Skip to main content

Effect of Genetically Modified Bacteria on Ecosystems and Their Potential Benefits for Bioremediation and Biocontrol of Plant Diseases – A Review

  • Chapter
  • First Online:
Book cover Climate Change, Intercropping, Pest Control and Beneficial Microorganisms

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 2))

Abstract

For centuries, microorganisms have served mankind in many ways. Relatively recent developments include the use of bacterial inoculants for bioremediation and agricultural purposes like biological control of plant diseases. Whereas agricultural applications of bacteria have been successful to some extent, improvement of their efficacy is necessary for commercial applications on a large scale. For instance, the remediation of mixed organic and metal-contaminated sites poses problems that may be overcome by introducing metal resistance in the bacteria used for bioremediation. For biological control of plant diseases the efficacy can be improved by combining several mechanisms of antagonism against pathogens in a biocontrol agent. Genetic modification now enables us to construct microbial strains with such novel and enhanced properties. Large-scale introduction of genetically modified strains into the environment poses some challenging questions.

This chapter provides an overview of studies concerning the application of bacteria and their genetically modified derivatives, with the emphasis on their fate and effects on the ecosystem. We limited this chapter to genetically modified microorganisms (GMMs) for agricultural applications, as biosensors, and for bioremediation purposes. Proliferation and survival of the introduced strains in the environment are discussed, but we have mainly focused on recent studies concerning the possible impact of GMMs on microbial communities and ecosystem functioning. Survival and colonization of GMMs is either equal or less when compared to that of the parental strain. The impact of bacterial inoculants (genetically modified or not) on microbial communities is either negligible or small as compared to effects of general agricultural practices and the effects are transient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARDRA:

amplified ribosomal DNA restriction analysis

DAPG:

2,4-diacetylphloroglucinol

DGGE:

denaturing gradient gel electrophoresis

2,4-DNT:

2,4-dinitrotoluene

GMM:

genetically modified microorganisms

GM:

genetically modified

PCA:

phenazine-1-carboxylic acid

PCB:

polychlorinated biphenyls

PCR:

polymerase chain reaction

PGPR:

plant growth-promoting rhizobacteria

SSCP:

single-strand conformation playmorphism

T-RFLP:

terminal restriction fragment length polymorphism

References

  • Amann R., Snaidr J., Wagner M., Ludwig W., Schleifer K.-H. (1996) In situ visualization of high genetic diversity in a natural microbial community. J. Bacteriol. 178, 3496–3500.

    PubMed  CAS  Google Scholar 

  • Amarger, N. (2002) Genetically modified bacteria in agriculture. Biochimie 84, 1061–1072.

    Article  PubMed  CAS  Google Scholar 

  • Anon (1995) Safety considerations for biotechnology, scale-up of microorganisms as biofertilizers. OECD Report.

    Google Scholar 

  • Ashelford K.E., Norris S.J., Fry J.C., Bailey M.J., Day M.J. (2000) Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl. Environ. Microbiol. 66, 4193–4199.

    Article  PubMed  CAS  Google Scholar 

  • Bailey M.J., Lilley A.K., Thompson I.P, Rainey P.B., Ellis R.J. (1995) Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet: marker gene transfer and pre-release evaluation. Mol. Ecol. 4,755–764

    Article  PubMed  CAS  Google Scholar 

  • Bailey M.J., Timms-Wilson T.M., Ellis R.J., Thompson I.P., Lilley A.K. (2000) Monitoring persistence and risk assessment following the field release of Pseudomonas fluorescens SBW25EeZY6KX. In: Jansson J.K., Van Elsas J.D., Bailey M.J. (Eds.), Tracking Genetically-Engineered Microorganisms, Biotechnology Unit 2, Landes Bioscience, Georgetown, Texas.

    Google Scholar 

  • Bakken L.R. (1997) Culturable and unculturable bacteria in soil. In: van Elsas J.D., Trevors J.T., Wellington E.H.M. (Eds.), Modern Soil Microbiology, Dekker Inc., pp. 47–61.

    Google Scholar 

  • Bakker P.A.H.M., Raaijmakers J.M., Schippers B. (1993) Role of iron in the suppression of bacterial plant pathogens by fluorescent pseudomonads. In: Barto L.L., Hemming B.C. (Eds.), Iron chelation in plants and soil microorganisms, Academic Press Inc., San Diego, CA, USA, pp. 261–288.

    Google Scholar 

  • Bakker P.A.H.M., Glandorf D.C.M., Viebahn M., Ouwens T.W.M., Smit E., Leeflang P., Wernars K., Tomashow L.S., Thomas-Oates J.E., van Loon L.C. (2002) Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie van Leeuwenhoek 81, 617–624.

    Article  PubMed  CAS  Google Scholar 

  • Bakker P.A.H.M., Pieterse C.M.J., van Loon L.C. (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathol. 97, 239–243.

    Article  Google Scholar 

  • Barea J.M., Andrade G., Bianciotto V., Dowling D., Lohrke S., Bonfante P., O’Gara F., Azcon-Aguilar C. (1998) Impact on arbuscular mycorrhizae formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl. Environ. Microbiol. 64, 2304–2307.

