Advertisement

DynaQlim – Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas

  • Markku PoutanenEmail author
  • Doris Dransch
  • Søren Gregersen
  • Sören Haubrock
  • Erik R. Ivins
  • Volker Klemann
  • Elena Kozlovskaya
  • Ilmo Kukkonen
  • Björn Lund
  • Juha-Pekka Lunkka
  • Glenn Milne
  • Jürgen Müller
  • Christophe Pascal
  • Bjørn R. Pettersen
  • Hans-Georg Scherneck
  • Holger Steffen
  • Bert Vermeersen
  • Detlef Wolf
Chapter
Part of the International Year of Planet Earth book series (IYPE)

Abstract

The isostatic adjustment of the solid Earth to the glacial loading (GIA, Glacial Isostatic Adjustment) with its temporal signature offers a great opportunity to retrieve information of Earth’s upper mantle to the changing mass of glaciers and ice sheets, which in turn is driven by variations in Quaternary climate. DynaQlim (Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas) has its focus to study the relations between upper mantle dynamics, its composition and physical properties, temperature, rheology, and Quaternary climate. Its regional focus lies on the cratonic areas of northern Canada and Scandinavia.

Geodetic methods like repeated precise levelling, tide gauges, high-resolution observations of recent movements, gravity change and monitoring of postglacial faults have given information on the GIA process for more than 100 years. They are accompanied by more recent techniques like GPS observations and the GRACE and GOCE satellite missions which provide additional global and regional constraints on the gravity field. Combining geodetic observations with seismological investigations, studies of the postglacial faults and continuum mechanical modelling of GIA, DynaQlim offers new insights into properties of the lithosphere. Another step toward a better understanding of GIA has been the joint inversion of different types of observational data – preferentially connected with geological relative sea-level evidence of the Earth’s rebound during the last 10,000 years.

Due to the changes in the lithospheric stress state large faults ruptured violently at the end of the last glaciation in large earthquakes, up to the magnitudes MW = 7–8. Whether the rebound stress is still able to trigger a significant fraction of intraplate seismic events in these regions is not completely understood due to the complexity and spatial heterogeneity of the regional stress field. Understanding of this mechanism is of societal importance.

Glacial ice sheet dynamics are constrained by the coupled process of the deformation of the viscoelastic solid Earth, the ocean and climate variability. Exactly how the climate and oceans reorganize to sustain growth of ice sheets that ground to continents and shallow continental shelves is poorly understood. Incorporation of nonlinear feedback in modelling both ocean heat transport systems and atmospheric CO2 is a major challenge. Climate-related loading cycles and episodes are expected to be important, hence also more short-term features of palaeoclimate should be explicitly treated.

Keywords

GIA Crustal deformation Mantle dynamics Quaternary climate 

Notes

Acknowledgments

The research of Markku Poutanen is partly funded by the Academy of Finland, grant 120212. The research of Erik Ivins is funded by NASA’s Earth Science Program, Solid Earth and Surface Processes Focus Area at the Jet Propulsion Laboratory, California Institution of Technology. The research of Jürgen Müller and Holger Steffen is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through research grant MU1141/8-1 (SPP 1257) and that of Volker Klemann through the DFG research grant MA3432/2-2 (SPP1257).

