
  118. Wirth, R., 2005. Micro- and nanometre sized inclusions in diamonds and microdiamonds: A new source of information about diamond genesis and fluid composition. ANAIS IV Simposio Brasiliero de Geologia do Diamante, Sociedade Brasileira de Geologia Nucleo Minas Gerais, Boletim N°14, Diamantina, 4–7. Sept. 2005, p. 184.Google Scholar
  119. Wirth, R., 2006. On the origin of carbonado, a black diamond variety. Abstract, IMC 16 Sapporo, Proceedings 3, p. 1877.Google Scholar
  120. Wirth, R., 2007. Nanometre-sized inclusions in diamond: FIB/TEM investigations provide new insights into diamond genesis and fluid composition. Abstract, Geological Association of Canada and Mineralogical Association of Canada Yellowknife, Canada, 2007. p. 87.Google Scholar
  121. Wirth, R., Langer, K., Platonov, A.N., 2001. A TEM study of a chromium-bearing kyanite from a mantle xenolith: indications for an aluminium-rich exsolution precursor phase? European Journal of Mineralogy 13, 311–318.Google Scholar
  122. Wirth, R., 2009. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chemical Geology 261, 217–229.Google Scholar
  123. Wirth, R., Pinti, D.L., Sano, Y., Takahata, N., Kaminsky, F., 2007. FIB/TEM and NanoSIMS investigations of micro- and nanoinclusions in diamond: New insights into the Earth’s mantle and diamond formation. Abstract, AGU Fall Meeting, San Francisco. EOS, Transactions, American Geophysical Union, Supplements, 88 (52) 10–14 December, 2007. Abstract MR23D–10.Google Scholar
  124. Wirth, R., Wunder, B., 2000. Characterization of OH-containing phases by TEM using electron; energy-loss spectroscopy (EELS): Clinohumite-OH, chondrodite-OH, phase A, and the (F OH)-solid solution series of topaz. Journal of Trace and Microprobe Techniques 18, 35–49.Google Scholar
  125. Wood, B.J., Bryndzia, I.T., Johnson, K.E., 1990. Mantle oxidation state and its relationship to techtonic environment and fluid speciation. Science 248, 337–345.Google Scholar
  126. Wyllie, P.J., 1981. Plate tectonics and magma genesis. Geology Rundschau 70, 128–153.Google Scholar
  127. Xu, S.T., Okay, A.I., Ji, S.Y., Sengor, A.M.C., Wen, S., Liu, Y.C., Jiang, L.L., 1992. Diamond from the Dabie-Shan metamorphic rocks and its implication for tectonic setting. Science 256, 80–82.Google Scholar
  128. Yamamoto, S. Komiya, T, Hirose, K., Maruyama, S., 2008. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos. (in press).Google Scholar
  129. Yang, J-J., Jahn, B-M., 2000. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHPM terrane in China. Journal of Metamorphic Geology 18, 167–180.Google Scholar
  130. Yang, J., Xu, Z., Dobrzhinetskaya, L.F., Green H.W. II, Pei, X., Shi, R., Wu, C., Wooden, J.L., Zhang, J., Wan, Y., Li, H., 2003. Discovery of metamorphic diamonds in Central China: An indication of a >4000 km-long-zone of deep subduction resulting from multiple continental collisions. Terra Nova 15, 370–379.Google Scholar
  131. Yang, J., Dobrzhinetskaya, L.F., Bai, W.-J., Fang, Q-S., Robinson, P., Zhang, J-F., Green, H.W., 2007a. Diamond- and coesite-beraing chromitites from the Luobasa ophiolite, Tibet. Geology 35, 875–878.Google Scholar
  132. Yang, J.S., Zhang, R.Y., Li,, T.F., Zhang, Z., Liou, J.G., 2007b. Petrogenesis of the garnet peridotite and garnet-free peridotite of the Zhimafang ultramafic body in the Sulu ultrahigh pressure metamorphic belt, eastern China. Journal of Metamorphic Geology 25, 187–206.Google Scholar
  133. Ye, K., Cong, B., De, E., 2000. The possible subduction of continental material to depth greater than 200 km. Nature 407, 734–736.Google Scholar
  134. Young, R.J., Kirk, E.C., Williams, D.A., Ahmed, H., 1990. Fabrication of planar cross sectional TEM specimens using a focused ion beam. In: Anderson, R. (Ed.), Proceedings of the Materials Research Society: Specimen Preparation for Transmission Electron Microscopy of Materials II 199, 205-216, Pittsburgh, PA: Materials Research Society.Google Scholar
  135. Zhang, R.Y., Liou, J.G., Cong, B.L., 1994. Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-Lu ultrahigh-P metamorphic terrane, eastern China. Journal of Metamorphic Geology 12, 169–186.Google Scholar
  136. Zhang, R.Y., Liou, J.G, Yang, J.S., Yui, T.F., 2000. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. Journal of Metamorphic Geology 18, 149–166.Google Scholar
  137. Zhang, R.Y., Shau Y.H., Liou, J.G., Lo, C.H., 2002, Discovery of clinoenstatite in garnet pyroxenites from the Dabie-Sulu UHP terrane, east-central China. American Mineralogist 87, 867–874.Google Scholar
  138. Zhang, R.Y., Liou, J.G., 2003. Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: Origin and evolution of garnet exsolution in clinopyroxene. American Mineralogist 21, 1591–1600.Google Scholar
  139. Zhou, M., Robinson, P.T., Malpas, J., Li, Z. 1996. Podiform chromitites from the Luobusa ophiolites (southern Tibet): Implications for melt rock interaction and chromite segregation. Journal of Petrology 37, 3–21.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Geophysics and Planetary Physics, Department of Earth SciencesUniversity of CaliforniaRiversideUSA
  2. 2.Helmholtz-Zentrum Potsdam, Deutsches GeoforschungsZentrum (GFZ), German Research Centre for Geosciences, Experimental Geochemistry and Mineral PhysicsPotsdamGermany

Personalised recommendations