    PubMed  CAS  Google Scholar 

  • Bashan Y., Puente M.E., Rodriguez-Mendoza M.N., Toledo G., Holguin G., Ferrera-Cerrato R., Pedrin S. (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl. Environ. Microbiol. 61, 1938–1945.

    PubMed  CAS  Google Scholar 

  • Belkin S. (2003) Microbial whole cell sensing systems of environmental pollutants. Cur. Opp. Microbiol. 6, 206–212.

    Article  CAS  Google Scholar 

  • Biel S.W., Hartl D.L. (1983) Evolution of transposons: natural selection for Tn5 in E. coli K12. Genetics 103, 581–592.

    CAS  Google Scholar 

  • Birkenhead K., Manian S.S., ’O Gara F. (1988) Dicarboxylic acid transport in Bradyrhizobium japonicum: use of Rhizobium meliloti dct gene(s) to enhance nitrogen fixation. J. Bacteriol. 170, 184–189.

    PubMed  CAS  Google Scholar 

  • Blouin Bankhead S., Landa B.B., Lutton E., Weller D.M., McSpadden Gardener B.B. (2004) Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiol. Ecol. 49, 307–318.

    Article  CAS  Google Scholar 

  • Bouma J.E., Lenski R.E. (1988) Evolution of a bacteria/plasmid association. Nature 335, 351–352.

    Article  PubMed  CAS  Google Scholar 

  • Bosworth A.H., Williams M.K., Albrecht K.A., Kwiatkowsky R., Beynon J., Hankinson T.R., Ronson C.W., Cannon F., Wacek T.J., Triplett E.W. (1994) Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Appl. Environ. Microbiol. 60, 3815–3832.

    PubMed  CAS  Google Scholar 

  • Brazil G.M., Kenefick L., Callanan M., Haro A., de Lorenzo V., Dowling, D.N. (1995) Conctruction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl. Environ. Micorbiol. 61, 1946–1952.

    CAS  Google Scholar 

  • Brim H., Venkateswaran A., Kostandarithes H.M., Fredrickson J.K., Daly M.J. (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl. Environ. Microbiol. 69, 4575–4582.

    Article  PubMed  CAS  Google Scholar 

  • Brockman F.J., Force L.B., Bezdicek D.F., Fredrickson J.K. (1991) Impairment of transposon-induced mutants of Rhizobium leguminosarum. Soil Biol. Biochem. 23, 861–867.

    Article  CAS  Google Scholar 

  • Bromfield E.S.P., Jones D.G. (1979) The competitive ability and symbiotic effectiveness of double labeled antibiotic resistant mutants of Rhizobium trifolii. Ann. Appl. Biol. 94, 211–219.

    Article  Google Scholar 

  • Brunel B., Cleyet-Marel J.-C., Normand P., Bardin R. (1988) Stability of Bradyrhizobium japonicum inoculants after introduction into soil. Appl. Environ. Microbiol. 54, 2636–2642.

    PubMed  CAS  Google Scholar 

  • Byzov B.A., Claus H., Tretyakova E.B., Zuyagintsev D.G., Filip Z. (1996) Effects of soil invertebrates on the survival of some genetically engineered bacteria in leaf litter and soil. Biol. Fertil. Soils 23, 221–228.

    Article  Google Scholar 

  • de Cárcer D.A., Martin M., Mackova M., Macek T., Karlson U., Rivilla R. (2007) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. The ISME J. 1, 215–223.

    Article  CAS  Google Scholar 

  • Choi H.Y., Ryder M.H., Gillings M.R., Stokes H.W., Ophel-Keller K.M., Veal D.A. (2003) Survival of a lacZY-marked strain of Pseudomonas corrugata following a field release. FEMS Microbiol. Ecol. 43, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Colwell R.R, Brayton P.R., Grimes D.J., Roszak D.B., Huq S.A., Palmer L.M. (1985) Viable but nonculturable Vibrio cholerae and related pathogen in the environment: implications for release of genetically engineered microorganisms. Nat. Biotechnol. 3, 817–820.

    Article  Google Scholar 

  • Cook R.J., Thomashow L.S., Weller D.W., Fujimoto D., Mazzola M., Bangera G., Kim D. (1995) Molecular mechanisms of defense by rhizobacteria against root diseases. Proc. Natl. Acad. Sci. USA 92, 4197–4201.

    Article  PubMed  CAS  Google Scholar 

  • Crawford D.L., Doyle J.D., Wang Z., Hendricks C.W., Bentjen S.A., Bolton Jr. H., Fredrickson J.K., Bleakley B.H. (1993) Effects of a lignin peroxidase-expressing recombinant, Streptomyces lividans TK23.1, on biogeochemical cycling and the numbers and activities of microorganisms in soil. Appl. Environ. Microbiol. 59, 508–518.

    PubMed  CAS  Google Scholar 

  • Cullen D.W., Nicholson P.S., Mendum T.A., Hirsch P.R. (1998) Monitoring genetically modified rhizobia in field soils using the polymerase chain reaction. J. Appl. Microbiol. 84, 1025–1034.

    Article  PubMed  CAS  Google Scholar 

  • Da H.N., Deng S.P. (2003) Survival and persistence of genetically modified Sinorhizobium meliloti in soil. Appl. Soil Ecol. 22, 1–14.