References

  1. Adams, J., Basham, P.W., 1989. Seismicity and seismotectonics of Canada’s eastern margin and craton, in Gregersen, S., Basham, P.W. (eds.), Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, 355–370. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  2. Ågren, J., Svensson, R., 2007. Postglacial Land Uplift Model and System Definition for the New Swedish Height System RH 2000. Reports in Geodesy and Geographical Information Systems Rapportserie, LMV-Rapport 2007:4, Lantmäteriet, Gävle.Google Scholar
  3. Alley, R.B., Anandakrishnan, S., Jung, P., 2001. Stochastic resonance in the North Atlantic. Paleoceanography, 16, 190–198.Google Scholar
  4. Alley, R.B., Clark, P.U., Huybrechts, P., Joughin, I., 2005. Ice-sheet and sea-level changes. Science, 310, 456–460 doi:10.1126/science.1114613.Google Scholar
  5. Anda, E., Blikra, L.H., Braathen, A., 2002. The Berill fault – first evidence of neotectonic faulting in southern Norway. Norsk Geologisk Tidsskrift, 82, 175–182.Google Scholar
  6. Arvidsson, R., 1996. Fennoscandian earthquakes: Whole crust rupturing related to postglacial rebound. Science, 274, 744–746.Google Scholar
  7. Arvidsson, R., Kulhanek, O., 1994. Seismodynamics of Sweden deduced from earthquake focal mechanisms. Geophys. J. Int., 116, 377–392.Google Scholar
  8. Audet, P., Mareschal, J.-C., 2004. Variations in elastic thickness in the Canadian Shield. Earth Planet. Sci. Lett., 226, 17–31, doi:10.1016/j.epsl.2004.07.035.Google Scholar
  9. Barker, P., Thomas, E., 2006. Potential of the Scotia Sea Region for determining the onset and development of the Antarctic Circumpolar Current, in Futterer, D.K., D. Damaske, G. Kleinschmidt, H. Miller, D. Tessensohn (eds.), Antarctica: Contributions to Global Earth Sciences, 433–440. Springer-Verlag, Berlin Heidelberg New York.Google Scholar
  10. Berg, J. van den, van de Wal, R.S.W., Oerlemans, J., 2006. Recovering lateral variations in lithospheric strength from bedrock motion data using a coupled ice sheet-lithosphere model. J. Geophys. Res., 111, B05409, doi:10.1029/2005JB003790.Google Scholar
  11. Berger, A., 1984. Accuracy and frequency stability of the Earth’s orbital elements during the Quaternary, in Berger, A.L. et al. (eds.), Milankovitch and Climate, Part 1, 3–39. Reidel Pub. Co., Dordrecht, Netherlands.Google Scholar
  12. Berger, A., Pestiaux, P., 1984. Accuracy and stability of the Quaternary terrestrial insolation, in Berger, A., Imbrie, J., Hays, J., Kukla, G., Saltzman, B. (eds.), Milankovitch and Climate, Part 1, 83–111. D. Reidel Pub., Dordrecht, Netherlands.Google Scholar
  13. Bintanja, R., van de Wal, R.S.W., Oerlemans, J., 2005. Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 437; 1 September 2005; doi:10.1038/nature03975.Google Scholar
  14. Blundell, D., Mueller, S., Mengel, K., 1992. A continent revealed; the European Geotraverse, Cambridge University Press, Cambridge.Google Scholar
  15. Blunier, T.,Brook, E.J., 2001. Timing of millennial-mcale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109–112.Google Scholar
  16. Brook, E.J., Harder, S., Severinghaus, J., Steig, E.J., Sucher, C.M., 2000. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cycles, 14, 559–572, doi:10.1029/1999GB001182.Google Scholar
  17. Bruneton, M., and 35 others, 2004. Complex lithospheric structure under the central Baltic Shield from surface wave tomography. J. Geophys. Res.-Solid Earth, 109(B10), B10303, doi:10.1029/2003JB002947.Google Scholar
  18. Bungum, H., Olesen, O., 2005. The 31st of August 1819 Lurøy earthquake revisited. Norwegian J. Geol. 85, 245–252.Google Scholar
  19. Bürgmann, R., Dresen, G., 2008. Rheology of the lower crust and upper mantle: Evidence from rockmechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci., 36, 531–567, doi:10.1146/annurev.earth.36.031207.124326.Google Scholar
  20. Bush, A.B.G., 2004. Modelling of the late Qauternary climate over Asia: A synthesis. Boreas, 33, 155–163, doi:10.1111/j.1502-3885.2004.tb01137.x.Google Scholar
  21. Bäckblom, G., Stanfors, R., 1989. Interdisciplinary study of post-glacial faulting in the Lansjärv area northern Sweden. Technical Report TR-89-31, Svensk Kärnbränslehantering AB, Stockholm.Google Scholar
  22. Calais E., Han, J.Y., DeMets, C., Nocquet, J.M., 2006. Deformation of the North American plate interior from a decade of continuous GPS measurements. J. Geophys. Res., 111, B06402, doi:10.1029/2005JB004253.Google Scholar
  23. Carlson, A.E., Raisbeck, G.M., Clark, P.U., Brook, E.J., 2007. Rapid Holocene deglaciation of the Laurentide ice sheet. J. Climate, 20, 5126-5132, doi:10.1175/JCLI4273.1.Google Scholar
  24. Carlson, A.E., Legrande, A.N., Oppo, D.W., Came, R.E., Schmidt, G.A., Gavin, A., Anslow, F.S., Licciardi, J.M., Obbink, E.A., 2008. Rapid early Holocene deglaciation of the Laurentide ice sheet. Nat. Geosci., 1, 620–624, doi:10.1038/ngeo285.Google Scholar
  25. Clark P.U., McCabe, A.M., Mix, A.C., Weaver, A.J., 2002. Rapid rise of sea level 19,000 years ago and its global implications. Science, 304, 1141–1144.Google Scholar
  26. Cowan E.A., Hillenbrand, C.D., Hassler, L.E., Ake, M.T., 2008. Coarse-grained terrigenous sediment deposition on continental rise drifts: A record of Plio-Pleistocene glaciation on the Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 275-291, doi:10.1016/j.palaeo.2008.03.010.Google Scholar
  27. Cox, P., Jones, C., 2008. Illuminating the modern dance of climate and CO2. Science, 321, 1642–1644, doi:10.1126/science.1158907.Google Scholar
