Skip to main content

Fungal Disease Management in Environmentally Friendly Apple Production – A Review

  • Chapter
  • First Online:
Climate Change, Intercropping, Pest Control and Beneficial Microorganisms

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 2))

Abstract

Many pesticides are used very effectively against fungal diseases in crop protection. However, the widespread use of synthetic pesticides in conventional fruit production clearly indicates that pesticides have several limitations and serious harmful effects on the environment and on human health. This prompted a serious need for a more environmentally benign view in the practice of fruit growing and particularly in plant protection, which also strengthened the concept of environment-friendly approach for apple. In this review article, the present status, possibilities and approaches towards fungal disease management for organic and integrated apple production systems, which are the most prominent environmentally friendly production systems of apple, are reviewed. The review focuses on the control of five important apple diseases: apple scab (Venturia inaequalis), apple powdery mildew (Podosphaera leucotricha), European canker (Nectria galligena), brown rot (Monilinia spp.) and the disease complex of flyspeck and sooty blotch. The first section of this study provides background information and basic features of current disease control in both apple production systems. Then, in the second section of this study, details of novel aspects of non-chemical control approaches against apple fungal diseases, including agronomic measures, mechanical, physical and biological control options as well as essential features of apple cultivar resistance to fungal diseases are given. The overview on five groups of agronomic measures: (1) cropping system and cover crop, (2) plant material and planting, (3) pruning and canopy management, (4) orchard floor management and (5) nutrient supply and harvest, and another five groups of mechanical and physical control methods: (1) pruning, (2) removal of inoculum sources, (3) shredding of leaf litter, (4) burying of inoculum sources and (5) flaming of leaf litter, showed that these non-chemical control measures are one of the most essential approaches for reducing the infection potential of inoculum sources in apple orchards. However, most of these methods are not widely spread in the apple-growing practice due to their high labour costs and/or time limits during the season. We showed that expert-system-based automatisation in the future may greatly enhance the effective integration of these methods into apple growing. We also described almost 30 biological control options, including antagonists, extracts/oils of plants and composts, which were explored recently against fungal diseases of apple, though only few of them are commercially available for the apple-growing practice. Most of these biological control options are suitable only for organic apple growing, as their effectiveness against the key fungal diseases is not able to fulfil the requirements for integrated apple orchards or they are not substantially cost-effective. Developing an effective biological control against polycyclic fungal diseases of apple will be a great challenge in the future for preharvest disease management programmes. In our literature analyses, host resistance, based on breeding programmes for multiple disease resistance, was evaluated as the greatest potential in the effective disease management of environmentally friendly apple production systems. Theoretically, aiming for complete host disease resistance would result in eliminating one of the basic elements of the epidemic triangle and omission of chemical control approaches from disease management of apple.

In the third section of this study, developments in chemical control options for individual diseases are described presenting recently explored knowledge on approved fungicidal products in integrated and organic disease management. Efficacy evaluations of fungicidal products coupled with recent developments on disease-warning systems as well as season-long spray schedules for each disease are discussed for both integrated and organic apple orchards. In addition, the main features of six inorganic chemical compounds, copper, lime sulphur, elemental sulphur, bicarbonates, hydrated lime and kaolin, are described for organic apple production. Then in the fourth section of this study, non-chemical and chemical control approaches are integrated into a multiple management tactic across all fungal diseases and are specified for integrated and for organic apple production systems. Here it was shown that in the past 20 years continued developments of disease-warning systems and host resistance to fungal pathogens, as well as incorporation of some non-chemical control options into fungal disease management of apple resulted in a considerable reduction in the number of fungicide sprays of the season-long disease management programmes. In the final section, suggestions and future trends are given for further improvements in fungal disease management for the two environmentally friendly apple production systems. Finally, it was concluded that the challenge for apple integrated pest management (IPM) programmes in the twenty-first century is to complete the fourth, final IPM level, which supplements IPM level 3 with cultural, social and political realms. While in organic apple orchards, the most essential task is to develop effective non-chemical control options that are practically feasible and can be incorporated easily into the orchard management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AUDPC:

= area under the disease progress curve

BCA:

= biological control agent

CLW:

= cumulative leaf wetting

cv.:

= cultivars

CWE:

= compost water extract

DMI:

= demethylation inhibitors

EBI:

= ergosterol-biosynthesis inhibitors

FRAC:

= Fungicide Resistance Action Committee

GSE:

= grapefruit seed extract

IFOAM:

= International Federation of Organic Agriculture Movements

IPM:

= integrated pest management

LWD:

= leaf wetness duration

MPH:

= mono-potassium phosphate

PAD:

= potential ascospore dose

PBC:

= potassium bicarbonate

PF:

= petal fall

QoI:

= quinone outside inhibitors

SBC:

= sodium bicarbonate

SMS:

= spent mushroom substrate

References

  • Aalbers P., Balkhoven H., Kers M., van Wijk Burg L., van den Venlaan R. (1998) Das Welte-Schorfmodell – Die Lösung des Schorfproblems? Obstbau 24 (4), 198–202.

    Google Scholar 

  • Agnello A., Kovach J., Nyrop J., Reissig H., Rosenberger D., Wilcox W. (1999) Timing sprays to control flyspeck. In: Apple IPM: A Guide for Sampling and Managing Major Apple Pests in New York State. NY State IPM Program, Geneva, Publ. 207, pp. 22–23.

    Google Scholar 

  • Aldwinckle H.S. (1974) Field susceptibility of 51 cultivars to scab and apple powdery mildew, Plant Dis. Rep. 58, 625–629.

    Google Scholar 

  • Alston F.H. (1983) Progress in transferring mildew (Podosphaera leucotricha) resistance from Malus species to cultivated apple. IOBC/WPRS Bulletin 6 (4), 87–95.

    Google Scholar 

  • Anderson R.L. (2007) Managing weeds with a dualistic approach of prevention and control. A review, Agron. Sustain. Dev. 27, 13–18, DOI: 10.1051/agro:2006027.

    Article  Google Scholar 

  • Andrews J.H. (1990) Biological control in the phyllosphere – realistic goal or false hope. Can. J. Plant Pathol. 12, 300–307.

    Google Scholar 

  • Andrews J.H. (1992) Biological control in the phyllosphere. Annu. Rev. Phytopathol. 30, 603–635.

    Article  PubMed  CAS  Google Scholar 

  • Andrews J.H., Berbee F.M., Nordheim E.V. (1983) Microbial antagonism to the imperfect stage of the apple scab pathogen, Venturia inaequalis. Phytopathology 73, 228–234.

    Article  Google Scholar 

  • Anonymous (1989) Basic Standards for Organic Agriculture. Tholey-Theley Press, New York, USA.

    Google Scholar 

  • Anonymous (1991) Environmental Quality Standards for Soils and Water. Netherlands Ministry of Housing, Physical Planning and Environment, Den Haag, The Netherlands.

    Google Scholar 

  • Anonymous (1997) Guideline for the Efficacy Evaluation of Plant Products: Phytotoxicity assessment. Eur. Mediterr. Plant Prot. Org. 135, 31–36.

    Google Scholar 

  • Anonymous (2000) IFOAM Basic Standards for Organic Production and Processing. Tholey-Theley Press, New York, USA.

    Google Scholar 

  • Aylor D.E. (1998) The aerobiology of apple scab. Plant Dis. 82, 838–849.

    Article  Google Scholar 

  • Babadoost M. (2003) A weather-based disease-warning system for management of sooty blotch and flyspeck in commercial apple orchards in Illinois. Phytopathology 93, S5.

    Google Scholar 

  • Babadoost M., McManus P.S., Helland S.N., Gleason M.L. (2004) Evaluating a wetness-based warning system and reduced-risk fungicides to manage sooty blotch and flyspeck of apple. Horttechnology 14, 51–57.

    Google Scholar 

  • Baines R.C., Gardner M.W. (1932) Pathogenicity and cultural characters of the apple sooty-blotch fungus. Phytopathology 22, 937–952.

    Google Scholar 

  • Barden J.A., Marini R.P. (1998) Incidence of diseases on fruit of nine apple genotypes as influenced by six fungicide treatments. Fruit Varieties J. 52, 128–136.

    Google Scholar 

  • Barker B.T.P., Gimingham C.T. (1911) The fungicidal action of Bordeaux mixtures. J. Agric. Sci. 4, 76–94.