    Article  Google Scholar 

  • Défago G., Keel C. (1995) Pseudomonads as biocontrol agents of diseases caused by soil-borne pathogens. In: Hokkanen H.M.T., Lynch J.M. (Eds.), Benefits and Risks of Introducing Biocontrol Agents, Cambridge University Press, England, pp. 137–148.

    Google Scholar 

  • Degens B.P. (1998) Decreases in microbial functional diversity do not result in corresponding changes in decomposition under different moisture conditions. Soil Biol. Biochem. 30, 1989–2000.

    Article  CAS  Google Scholar 

  • Delany I.R., Walsh U.F., Ross I., Fenton A.M., Corkery D.M., O'Gara F. (2001) Enhancing the biocontrol efficacy of Pseudomonas fluorescens F113 by altering the regulation and production of 2,4-diacetylphloroglucinol – improved Pseudomonas biocontrol inoculants. Plant Soil 232, 195–205.

    Article  CAS  Google Scholar 

  • De Leij F.A.A.M., Sutton E.J., Whipps J.M., Fenlon J.S., Lynch J.M. (1995) Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial populations of wheat. Appl. Environ. Microbiol. 61, 3443–3453.

    PubMed  Google Scholar 

  • De Leij, F.A.A.M., Thomas C.E., Bailey M.J., Whipps J.M., Lynch J.M. (1998) Effect of insertion site and metabolic load on the environmental fitness of a genetically modified Pseudomonas fluorescens isolate. Appl. Environ. Microbiol. 64, 2634–2638.

    Google Scholar 

  • Diatloff A. (1977) Ecological studies of root-nodule bacteria introduced into field environments: Antigenic and symbiotic stability in Lotonis rhizobia over a 12-year period. Soil. Biol. Biochem. 9, 85–88.

    Article  Google Scholar 

  • Donegan K.K., Seidler R.J., Doyle J.D., Porteous L.A. (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J. Appl. Ecol. 36, 920–936.

    Article  Google Scholar 

  • Duineveld B.M., van Veen J.A. (1999) The number of bacteria in the rhizosphere during plant development: relating colony-forming units to different reference units. Biol. Fertil. Soils 28, 285–291.

    Article  Google Scholar 

  • Dutta S.K., Hollowell G.P., Hashem F.M., Kuykendall L.D. (2003) Enhanced bioremediation of soil containing 2,4-dinitrotoluene by a genetically modified Sinorhizobium meliloti. Soil Biol. Biochem. 35, 667–675.

    Article  CAS  Google Scholar 

  • Eberl L., Schulze R., Ammendola A., Geisenberger O., Erhart R., Sternberg C., Molin S., Amann R. (1997) Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol. Lett. 149, 77–83.

    Article  CAS  Google Scholar 

  • Edlin G., Tait R.C., Rodriguez R.L. (1984) A bacteriophage lambda cohesive ends (cos) DNA fragment enhances the fitness of plasmid containing bacteria growing in energy limited chemostats. Biotechnology 2, 251–254.

    Article  CAS  Google Scholar 

  • Ellis R.J., Thompson I.P., Bailey M.J. (1999) Temporal fluctuations in the pseudomonad population associated with sugar beet leaves. FEMS Microbiol. Ecol. 28, 345–356.

    Article  CAS  Google Scholar 

  • England L.S., Lee H., Trevors J.T. (1995) Recombinant and wild-type Pseudomonas aureofaciens strains introduced into soil microcosms: effect on decomposition of cellulose straw. Mol. Ecol. 4, 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, S.G., Lerman L.S. (1979) Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 16, 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P., Pierrat J.-C., Garbaye J. (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl. Environ. Microbiol. 63, 139–144.

    PubMed  CAS  Google Scholar 

  • Gagliardi J.V., Buyer J.S., Angle J.S., Russek-Cohen E. (2001) Structural and functional analysis of whole-soil microbial communities for risk and efficacy testing following microbial inoculation of wheat roots in diverse soil. Soil Biol. Biochem. 33, 25–40.

    Article  CAS  Google Scholar 

  • Girlanda M., Perotto S., Moënne-Loccoz Y., Bergero R., Lazzari A., Défago G., Bonfante P., Luppi M. (2001) Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl. Environ. Microbiol. 67, 1851–1864.

    Article  PubMed  CAS  Google Scholar 

  • Glandorf D.C.M., Verheggen P., Janssen T., Joritsma J., Thomashow L.S., Leeflang P., Smit E., Wernars K., Lauereijs E., Thomas-Oates J.E., Bakker P.A.H.M., van Loon L.C. (2001) Effect of Pseudomonas putida WCS358r, genetically modified with the phz biosynthetic locus, on the fungal rhizosphere of microflora of field-grown wheat as determined by 18S rDNA analysis. Appl. Environ. Microbiol. 67, 3371–3378.

    Article  PubMed  CAS  Google Scholar 

  • Glick B.R., Patten C.L., Holguin G., Penrose D.M. (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, UK.

    Google Scholar 

  • Griffiths B.S., Ritz K., Bardgett R.D., Cook R., Christensen S., Ekelund F., Sorensen S.J., Baath E., Bloem J., de Ruiter P.C., Dolfing J., Nicolardet B. (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos 90, 279–294.