  28. Chung, W.-Y., 2002. Earthquakes along the passive margin of Greenland: Evidence for postglacial rebound control. Pure Appl. Geophys., 159, 2567–2584.Google Scholar
  29. Chung, W.-Y., Gao, H., 1997. The Greenland earthquake of July 11 1987 and postglacial fault reactivation along a passive margin. Bull. Seism. Soc. Am., 87, 1058–1068.Google Scholar
  30. Dehls, J.F., Olesen, O., Bungum, H., Hicks, E., Lindholm, C.D. and Riis, F., 2000. Neotectonic map, Norway and adjacent areas 1:3 mill. Geological Survey of Norway, Trondheim.Google Scholar
  31. DeMets, C., Wilson, D.S., 2008. Toward a minimum change model for recent plate motions: Calibrating seafloor spreading rates for outward displacement. Geophys. J. Int., 174, 825–841, doi:10.1111/j.1365-246X.2008.03836.x.Google Scholar
  32. Dietrich, R., Rülke, A., Scheinert, M., 2005. Present-day vertical crustal deformations in West Greenland from repeated GPS observations. Geophys. J. Int., 163, 865-874, 10.1111/j.1365-246X.2005.02766.x.Google Scholar
  33. Dowdeswell, J.A., Siegert, M.J.,1999. Ice-sheet numerical modeling and marine geophysical measurements of glacier-derived sedimentation on the Eurasian Arctic continental margins, Bull. Geol. Soc. Am., 111, 1080–1097.Google Scholar
  34. Dyke, A.S., 2004. An outline of North American deglaciation with emphasis on central and northern Canada, in Ehlers, J., Gibbard, P.L. (eds.), Quaternary Glaciations: Extent and Chronology 2: Part II North America, 373–424. Elsevier, Amsterdam.Google Scholar
  35. DynaQlim, 2008. Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas. http://dynaqlim.fgi.fi.
  36. Ekman M., 1996. A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8, 158–165.Google Scholar
  37. Ekman M., Mäkinen J., 1996. Recent postglacial rebound, gravity change and mantle flow in Fennoscandia. Geophys. J. Int., 126, 229–234.Google Scholar
  38. Elverhøi, A., Fjeldskaar, W., Solheim, A., Nyland-Berg, M. Russwurm, L., 1993. The Barents Sea Ice Sheet – a model of its growth and decay during the Last Glacial Maximum, Quaternary Sci. Rev., 12, 863–873.Google Scholar
  39. EPICA Community Members, 2006. One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195–198, doi:10.1038/nature05301.Google Scholar
  40. Fleming K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., Chappell, J., 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites, Earth Planet. Sci. Lett., 163, 327–342.Google Scholar
  41. Fejerskov, M., Lindholm, C.D., 2000. Crustal stress in and around Norway; an evaluation of stress-generating mechanisms, in Nøttvedt, A. (ed.), Dynamics of the Norwegian Margin. Geological Society Special Publications, 167, 451–467, Geological Society of London, London, UK.Google Scholar
  42. Forsström, P.-L., 2005. Through a glacial cycle: Simulation of the Eurasian ice sheet dynamics during the last glaciation. Doctoral thesis. University of Helsinki. http://urn.fi/URN:ISBN:952-10-2624-3.
  43. GGOS, 2008. Global Geodetic Observing System. http://www.ggos.org.
  44. Gregersen, S., 1992. Crustal stress regime in Fennoscandia from focal mechanisms. J. Geophys. Res., 97, 11821–11827.Google Scholar
  45. Gregersen, S., Voss, P., Shomali, Z.H., Grad, M., Roberts, R.G., Tor Working Group, 2006. Physical differences in the deep lithosphere of northern and central Europe, in Gee, D.G., Stephenson, R.A. (eds.), European Lithosphere Dynamics. Geological Society of London, Memoir 32, 313–322.Google Scholar
  46. Gregersen, S., Voss, P., 2009. Stress change over short geological time: Case of Scandinavia over 9,000 years since the Ice Age, in Reicherter, K., Michetti, A.M., Silva Barroso, P.G. (eds.), Historical and Pre-Historical Records of Earthquake Ground Effects for Seismic Hazard Assessment. Geological Society of London Memoir special publications, 316, 173–178. doi:10.1144/SP316.10.Google Scholar
  47. Grollimund, B., Zoback, M.D., 2001. Did deglaciation trigger intraplate seismicity in the New Madrid seismic zone? Geology, 29, 175–178.Google Scholar
  48. Hagedoorn, J.M., Wolf, D., 2003. Pleistocene and recent deglaciation in Svalbard: Implications for tide-gauge, GPS and VLBI measurements. J. Geodyn., 35, 415–423.Google Scholar
  49. Hagen, J.O., Melvold, K., Pinglot, F., Dowdeswell, J.A., 2003. On the net mass balance of the glaciers and ice caps in Svalbard. Arct. Antarct. Alp. Res., 35, 264–270.Google Scholar
  50. Hay, W.M., E. Soeding, R.M. DeConto and C.N. Wold, 2002. The Late Cenozoic uplift – climate change paradox. Int. J. Earth Sci. (Geol Rundsch.) 91, 746–774, doi 10.1007/s00531-002-0263.Google Scholar
  51. Hemming, S.R., 2004. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42, RG1005, doi:10.1029/2003RG000128.Google Scholar
  52. Hetzel, R., Hampel, A., 2005. Slip rate variations on normal faults during glacial-interglacial changes in surface loads, Nature, 435, 81–84, doi:10.1038/nature03562.Google Scholar
  53. Haug, G.H., Tiedemann, R., 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393, 673–676.Google Scholar
  54. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfess, D., Müller, B., 2008. The 2008 release of the World Stress Map (available online at http://www.world-stress-map.org).
  55. Hieronymus, C.F., Shomali, Z.H., Pedersen, L.B., 2007. A dynamic model for generating sharp seismic velocity contrasts underneath continents: Application to the Sorgenfrei-Tornquist Zone. Earth. Planet. Sci. Lett., 262, 77–91, doi:10.1016/j.epsl.2007.07.043.Google Scholar