    Article  Google Scholar 

  • Haas D., Keel C., Laville J., Maurhofer M., Oberhänsel T., Schnider V., Voisard C., Wüthrich B., Défago G. (1991) Secondary metabolites of Pseudomonas fluorescens strain CHA0 involved in the suppression of root disease. In: Hennecke H., Verma D.P.S. (Eds.), Advances in Molecular Genetics of Plant–Microbe Interactions, Vol. I., Kluwer Academic Publishers, Dordrecht, pp. 450–456.

    Google Scholar 

  • Haas D., Défago G. (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Halden R.U., Tepp S.M., Halden B.G., Dwyer D.F. (1999) Degradation of 3-phenoxy-benzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. Appl. Environ. Microbiol. 65, 3354–3359.

    PubMed  CAS  Google Scholar 

  • Handelsman J., Stabb E.V. 1996. Biocontrol of soilborne pathogens. Plant Cell 8, 1855–1869.

    Article  PubMed  CAS  Google Scholar 

  • Haro M.A., de Lorenzo V. (2001) Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J. Biotech. 85, 105–113.

    Article  Google Scholar 

  • Heijnen C.E., van Elsas J.D., Kuikman P.J., van Veen J.A. (1988) Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa. Soil Biol. Biochem. 20, 483–488.

    Article  Google Scholar 

  • Hirsch P.R., Spokes J.R. (1994) Survival and dispersion of genetically modified rhizobia in the field and genetic interactions with native strains. FEMS Microbiol. Ecol. 15, 147–160.

    Article  CAS  Google Scholar 

  • Hirsch P.R. (1996) Population dynamics of indigenous and genetically modified rhizobia in the field. New Phytol. 133, 159–171.

    Article  Google Scholar 

  • Hirsch P.R. (2004) Release of transgenic bacterial inoculants – rhizobia as a case study. Plant Soil 266, 1–10.

    Article  CAS  Google Scholar 

  • Hugenholtz P., Pace N.R. (1996) Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol. 14, 190197.

    Article  Google Scholar 

  • Jäderlund L., Hellman M., Sundh I., Bailey M., Jansson J.K. (2008) Use of novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field. FEMS Microbiol. Ecol. 63, 156–168.

    Article  PubMed  CAS  Google Scholar 

  • Johansen J.E., Binnerup S.J., Lebolle K.B., Masher F., Sorensen J., Keel C. (2002) Impact of biocontrol strain Pseudomonas fluorescens CHA0 on rhizosphere bacteria isolated from barley (Hordeum vulgare L.) with special reference to Cytophaga-like bacteria. J. Appl. Microbiol. 93, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  • Jones R., Broder M.W., Stotzky G. (1991) Effects of genetically engineered microorganisms on nitrogen transformations and nitrogen-transforming microbial populations in soil. Appl. Environ. Microbiol. 57, 3212–3219.

    PubMed  CAS  Google Scholar 

  • Kim B.C., Park K.S, Kim S.D., Gu M.B. (2003) Evaluation of high throughput toxicity biosensor and comparison with a Daphnia magna bioassay. Biosensors and Bioelectronics 18, 821–826.

    Article  PubMed  CAS  Google Scholar 

  • Kishony R., Leibler S. (2003) Environmental stresses can alleviate the average deleterious effect of mutations. J. Biol. 2, 14.

    Article  PubMed  Google Scholar 

  • Kluepfel D.A. (1993) The behavior and tracking of bacteria in the rhizosphere. Ann. Rev. Phytopathol. 31, 441–472.

    Article  Google Scholar 

  • Kozdrój J. (1997) Survival, plasmid transfer and impact of Pseudomonas fluorescens introduced into soil. J. Environ. Sci. Health 32, 1139–1157.

    Article  Google Scholar 

  • Kuiper I., Lagendijk E.L., Bloemberg G.V., Lugtenberg B.J.J. (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol. Plant-Microbe Interact. 17, 6–15.

    Article  PubMed  CAS  Google Scholar 

  • Lange C.C., Wacket L.P., Minton K.W., Daly M.J. (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol. 16, 929–933.

    Article  PubMed  CAS  Google Scholar 

  • Leeflang P., Smit E., Glandorf D.C.M., van Hannen E.J., Wernars K. (2002) Effects of Pseudomonas putida WCS358r and its genetically modified phenazine producing derivative on the Fusarium population in a field experiment, as determined by 18S rDNA analysis. Soil Biol. Biochem. 34, 1021–1025.

    Article  CAS  Google Scholar 

  • Lei Y., Chen W., Mulchandani A. (2006) Microbial biosensors. Anal. Chim. Acta 568, 200–210.

    Article  PubMed  CAS  Google Scholar 

  • Lenski R.E. (1991) Quantifying fitness and gene stability in microorganisms. In: Ginsburg L.R. (Ed.), Assessing Ecological Risks of Biotechnology, Butterworth-Heinemann, Boston, USA, pp. 173–192.

    Google Scholar 

  • Lin M., Smalla K., Heuer H., van Elsas J.D. (2000) Effect of an Alcaligenes faecalis inoculant on bacterial communities in flooded soil microcosms planted with rice seedlings. Appl. Soil. Ecol. 15, 211–225.