  56. Hjelt, S.-E. Korja, T. Kozlovskaya, E. Lahti, I. Yliniemi, J. Bear and Svekalapko Seismic Tomography Working Groups, 2006. Electrical conductivity and seismic velocity structures of the lithosphere beneath the Fennoscandian Shield. Memoirs – Geological Society of London. 32, 541–560.Google Scholar
  57. Ivins, E.R., James, T.S., 2005. Antarctic glacial isostatic adjustment: A new assessment. Antarctic Sci., 17, 537–549, doi:10.1017/S0954102005002968.Google Scholar
  58. Ivins, E.R., Klemann, V., James, T.S., 2003. Stress shadowing by the Antarctic ice sheet, J. Geophys. Res., 108(12), doi:10.1029/2002JB002182.Google Scholar
  59. Ivins, E.R., Wolf, D., 2008. Glacial isostatic adjustment: New developments from advanced observing systems and modeling. J. Geodyn., 46, 69–77, doi:10.1016/j.jog.2008.06.002.Google Scholar
  60. Janik, T., Kozlovskaya, E., Yliniemi, J., 2007. Crust-mantle boundary in the central Fennoscandian shield: Constraints from wide-angle P and S wave velocity models and new results of reflection profiling in Finland, J. Geophys. Res., 112, B04302, doi:10.1029/2006JB004681.Google Scholar
  61. Johansson, J.M., Davis, J.L., Scherneck, H-G., Milne, G.A., Vermeer, M., Mitrovica, J.X., Bennett, R.A., Jonsson, B., Elgered, G., Elósegui, P., Koivula, H., Poutanen, M., Rönnäng, B.O. and Shapiro, I.I., 2002. Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results, J. Geophys. Res., 107, doi:10.1029/2001JB000400.Google Scholar
  62. Johnston, A.C., 1989. The effects of large ice-sheets on earthquake genesis, in Gregersen, S., Basham, P.W. (eds.), Earthquakes at North-Atlantic passive margins: Neotectonics and postglacial rebound, 141–173. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  63. Jouzel, J. 31 others, 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–796, doi:10.1126/science.1141038.Google Scholar
  64. Kawamura, K., 17 others. 2007. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448, 912–916, doi:10.1038/nature06015.Google Scholar
  65. Kawamura, K., Matsushima, H., Aoki, S., Nakazawa, T., 2007. Phasing of orbital forcing and Antarctic climate over the past 470,000 years from an extended Dome Fuji O2/N2 chronology. American Geophysical Union, Fall Meeting 2007, abstract# PP33A–1005.Google Scholar
  66. Kakkuri J., 1997. Postglacial deformation of the Fennoscandian crust. Geophysica 33, 99–109.Google Scholar
  67. Klemann, V., Martinec, Z., Ivins, E.R., 2008. Glacial isostasy and plate motion. J. Geodyn. 46, 95–103, doi:10.1016/j.jog.2008.04.005.Google Scholar
  68. Klemann, V., Wolf, D., 1999. Implications of a ductile crustal layer for the deformation caused by the Fennoscandian ice sheet. Geophys. J. Int., 139, 216–226.Google Scholar
  69. Klemann, V., Wolf, D., 2007. Using fuzzy logic for the analysis of sea-level indicators with respect to glacial-isostatic adjustment: An application to the Richmond-Gulf region, Hudson Bay. Pure Appl. Geophys., 164, 683–696, doi:10.1007/s00024-007-0191–x.Google Scholar
  70. Knorr, G., Lohmann, G., 2007. Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem. Geophys. Geosys., 8, Q12006, doi:10.1029/2007GC001604.Google Scholar
  71. Korja T., Engels M., Zhamaletdinov A.A., Kovtun A.A., Palshin N.A., Smirnov M.Yu., Tokarev A., Asming V.E., Vanyan L.L., Vardaniants I.L., the BEAR Working Group, 2002. Crustal conductivity in Fennoscandia - a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space, 54, 535–558.Google Scholar
  72. Korja T., 2007. How is the European lithosphere imaged by magnetotellurics? Surveys Geophys., 28, (2–3), 239–272. doi:10.1007/S10712–007-9024-9.Google Scholar
  73. Kujansuu, R., 1964. Nuorista siirroksista Lappissa. Summary: Recent faults in Lapland. Geologi, 16, 30–36.Google Scholar
  74. Kukkonen, I.T., Jõeleht, A., 2003. Weichselian temperatures from geothermal heat flow data. J. Geophys. Res., 108(B3), ETG-9, doi:10.1029/2001JB001579.Google Scholar
  75. Kukkonen, I.T., Kinnunen, K., Peltonen, P., 2003. Mantle xenoliths and thick lithosphere in the Fennoscandian Shield. Phys. Chem. Earth, 28, 349–360.Google Scholar
  76. Lagerbäck, R., 1979. Neotectonic structures in northern Sweden, Geologiska Föreningens i Stockholm Förhandlingar, 100(1978), 271–278.Google Scholar
  77. Lagerbäck, R., 1990. Late Quarternary faulting and paleoseismology in northern Fennoscandia, with particular reference to the Lansjärv area, northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 112, 333–354.Google Scholar
  78. Lagerbäck, R. and Sundh, M. 2008. Early Holocene faulting and paleoseismicity in northern Sweden. SGU Research Paper C836, 80 pp.Google Scholar
  79. Lambeck, K., Smither C., Johnston, P., 1998. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys. J. Int., 134, 102–144.Google Scholar
  80. Lambeck, K., Yokoyama, Y., Johnston, P., Purcell, A., 2000. Global ice volumes at the Last Glacial Maximum and early Late glacial, Earth Planet. Sci. Lett., 181, 513–527.Google Scholar
  81. van Lanen, X., Mooney, W.D., 2007. Integrated geologic and geophysical studies of North American continental intraplate seismicity, in Stein, S., and Mazzotti, S., (eds.), Continental Intraplate Earthquakes: Science, Hazard and Policy Issues: Geological Society of America Special Paper 425, 113–128, doi:10. 1130/2007.2425(08).Google Scholar
  82. Larsen, C.F., Motyka, R.J., Freymueller, J.T., Echelmeyer, K.A., Ivins, E.R., 2005. Rapid viscoelastic uplift in southern Alaska caused by post-Little Ice Age retreat. Earth Planetary Sci. Lett., 237, 548–560, doi:10.1016/j.epsl.2005.06.032.Google Scholar