    Article  Google Scholar 

  • Liu Z.L., Sinclair J.B. (1993) Colonization of soybean roots by Bacillus megaterium B153-2-2. Soil Biol. Biochem. 25, 849–855.

    Article  Google Scholar 

  • Lugtenberg B.J.J., Dekkers L., Bloemberg G.V. (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann. Rev. Phytopathol. 39, 461–490.

    Article  CAS  Google Scholar 

  • Marchetti E., Accinelli C., Talamè V., Epifani R. (2007) Persistence of Cry toxins and cry genes from genetically modified plants in two agricultural soils. Agron. Sustain. Dev. 27, 231–236.

    Article  CAS  Google Scholar 

  • Marshall K.C. (1964) Survival of root-nodule bacteria in dry soils exposed to high temperatures. Aust. J. Agric. Res. 15, 273–281.

    Article  CAS  Google Scholar 

  • Mark G.L., Morrissey J.P., Higgins P., O’Gara F. (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol. Ecol. 56, 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, T. L. (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2, 323–327.

    Article  PubMed  CAS  Google Scholar 

  • Mascher, F., Hase, C., Moënne-Loccoz Y., Défago, G. (2000) The viable-but-nonculturable state induced by abiotic stress in the biocontrol agent Pseudomonas fluorescens CHA0 does not promote strain persistence in soil. Appl. Environ. Microbiol. 66, 1662–1667.

    Article  PubMed  CAS  Google Scholar 

  • Mauro J.M., Pazirandeh M. (2000) Construction and expression of functional multi-domain polypeptides in Escherichia coli: expression of the Neurospora crassa metallothionein gene. Lett. Appl. Microbiol. 30, 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi O.V., Mavrodi D.V., Weller D.M., Thomashow L.S. (2006) Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl. Environ. Microbiol. 72, 7111–7122.

    Article  PubMed  CAS  Google Scholar 

  • Mendum T.A., Clark I.M., Hirsch P.R. (2001) Characterization of two novel Rhizobium leguminosarum bacteriophages from a field release site of genetically modified rhizobia. A. van Leeuwenhoek 79, 189–197.

    Article  CAS  Google Scholar 

  • Mercado-Blanco J., Bakker P.A.H.M. (2007) Interactions between plants and beneficial Pseudomonasspp.: exploiting bacterial traits for crop protection. A. van Leeuwenhoek 92, 367–389.

    Article  Google Scholar 

  • Miller W.G., Brandl M.T., Quinones B., Lindow S.E. (2001) Biological sensor for sucrose availability: relative sensitivities of various reporter genes. Appl. Environ. Microbiol. 67, 1308–1317.

    Article  PubMed  CAS  Google Scholar 

  • Mirasoli M., Feliciano J., Michelini E., Daunert S., Roda A. (2002) Internal response correction for fluorescent whole-cell biosensors. Anal. Chem. 74, 5948–5953.

    Article  PubMed  CAS  Google Scholar 

  • Mitra J., Mukherjee P.K., Kale S.P., Murthy N.B.K. (2001) Bioremediation of DDT in soil by genetically improved strains of soil fungus Fusarium solani. Biodegrad. 12, 235–245.

    Article  CAS  Google Scholar 

  • Moënne-Loccoz Y., McHugh B., Stephens P.M., McConnell F.I., Glennon J.D., Dowling D.N., O’Gara F. (1996) Rhizosphere competence of fluorescent Pseudomonassp. B24 genetically modified to utilize additional siderphores. FEMS Microbiol. Ecol. 19, 215–225.

    Google Scholar 

  • Morrissey J.P., Walsh U.F., O’Donnell A., Moënne-Loccoz Y., O’Gara F. (2002) Exploitation of genetically modified inoculants for industrial ecology applications. A.van Leeuwenhoek 81, 599–606.

    Article  CAS  Google Scholar 

  • Muyzer G., Smalla K. (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. A. van Leeuwenhoek 73, 127–141.

    Article  CAS  Google Scholar 

  • Nambiar P.C.T., Ma S-W., Iyer V.N. (1990) Limiting an insect infestation of nitrogen-fixing root nodules of the Pigeon Pea by engineering the expression of an entomocidal gene in its root nodules. Appl. Environ. Microbiol. 56, 2866–2869.

    PubMed  CAS  Google Scholar 

  • Natsch A., Keel C., Hebecker N., Laasik E., Défago G. (1997) Influence of biocontrol strain Pseudomonas fluorescens CHA0 and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads. FEMS Microbiol. Ecol. 23, 341–352.

    CAS  Google Scholar 

  • Ophir T., Gutnick D.L. (1994) A role for exopolysacharides in the protection of microorganisms from desiccation. Appl. Environ. Microbiol. 60, 740–745.

    PubMed  CAS  Google Scholar 

  • Orita, M., Iwahana H., Kanazawa H., Hayashi K. Sekiya T. (1989) Detection of plymorphisms of human DNA by gel electrophoresis as single-strand confirmation polymorphism. Proc. Nat. Acad. Sci. USA 86, 2766–2770.

    Article  PubMed  CAS  Google Scholar 

  • Orvos D.R., Lacy G.H., Cairns Jr. J.C. (1990) Genetically engineered Erwinia carotovora: survival, intraspecific competition, and effect upon selected bacterial genera. Appl. Environ. Microbiol. 56, 1689–1694.

    PubMed  CAS  Google Scholar 

  • Pace N.R., Stahl D.A., Lane D.L., Olsen G.J. (1986) The analysis of natural microbial populations by rRNA sequences. Adv. Microb. Ecol. 9, 1–55.

    CAS  Google Scholar 

  • Palmer S., Scanferlato V.S., Orvos D.R., Lacy G.H., Cairns Jr. J. (1997) Survival and ecological effects of genetically engineered Erwinia carotovora in soil and aquatic microcosms. Environ. Toxicol. Chem. 16, 650–657.

    Article  CAS  Google Scholar 

  • Philp J.C., Balmand S., Hajto E., Bailey M.J., Wiles S., Whitely A.S., Lilley A.K., Hajto J., Dunbar S.A. (2003) Whole cell immobilized biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Anal. Chim. Act. 487, 61–74.

    Article  CAS  Google Scholar 

  • Prosser J.I., Bohannan B.J.M., Curtis T.P., Ellis R.J., Firestone M.K., Freckleton R.P., Green J.L., Green J.E., Killham K., Lennon J.J., Osborn A.M., Solan M., van der Gast C.J., Young J.P.W. (2007) The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 5, 384–392.

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers J.M., Leeman M., Van Oorschot M.M.P., Van der Sluis I., Schippers B., Bakker P.A.H.M. (1995) Dose–response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85, 1075–1081.

    Article  Google Scholar 

  • Raaijmakers J.M., Bonsall R.F., Weller D.M. (1999) Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89, 470–475.

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers J.M., Weller D.M. (1998) Natural plant protection by 2,4-diacetyl-phloroglucinol producing Pseudomonas spp. in take-all decline soils. Mol. Plant Microbe Interact. 11, 144–152.

    Article  CAS  Google Scholar 

  • Rainey P.B., Bailey M.J., Thompson I.P. (1994) Phenotypic and genotypic diversity of fluorescent pseudomonads isolated from field-grown sugar beet. Microbiology 140, 2315–2331.

    Article  PubMed  CAS  Google Scholar 

  • Rein A., Fernqvist M.M., Mayer P., Trapp S., Bittens M., Karlson U.G. (2007) Degradation of PCB congeners by bacterial strains. Appl. Microbiol. Biotechnol. 77, 469–481.

    Article  PubMed  CAS  Google Scholar 

  • Ripp S., Nivens D.E., Werner C., Sayler G.S. (2000) Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release. Appl. Microbiol. Biotech. 53, 736–741.

    Article  CAS  Google Scholar 

  • Rosado A.S., Seldin L., Wolters A.C., van Elsas J.D. (1996) Quantitative 16S rDNA-targeted polymerase chain reaction and oligonucleotide hybridization for the detection of Paenibacillus azotofixans in soil and the wheat rhizosphere. FEMS Microbiol. Ecol. 19, 153–164.

    Article  CAS  Google Scholar 

  • Ryan R.P., Ryan D.J., Dowling D.N. (2005) Multiple metal resistant tranferable phenotypes in bacteria as indicators of soil contamination with heavy metals. J. Soils Sediments 5, 95–100.

    Article  CAS  Google Scholar 

  • Ryan R.P., Ryan D., Dowling D.N. (2007) Plant protection by the recombinant, root-colonizing Pseudomonas fluorescens F113rifPCB strain expressing arsenic resistance: improving rhizoremediation. Lett. Appl. Microbiol. 45, 668–674.

    Article  PubMed  CAS  Google Scholar 

  • Sagi E., Hever N., Rosen R., Bartolome A.J., Premkumar J.R., Ulber R., Lev O., Scheper T., Belkin S. (2003) Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sens. Actua. Biochem. 90, 2–8.

    Article  CAS  Google Scholar 

  • Scherwinski K., Grosch R., Berg G. (2008) Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol. Ecol. 64, 106–116.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T.M., DeLong E.F., Pace N.R. (1991) Phylogenetic identification of uncultivated microorganisms in natural habitats. In: Vaheri A., Tilton R.C., Balows A. (Eds.), Rapid methods and automation in microbiology and immunology, Springer-Verlag, Berlin, Germany, pp. 36–45.

    Google Scholar 

  • Schwieger F., Tebbe C.C. (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album) – linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl. Environ. Microbiol. 66, 3556–3565.

    Article  PubMed  CAS  Google Scholar 

  • Schwieger F., Dammann-Kalinowski T., Selbitschka U.W., Munch J.C., Pühler A., Keller M., Tebbe C.C. (2000) Field lysimeter investigation with luciferase-gene (luc)-tagged Sinorhizobium meliloti strains to evaluate the ecological significance of soil inoculation and recA-mutation. Soil Biol. Biochem. 32, 859–868.

    Article  CAS  Google Scholar 

  • Semenov A.M., Van Bruggen A.H.C., Zelenev Z.Z. (1999) Moving waves of bacterial populations and total organic carbon along roots of wheat. Microbiol. Ecol. 37, 116–128.