  83. Lidberg M., 2007. Geodetic Reference Frames in Presence of Crustal Deformations. Doctoral thesis. Department of Radio and Space Science, Chalmers University of Technology. Ny serie Nr 2705.Google Scholar
  84. Lidberg M., Johansson, J.M., Scherneck, H.-G., 2006. Geodetic reference frames in the presence of crustal deformation – with focus on Nordic conditions. Symposium of the IAG sub commission for Europe (EUREF), June 14–17, Riga, 2006.Google Scholar
  85. Lidberg M., Johansson, J.M., Scherneck, H.-G., Davis, J.L., 2007. An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. J. Geodesy, 81(3), 213–230, doi:10.1007/s00190-006-0102-4.Google Scholar
  86. Lisiecki, L.E. Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.Google Scholar
  87. Lund, B., Zoback, M.D., 1999. Orientation and magnitude of in situ stress to 6.5 km depth in the Baltic Shield. Int. J. Rock Mech. Min. Sci., 36, 169–190.Google Scholar
  88. Lund, B., 2005. The effects of deglaciation on the crustal stress field and implications for endglacial faulting: A parametric study of simple Earth and ice models. Technical Report TR-05-04, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.Google Scholar
  89. Lund, B., Näslund, J-O., 2008. Glacial isostatic adjustment: Implications for glacially induced faulting and nuclear waste repositories, in Connor, C.B., Chapman, N.A., Connor, L.J. (eds.), Volcanic and tectonic hazard assessment for nuclear facilities, 160–174. Cambridge University Press, Cambridge, UK.Google Scholar
  90. McCabe, A., Cooper, J.A.G., Kelley, J.T. 2007. Relative sea-level changes from NE Ireland during the last glacial termination, J. Geol. Soc. Lond., 164, 1059–1063, doi:10.1144/0016-76492006-164.Google Scholar
  91. Mäkinen J., Engfeldt A., Harsson B.G., Ruotsalainen H., Strykowski G., Oja T., Wolf D., 2005. The Fennoscandian Land Uplift Gravity Lines 1966–2003, in C. Jekeli, L. Bastos, J. Fernandes (eds.), Gravity, Geoid and Space Missions. Springer, IAG Symposia 129, 299–303.Google Scholar
  92. Mäkinen J., Koivula H., Poutanen M., Saaranen V., 2003. Vertical velocities in Finland from permanent GPS networks and from repeated precise levelling. J. Geodyn. 38, 443–456.Google Scholar
  93. Mäkinen J., Saaranen, V., 1998. Determination of postglacial land uplift from the three precise levelings in Finland. J. Geod., 72, 516–529Google Scholar
  94. Marshall S.J., James, T.S., Clarke, G.K.C., 2002. North American Ice Sheet reconstructions at the Last Glacial Maximum, Quat. Sci. Rev., 21, 175–192.Google Scholar
  95. Martinec, Z., 2000. Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth. Geophys. J. Int., 142, 117–141.Google Scholar
  96. Mayewski, P.A., et al. , 2009. State of the Antarctic and Southern Ocean climate system, Rev. Geophys., 47, RG1003, doi:10.1029/2007RG000231.Google Scholar
  97. Menard, H.W., Atwater, T., 1968. Changes in direction of sea floor spreading. Nature, 219, 463–467.Google Scholar
  98. Milne G.A., Davis, J.L., Mitrovica, J.X., Scherneck, H.-G., Johansson, J.M., Vermeer, M., Koivula, H., 2001. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science, 291, 2381–2385.Google Scholar
  99. Morgan, V., Delmotte, M., van Ommen, T., Jouzel, J., Chappellaz, J., Woon, S., Masson-Delmotte, V., Raynaud, D., 2002. Relative timing of deglacial climate events in Antarctica and Greenland. Science, 297, 1862–1864, doi:10.1126/science. 1074257.Google Scholar
  100. Munier, R., Fenton, C., 2004. Appendix 3: Review of postglacial faulting. In: Munier, R. and H. Hökmark, Respect distances. Rationale and Means of Computation, Tech. Report, R-04-17, Swedish Nuclear Fuel and Waste Management Company, Stockholm, Sweden.Google Scholar
  101. Muir Wood, R., 2000. Deglaciation Seismotectonics: A principal influence on intraplate seismogenesis at high latitudes. Quaternary Sci. Rev., 19, 1399–1411.Google Scholar
  102. Müller, J., Neumann-Redlin, M., Jarecki, F., Denker, H., Gitlein, O., 2006. Gravity Changes in Northern Europe as Observed by GRACE, in Tregoning, P., Rizos, C. (eds.), Dynamic Planet., IAG Symposia 130, 523–527, Springer.Google Scholar
  103. Muscheler, R., Kromer, B., Bjorck, S., Svensson, A., Friedrich, M., Kaiser, K.F., Southon, J., 2008. Tree rings and ice cores reveal C-14 calibration uncertainties during the Younger Dryas. Nature Geosci., 1, 263–267, doi:10.1038/ngeo128.Google Scholar
  104. Näslund, J.-O., Jansson, P., Fastook, J.L., Johnson, J., Andersson, L., 2005. Detailed spatially distributed geothermal heat flow data for modeling of basal temperatures and meltwater production beneath the Fennoscandian ice sheet. Ann. Glaciol., 40, 95–101, doi:10.3189/172756405781813582.Google Scholar
  105. OGC, 2005. OpenGIS Web Feature Service (WFS) Implementation Specification, Version 1.1.0, URL: http://www.opengeospatial.org/standards/wfs
  106. OGC, 2006. OpenGIS Web Map Server Interface Implementation Specification, Version 1.3.0, URL: http://www.opengeospatial.org/standards/wms
  107. OGC, 2007. OpenGIS Catalogue Service Implementation Specification, Version 2.0.2, URL: http://www.opengeospatial.org/standards/cat
  108. Olesen, O., 1988. The Stuoragurra Fault, evidence of neotectonics in the Precambrian of Finnmark, northern Norway. Norsk Geologisk Tidsskrift, 68, 107–118.Google Scholar