    Article  CAS  Google Scholar 

  • Shao C.Y., Howe C.J., Porter A.J.R., Glover L.A. (2002) Novel cyanobacterial biosensor for detection of herbicides. Appl. Environ. Microbiol. 68, 5026–5033.

    Article  PubMed  CAS  Google Scholar 

  • Sitrit Y., Barak Z., Kapulnik Y., Oppenheim A.B., Chet I. (1993) Expression of Serratia marcescenschitinase gene in Rhizobium meliloti during symbiosis on alfalfa roots. Mol. Plant Microbe Interact. 6, 293–298.

    CAS  Google Scholar 

  • Smit E., van Elsas J.D., van Veen J.A. (1992) Risks associated with the application of genetically modified microorganisms in terrestrial ecosystems. FEMS Microbiol. Rev. 88, 263–278.

    Article  Google Scholar 

  • Smit E., Wolters A.C., Lee H., Trevors J.T., van Elsas J.D. (1996) Interactions between a genetically marked Pseudomonas fluorescens strain and bacteriophage ΦR2f in soil: effects of nutrients, alginate encapsulation and the wheat rhizosphere. Microb. Ecol. 31, 125–140.

    Article  Google Scholar 

  • Sriprang R., Hayashi M., Yamashita M., Ono H., Saeki K., Murooka Y. (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J. Biotech. 99, 279–293.

    Article  CAS  Google Scholar 

  • Stephens P.M., O’Sullivan M., O’Gara F. (1987) Effect of bacteriophage on colonization of sugar beet roots by fluorescent Pseudomonas spp. Appl. Environ. Microbiol. 53, 1164–1167.

    CAS  Google Scholar 

  • Stiner L., Halverson L.J. (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl. Environ. Microbiol. 68, 1962–1971.

    Article  PubMed  CAS  Google Scholar 

  • Streeter J.G. (1994) Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Can. J. Microbiol. 40, 513–522.

    Article  Google Scholar 

  • Strong L.C., McTavish H., Sadowsky M.J., Wacket L.P. (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ. Microbiol. 2, 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Tan J.S.H., Reanney D.C. (1976) Interactions between bacteriophages and bacteria in soil. Soil. Biol. Biochem. 8, 145–150.

    Article  Google Scholar 

  • Thomashow L.S., Weller D.M., Bonsall R.F., Pierson L.S. (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56, 908–912.

    PubMed  CAS  Google Scholar 

  • Thompson I.P., Cook K.A., Lethbridge G., Burns R.G. (1990) Survival of two ecologically distinct bacteria (Flavobacterium and Arthrobacter) in unplanted and rhizosphere soil: Laboratory studies. Soil Biol. Biochem. 22, 1029–1037.

    Article  Google Scholar 

  • Timms-Wilson T. M., Ellis R.J., Renwick A., Rhodes D.J., Weller D.M., Mavrodi D.V., Thomashow L.S., Bailey M.J. (2000) Chromosomal insertion of the phenazine1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol. Plant Microb. Interact. 13, 1293–1300.

    Article  CAS  Google Scholar 

  • Timms-Wilson T.M., Kilshaw K., Bailey M.J. (2004) Risk assessment for engineered bacteria used in biocontrol of fungal disease in agricultural crops. Plant Soil 266, 57–67.

    Article  CAS  Google Scholar 

  • Torsvik V., Daae F.L., Sandaa R.-A., Øvreås L. (1998) Novel techniques for analyzing diversity in natural and perturbed environments. J. Biotech. 64, 53–62.

    Article  CAS  Google Scholar 

  • Triplett E.W., Sadowsky M.J. (1992) Genetics of competition for nodulation of legumes. Ann. Rev. Microbiol. 46, 399–428.

    Article  CAS  Google Scholar 

  • Van Bruggen A.H.C., Semenov A.M., Zelenev V.V., Semenov A.V., Raaijmakers J.M., Sayler R.J., de Vos O. (2008) Wave-like distribution patterns of Gfp-marked Pseudomonas fluorescens along roots of wheat plants grown in two soils. Microb. Ecol. 55, 466–475.

    Article  PubMed  Google Scholar 

  • Van Dillewijn P., Villadas P.J., Toro N. (2002) Effect of a Sinorhizobium meliloti strain with a modified putA gene on the rhizosphere microbial community of alfalfa. Appl. Environ. Microbiol. 68, 4201–4208.

    Article  PubMed  CAS  Google Scholar 

  • Van Elsas J.D., Dijkstra A.F., Govaert J.M., van Veen J.A. (1986) Survival of Pseudomonas fluorescens and Bacillus subtilus introduced into two soils of different texture in field microplots. FEMS Microbiol. Ecol. 38, 151–160.

    Article  Google Scholar 

  • Van Elsas, J.D., L.S. van Overbeek, A.M. Feldman, A.M. Dullemans, de Leeuw O. (1991) Survival of genetically engineered Pseudomonas fluorescens in soil in competition with the parent strain. FEMS Microbiol. Ecol. 85, 53–64.

    Article  Google Scholar 

  • Van Loon L.C., Bakker P.A.H.M., Pieterse C.M.J. (1998) Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36, 453–483.