  109. Olesen, O., Henkel, H., Lile, O.B., Mauring, E., Rönning, J.S., 1992. Geophysical investigations of the Stuoragurra postglacial fault, Finnmark, northern Norway. J. Appl. Geophys., 29, 95–118.Google Scholar
  110. Olsson, S., Roberts, R.G., Böðvarsson, R., 2006. Analysis of waves converted from S to P in the upper mantle beneath the Baltic Shield. Earth Planet. Sci. Lett., 257(1–2), 37–46. doi:10.1016/j.epsl.2007.02.017.Google Scholar
  111. Pagiatakis, S.D., Salib, P., 2003. Historical relative gravity observations and the time rate of change of gravity due to postglacial rebound and other tectonic movements in Canada. J. Geophys. Res. (Solid Earth), 108, 2406, doi:10.1029/2001JB001676.Google Scholar
  112. Pälike, H., Shackleton, N.J., Rohl, U., 2001. Astronomical forcing in Late Eocene marine sediments. Earth Planet. Sci. Lett., 193, 589–602.Google Scholar
  113. Pälli, A., Moore, J.C., Jania, J., Glowacki, P., 2003. Glacier changes in southern Spisbergen, Svalbard, 1901-2000. Ann. Glaciol., 37, 219–225.Google Scholar
  114. Pascal, C., Cloetingh, S.A.P.L., 2009. Gravitational potential stresses on passive continental margins: Application to the Mid-Norwegian Margin. Earth Planet. Sci. Lett. 277(3–4), 464–473, doi:10.1016/j.epsl.2008.11.014.Google Scholar
  115. Pascal, C., Roberts, D., Gabrielsen, R.H., 2005. Quantification of neotectonic stress orientations and magnitudes from field observations in Finnmark, northern Norway. J. Structural Geol., 27, 859–870, doi:10.1016/j.jsg.2005.01.011.Google Scholar
  116. Påsse, T., 1996. A mathematical model of the shore level displacement in Fennoscandia. Technical Report TR 96 24, Svensk Kärnbränslehantering AB, Stockholm.Google Scholar
  117. Pedersen H.A., Bruneton, M., Maupin, V., 2006. Lithospheric and sublithospheric anisotropy beneath the Baltic shield from surface-wave analysis. Earth Planet. Sci. Lett., 244, 590-605, doi:10.1016/j.epsl.2006.02.009.Google Scholar
  118. Peltier, W.R., 2004. GLOBAL glacial isostasy and the surface of the iceage earth: The ice-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149, doi:10.1146/annurev.earth.32. 082503.144359.Google Scholar
  119. Plomerová, J., Babuška, V., Vecsey, L., Kozlovskaya, E., Raita, T., SSTWG, 2006. Proterozoic–Archean boundary in the mantle lithosphere of eastern Fennoscandia as seen by seismic anisotropy. J.Geodynam., 41(4), 400–410. doi:10.1016/j.jog.2005.10.008.Google Scholar
  120. Poutanen, M., Knudsen, P., Lilje, M., Nørbech, T., Plag, H.-P. Scherneck, H.-G., 2007. The Nordic Geodetic Observing System (NGOS). Proceedings of the IAG Dynamic Planet Symposium, Cairns 2005, IAG symposium, 130, 749–756. Springer Verlag.Google Scholar
  121. Rangelova, E., Sideris, M.G. 2008. Contributions of terrestrial and GRACE data to the study of the secular geoid changes in North America. J. Geodynamics, 46(3–5), 131–143, doi:10.1016/j.jog.2008.03.006Google Scholar
  122. Raymo, M.E. 1994. The initiation of Northern Hemisphere glaciation. Ann. Rev. Earth Planetary Sci., 22, 353–383.Google Scholar
  123. Raymo, M.E., Lisiecki, L.E., Nisancioglu, K.H., 2006. Plio-Pleistocene ice volume, Antarctic climate and the global δ18O record. Science, 313, 492–495, doi:10.1126/science.1123296.Google Scholar
  124. Rignot, E., Kanagaratnam, P., 2006. Changes in the velocity structure of the Greenland ice sheet. Science, 311, 986–990, doi:10.1126/science.1121381.Google Scholar
  125. Rohling, E.J., Marsh, R., Wells, N.C., Siddall, M., Edwards, N.R., 2004. Similar contributions to sea-level from Antarctic and northern ice sheets. Nature, 430, 1016–1021, doi:10.1038/nature02859.Google Scholar
  126. Rohling, E.J., Grant, K., Hemleben, C., Siddall, M., Hoogakker, B.A.A., Bolshaw, M.,Kucera, M., 2008. High rates of sea-level rise during the last interglacial period. Nature Geosci., 1, 38–42, doi:10.1038/ngeo.2007.28.Google Scholar
  127. Roberts, D., 2000. Reverse-slip offsets and axial fractures in road-cut boreholes from the Caledonides in Finnmark, northern Norway: Neotectonic stress orientation indicators, Quat. Sci. Rev., 19, 1437–1445.Google Scholar
  128. Roberts, D., and Myrvang, A., 2004. Contemporary stress orientation features and horizontal stress in bedrock, Trøndelag, central Norway. NGU Bull., 442, 53–63.Google Scholar
  129. Saaranen V., Mäkinen J., 2002. Determination of post-glacial rebound from the three precise levellings in Finland: Status in 2002, in Poutanen M. , Suurmäki H. (eds.), Proceedings of the 14th General Meeting of the Nordic Geodetic Commission, Espoo, Finland, October 1–5, 2002. Finnish Geodetic Institute, 171–174.Google Scholar
  130. Sabadini, R., Vermeersen, L.L.A., 2004. Global Dynamics of the Earth: Applications of Normal Mode Relaxation Theory to Solid-Earth Geophysics, Modern Approaches in Geophysics Series, 20, Kluwer Academic Publ., Dordrecht, The Netherlands, 328 pp.Google Scholar
  131. Sandoval, S., Kissling, E., Ansorge, J., 2004. High-resolution body wave tomography beneath the SVEKALAPKO array – II. Anomalous upper mantle structure beneath the central Baltic Shield. Geophys. J. Int., 157(1), 200–214. doi: 10.1111/j.1365-246X.2004.02131.xGoogle Scholar
  132. Sato, T., Okuno, J., Hinderer, J., MacMillan, D.S., Plag, H.-P. Francis, O., Falk, R., Fukuda, Y., 2006. A geophysical interpretation of the secular displacement and gravity rates observed at Ny-Alesund, Svalbard in the Arctic – effects of post-glacial rebound and present-day ice melting. Geophys. J. Int., 165, 729–743, doi:10.1111/j.1365-246X.2006.02992.x.Google Scholar
  133. Scherneck, H.-G., Johansson, J.M., Elgered, G., Davis, J.L., Jonsson, B., Hedling, G., Koivula, H., Ollikainen, M., Poutanen, M., Vermeer, M., Mitrovica, J.X., Milne, G.A., 2002. BIFROST: Observing the three-dimensional deformation of Fennoscandia, in Mitrovica, J.X., Vermeersen, B.L.A. (eds.), Ice Sheets, Sea Level and the Dynamic Earth. American Geophysical Union, Geodynamics Series, 29, Washington, DC, 69–93.Google Scholar
  134. Schotman, H.H.A., Vermeersen, L.L.A., Wu, P., Drury, M.R., de Bresser, J.H.P., 2009. Constraints of Future GOCE Data on Thermomechanical Models of the Shallow Earth: A Sensitivity Study for Northern Europe, Geophys. J. Int., 178(1): 65–84. doi:10.1111/j.1365-246X.2009.04160.x.Google Scholar
  135. Schotman, H.H.A., Wu, P., Vermeersen, L.L.A., 2008. Regional Perturbations in a Global Background Model of Glacial Isostasy, Phys. Earth Planet. Inter., doi:10.1016/ j.pepi.2008.02.010.Google Scholar
  136. Sella, G.F., Stein, S., Dixon, T.H., Craymer, M., James, T.S., Mazzotti, S., Dokka, R.K., 2007. Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett., 34, L02306, doi:10.1029/2006GL027081.Google Scholar
  137. Serebryanny, L.R., 1985. Mountain glaciation in the USSR in the Late Pleistocene and Holocene, in Velichko, A.A. (ed.), Late Quaternary Environments of the Soviet Union, University of Minnesota Press, 45–54.Google Scholar
  138. Shennan, I., Long, A., Metcalfe, S., 1998. IGCP Project 367 ‘Late Quaternary coastal records of rapid change: Application to present and future conditions’ and 25 years progress in research. Holocene, 8, 125–128.Google Scholar
  139. Sidall, M., Kaplan, M.R., 2008. A tale of two ice sheets. Nat. Geosci., 1, 570–571, doi:10.1038/ngeo286.Google Scholar
  140. SKB. 2006. Climate and climate-related issues for the safety assessment SR-Can. Technical Report TR-06-23, Svensk Kärnbränslehantering AB, Stockholm.Google Scholar
  141. Slunga, R., 1991. The Baltic Shield earthquakes. Tectonophysics, 189, 323–331.Google Scholar
  142. Stastna, M., Peltier, W.R., 2007. On box models of the North Atlantic thermohaline circulation: Intrinsic and extrinsic millennial timescale variability in response to deterministic and stochastic forcing. J. Geophys. Res. Oceans, 112, C10023, doi:10.1029/2006JC003938.Google Scholar
  143. Stauch, G., Lehkuhl, F., Frechen, M., 2007. Luminescence chronology from the Verhoyansk Mountains (North-Eastern Siberia). Quaternary Geochronology, 2, 255–259, doi:10.1016/j.quageo.2006.05.013.Google Scholar
  144. Steffen, H., Denker, H., Müller, J., 2008. Glacial isostatic adjustment in Fennoscandia from GRACE data and comparison with geodynamic models. J. Geodyn., 46(3–5), 155–164, doi:10.1016/j.jog.2008.03.002.Google Scholar
  145. Steffensen, J.P., 19 others, 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321, 680–684, doi:10.1126/science.1157707.Google Scholar
  146. Stein, S., Cloetingh, S., Sleep, N.H., Wortel, R., 1989. Passive margin earthquakes, stresses and rheology, in Gregersen, S., Basham, P.W. (eds.), Earthquakes at North-Atlantic passive margins; neotectonics and postglacial rebound. NATO ASI Series, Series C: Mathematical and Physical Sciences, 266, 231–259, D. Reidel Publishing Company, Dordrecht-Boston, International.Google Scholar
  147. Stephansson, O., Särkkä, P., Myrvang, A., 1986. State of stress in Fennoscandia, in Proceedings of the International Symposium on Rock Stress and rock stress measurements, Stockholm, 1–3 September 1986, Stephansson, O. (eds), Lulea, Sweden, 21–32.Google Scholar
  148. Stewart, I.S., Sauber, K. and Rose, J.. 2000. Glacio-seismotectonics: Ice sheets, crustal deformation and seismicity. Quat. Sci. Rev., 19, 1367–1389.Google Scholar
  149. Svendsen, J.I., 29 others, 2004. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev., 23, 1229–1271, doi:10.1016/j.quascirev.2003.12.008.Google Scholar
  150. Talwani, P., 1989. Seismotectonics in the southeastern United States, in Gregersen, S., Basham, P.W. (eds.) Earthquakes at North-Atlantic passive margins: Neotectonics and postglacial rebound, 371–392. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  151. Tamisiea, M.E., Mitrovica, J.X., Davis, J.L., 2007. GRACE Gravity Data Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia. Science, 316, 881, doi:10.1126/science. 1137157.Google Scholar
  152. Thomas, M., Sündermann, J., 1999. Tides and tidal torques of the world ocean since the last glacial maximum. J. Geophys. Res., 104(C2), 3159–3183.Google Scholar
  153. Tikkanen, M., Oksanen, J. 2002. Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland. Fennia – Int. J. Geography 180(1–2), 9–20.Google Scholar
  154. Tsuboi, S., Kikuchi, M., Yamanaka, Y., Kanao, M., 2000. The March 25, 1998 Antarctic earthquake: Great earthquake caused by postglacial rebound. Earth Planets Space 52, 133–136.Google Scholar
  155. Tziperman, E., Raymo, M.E., Huybers, P., Wunsch, C., 2006. Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography, 21, doi:10.1029/2005PA001241.Google Scholar
  156. Uski, M., Hyvönen, T., Korja, A., Airo, M.-L., 2003. Focal mechanisms of three earthquakes in Finland and their relation to surface faults. Tectonophysics, 363, 141–157.Google Scholar
  157. van de Plassche, O. (ed.),1986. Sea-Level Research: A Manual for the Collection and Evaluation of Data. Geo Books, Norwich.Google Scholar
  158. Van de Plassche, O., Chrzastowski, M.J., Orford, J.D., Hinton, A.C., and Long, A.J., 1995. Coastal evolution in the Quaternary: IGCP Project 274. Mar. Geol., 124, ix–xii.Google Scholar