    Article  Google Scholar 

  • Van Limbergen H., Top E.M., Verstraete W. (1998) Bioaugmentation in activated sludge: current feature and future perspectives. Appl. Microbiol. Biotechnol. 50, 16–23.

    Article  Google Scholar 

  • Van Overbeek L.S., Eberl L., Giskov M., Molin S., van Elsas J.D. (1995) Survival of, and induced stress resistance in, carbon-starved Pseudomonas fluorescens cells residing in soil. Appl. Environ. Microbiol. 61, 4202–4208.

    PubMed  Google Scholar 

  • Vaneechoutte, M., Rossau R, Devos P., Gillis M., Janssens D., Paepe N., Derouck A., Fiers T., Claeys G., Kersters K. (1992) Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiol Lett. 93, 227–234.

    Article  CAS  Google Scholar 

  • Vázquez M.M., Barea J.M., Azcón R. (2002) Influence of arbuscular mycorrhizae and a genetically modified strain of Sinorhizobium on growth, nitrate reductase activity and protein content in shoots and roots of Medicago sativa as affected by nitrogen concentrations. Soil Biol. Biochem 34, 899–905.

    Article  Google Scholar 

  • Velicer G.J. (1999) Pleiotropic effects of adaptation to a single carbon source for growth on alternative substrates. Appl. Environ. Microbiol. 65, 264–269.

    PubMed  CAS  Google Scholar 

  • Viebahn M., Glandorf D.C.M., Ouwens T.W.M., Smit E., Leeflang P., Wernars K., Thomashow L.S., van Loon L.C., Bakker P.A.H.M. (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl. Environ. Microbiol. 69, 3110–3118.

    Article  PubMed  CAS  Google Scholar 

  • Viebahn M., Doornbos R., Wernars K., van Loon L.C., Smit E., Bakker P.A.H.M. (2005) Ascomycete communities in the rhizosphere of field-grown wheat are not affected by introductions of genetically modified Pseudomonas putida WCS358r. Environ. Microbiol. 7, 1775–1785.

    Article  PubMed  CAS  Google Scholar 

  • Viebahn M., Wernars K., Smit E., van Loon L.C., DeSantis T.Z., Andersen G.L., Bakker P.A.H.M. (2006) Microbial diversity in wheat rhizosphere as affected by genetically modified Pseudomonas putida WCS358r. In: Raaijmakers J.M., Sikora R.A. (Eds.), Multitrophic Interactions in Soil and Integrated Control. IOBC/wprs Bulletin 29, pp. 167–172.

    Google Scholar 

  • Villacieros M., Whelan C., Mackova M., Molgaard J., Sanchez-Contreras M., Lloret J., de Carcer D.A., Oruezabal R.I., Bolanos L., Macek T., Karlson U., Dowling D.N., Martin M., Rivilla R. (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl. Environ. Microbiol. 71, 2687–2694.

    Article  PubMed  CAS  Google Scholar 

  • Völksch B., May R. (2000) Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microb. Ecol. 14, 132–139.

    Google Scholar 

  • Wang Z., Crawford D.L., Magnuson T.S., Bleakley B.H., Hertel G. (1991) Effects of bacterial lignin peroxidase on organic carbon mineralization in soil using recombinant Streptomyces strains. Can. J. Microbiol. 37, 287–294.

    Article  CAS  Google Scholar 

  • Watson R.J., Haitas-Crockett C.H., Martin T., Heys R. (1995) Detection of Rhizobium meliloti cells in field soil and nodules by polymerase chain reaction. Can. J. Microbiol. 41, 816-825.

    Article  PubMed  CAS  Google Scholar 

  • Weller D.M. (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol. 26, 379–407.

    Article  Google Scholar 

  • Weller D.M., Raaijmakers J.M., McSpaden B.B., Thomashow L.S. (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann. Rev. Phytopathol. 40, 309–348.

    Article  CAS  Google Scholar 

  • Wernars K., Smit E., Leeflang P. (1996) Overleving en verspreiding van een genetisch gemodificeerde Pseudomonas fluorescens stam tijdens een veldexperiment. National Institute of Public Health and the Environment (the Netherlands) Report no. 283951002.

    Google Scholar 

  • Winding A., Binnerup S.J., Pritchard H. (2004) Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol. Ecol. 47, 129–141.

    Article  PubMed  CAS  Google Scholar 

  • Yee D.C., Maynard J.A., Wood T.K. (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl. Environ. Microbiol. 64, 112–118.

    PubMed  CAS  Google Scholar 

  • You C.B., Zhou F.Y. (1991) Non-nodular nitrogen fixation in wetland rice. Can. J. Microbiol. 35, 403–408.

    Article  Google Scholar 

  • You C.B, Lin M., Fang X.J. (1995) Field release of genetically engineered associative diazotrophs and risk assessment. J. Agricult. Biotechnol. 1, 34–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mareike Viebahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Viebahn, M., Smit, E., Glandorf, D.C., Wernars, K., Bakker, P.A. (2009). Effect of Genetically Modified Bacteria on Ecosystems and Their Potential Benefits for Bioremediation and Biocontrol of Plant Diseases – A Review. In: Lichtfouse, E. (eds) Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Sustainable Agriculture Reviews, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2716-0_4

Download citation

Publish with us

Policies and ethics