  159. Vermeersen, L.L.A., Schotman, H.H.A., 2008. High-harmonic geoid signatures related to glacial isostatic adjustment and their detectability by GOCE, J. Geod., doi:10.1016/j.jog.2008.04.003.Google Scholar
  160. Vestøl O., 2006. Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation. J. Geodesy, 80, 248–258, doi:10.1007/s00190-006-0063-7.Google Scholar
  161. Vidstrand P., Wallroth, T., Ericsson, L.O., 2008. Coupled HM effects in a crystalline rock mass due to glaciation: Indicative results from groundwater flow regimes and stresses from an FEM study. Bull. Eng. Geol. Environ., 67, 187–197.Google Scholar
  162. Wahr J., Velicogna I., 2003. What might GRACE contribute to studies of postglacial rebound? Space Sciences Series 18, 319–330.Google Scholar
  163. Weaver, A.J., Eby, M., Fanning, A.F., Wiebe, E.C., 1998. Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum, Nature, 394, 847–853.Google Scholar
  164. Webb, R.S., Rind, D.H., Lehman, S.J., Healy, R.J., Sigman, D., 1997. Influence of ocean heat transports on climate of the Last Glacial Maximum, Nature, 385, 695–699.Google Scholar
  165. Weidick, A. 1995. Land uplift and subsidence in Greenland since the Ice Age (in Danish), in Gregersen, S. (eds.), The Physical Nature of Greenland. Rhodos, Copenhagen.Google Scholar
  166. Whitehouse, P.L., Latychev, K., Milne, G.A., Mitrovica, J.X., Kendall, R., 2006. The impact of 3_D Earth structure on Fennoscandian glacial isostatic adjustment: Implications for space-geodetic estimates of present-day crustal deformations. Geophys. Res. Lett., 33, L13502, doi:10.1029/2006GL026568.Google Scholar
  167. Wolff, E.W., 2005. Understanding the past-climate history from Antarctica. Antarctic Sci., 17, 487–495.Google Scholar
  168. Wolf, D., Klemann, V., Wünsch, J., Zhang, F.-P., 2006. A reanalysis and reinterpretation of geodetic and geomorphologic evidence of glacial-isostatic uplift in the churchill region, Hudson Bay. Surv. Geophys., 27, 19–61, doi:10.1007/s10712-005-0641-x.Google Scholar
  169. Wu, P., 1998. Intraplate earthquakes and Postglacial Rebound in Eastern Canada and Northern Europe, in Wu, P. (ed.), Dynamics of the Ice Age Earth: A Modern Perspective, 603–628. Trans Tech Publ., Switzerland.Google Scholar
  170. Wu, P., Hasegawa, H.S., 1996. Induced stresses and fault potential in eastern Canada due to a disc load: A preliminary analysis. Geoph. J. Int., 125, 415–430.Google Scholar
  171. Wu, P., Johnston, P., Lambeck, K., 1999. Postglacial rebound and fault instability in Fennoscandia. Geoph. J. Int., 139, 657–670.Google Scholar
  172. Wu, P., Johnston, P., 2000. Can deglaciation trigger earthquakes in northern America? Geoph. Res. Lett. 27, 1323–1326, doi:10.1029/1999GL011070.Google Scholar
  173. Wu, P., Mazzotti, S., 2007. Effects of a lithospheric weak zone on postglacial seismotectonics in eastern Canada and the northern United states, in Stein, S., Mazzotti, S. (eds.), Continental Intraplate Earthquakes: Science, Hazard and Policy Issues: Geological Society of America Special Paper 425, 113–128, doi:10.1130/2007.2425(09).Google Scholar
  174. Wu, P., van der Wal, W., 2003. Postglacial sea levels on a spherical, self-gravitating viscoelastic Earth: Effects of lateral viscosity variations in the upper mantle on the inference of viscosity contrasts in the lower mantle, Earth Planet. Sci. Lett., 211, 57–68, doi:10.1016/S0012-821X(03)00199-7.Google Scholar
  175. Yliniemi, J., Kozlovskaya, E., Hjelt, S.-E., Komminaho, K., Ushakov, A., 2004. Structure of the crust and uppermost mantle beneath southern Finland revealed by analysis of local events registered by the SVEKALAPKO seismic array. Tectonophysics, 394, (1–2), 41–67. doi:10.1016/j.tecto.2004.07.056.Google Scholar
  176. Yu, S.Y., Berglund, B.E., Sandgren, P., Lambeck, K., 2007. Evidence for a rapid sea-level rise 7600 yr ago. Geology, 35(10), 891–894, doi:10.1130/G23859A.1.Google Scholar
  177. Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.Google Scholar
  178. Zweck, C., Huybrechts, P., 2005. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J. Geophys. Res. D, D07103, doi:10.129/2004JD005489.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Markku Poutanen
    • 1
    Email author
  • Doris Dransch
    • 2
  • Søren Gregersen
    • 3
  • Sören Haubrock
    • 2
  • Erik R. Ivins
    • 4
  • Volker Klemann
    • 2
  • Elena Kozlovskaya
    • 5
  • Ilmo Kukkonen
    • 6
  • Björn Lund
    • 7
  • Juha-Pekka Lunkka
    • 5
  • Glenn Milne
    • 8
  • Jürgen Müller
    • 9
  • Christophe Pascal
    • 10
  • Bjørn R. Pettersen
    • 11
  • Hans-Georg Scherneck
    • 12
  • Holger Steffen
    • 9
    • 13
  • Bert Vermeersen
    • 14
  • Detlef Wolf
    • 2
  1. 1.Finnish Geodetic InstituteMasalaFinland
  2. 2.Helmholtz-Zentrum Potsdam, Deutsches GeoforschungsZentrum (GFZ)PotsdamGermany
  3. 3.GEUSCopenhagenDenmark
  4. 4.Jet Propulsion LaboratoryPasadenaUSA
  5. 5.University of OuluOuluFinland
  6. 6.Geological Survey of FinlandEspooFinland
  7. 7.University of UppsalaUppsalaSweden
  8. 8.University of OttawaOttawaCanada
  9. 9.University of HannoverHannoverGermany
  10. 10.Geological Survey of NorwayTrondheimNorway
  11. 11.Norwegian University of Life ScienceǺsNorway
  12. 12.Chalmers University of TechnologyGothenburgSweden
  13. 13.University of CalgaryCalgaryCanada
  14. 14.DEOS, Delft University of TechnologyDelftThe Netherlands

Personalised recommendations