    Article  Google Scholar 

  • Batra L.R. (1991) World Species of Monilinia (Fungi): Their Ecology, Biosystematics and Control. J. Cramer, Berlin, Germany, 352 pp.

    Google Scholar 

  • Batzer J., Gleason M.L. (2005) Impact of sensor placement in apple tree canopies on performance of a warning system for sooty blotch and flyspeck. Phytopathology 95, S7.

    Google Scholar 

  • Becker C.M., Bardinelli T.R., Cooley D.R., Patagas K.G., Manning W.J. (1982) Disease management for apples in Massachusetts: 1982 results and summary of the five-year program, Fruit Notes 42(1), 10–16.

    Google Scholar 

  • Beffa T. (1993) Inhibitory action of elemental sulphur (S0) on fungal spores. Can. J. Microbiol. 39, 731–735.

    CAS  Google Scholar 

  • Beffa T., Pezet R., Turian G. (1987) Multiple-site inhibition by colloidal elemental sulphur (S0) of respiration by mitochondria from young dormant spores of Phomopsis viticola. Physiologica Plantarum 69, 443–450.

    Article  CAS  Google Scholar 

  • Belding R.D. (1996) Epicuticular wax of apple and its relationship to sooty blotch incidence and captan retention, Ph.D. dissertation. North Carolina State University, Raleigh, USA.

    Google Scholar 

  • Bellon S., Lescourret F., Calmet J.P. (2001) Characterisation of apple orchard management systems in a French Mediterranean Vulnerable Zone. Agronomie 21, 200–213.

    Article  Google Scholar 

  • Bennett M. (1971) Comparison of a copper and mercury spray programme against apple canker (Nectria galligena Bres). Plant Pathol. 20, 99–105.

    Article  CAS  Google Scholar 

  • Berkett L.M., Garcia T., Bradshaw T. (2005) Evaluation of potential non-target impacts of kaolin on apple disease incidence. Phytopathology 95, S8.

    Google Scholar 

  • Bernoux M., Cerri C.C., Cerri C.E.P., Neto M.S., Metay A., Perrin A.S., Scopel E., Razafimbelo T., Blavet D., Piccolo M.C., Pavei M., Milne E. (2006) Cropping systems, carbon sequestration and erosion in Brazil, a review. Agron. Sustain. Dev. 26, 1–8, DOI:10.1051/agro:2005055.

    Article  CAS  Google Scholar 

  • Berrie A.M. (1992) Comparison of fungicide sprays for the control of canker (Nectria galligena Bres.) in apple cvs. Cox Orange Pippin and Spartan. Acta Phytopathol. Entomol. Hung. 27, 103–109.

    CAS  Google Scholar 

  • Berrie A.M., Xu X-M. (2003) Managing apple scab and powdery mildew using Adem™. Int. J. Pest Manage. 49, 243–250.

    Article  Google Scholar 

  • Biggs A.R. (1990) Apple scab. In: Jones A.L., Aldwinckle H.S. (Eds.), Compendium of Apple and Pear Diseases. APS Press, St. Paul, Minnesota, USA, pp. 6–9.

    Google Scholar 

  • Biggs A.R. Miles N.W. (1988) Association of suberin formation in uninoculated wounds with susceptibility to Leucostoma cinca and L. persooni in various peach cultivars. Phytopathology 78, 1070–1074.

    Article  Google Scholar 

  • Boosalis M.G., Doupnik B.L., Watkins J.E. (1986). Effect of surface tillage on plant diseases. In: Sprague, M.A., Triplett, G.B. (Eds.), No-tillage and Surface-tillage Agriculture: The Tillage Revolution. John and Willey Sons, New York, USA, pp. 389–411.

    Google Scholar 

  • Borecki Z. Czynczyk A. (1984) Susceptibility of apple cultivars to bark canker diseases. Acta Agrobot. 37, 49–59.

    Google Scholar 

  • Bosshard E. (1992) The effect of Ivy (Hedera helix) leaf extract against apple scab and mildew. Acta Phytopathol. Entomol. Hung. 27, 135–140.

    Google Scholar 

  • Bower K.N., Berkette L.P., Constante J.F. (1995) Nontarget effects of a fungicide spray program on phytophagous and predacious mite populations in a scab-resistant apple orchard. Environ. Entomol. 24, 423–430.

    Google Scholar 

  • Braun P.G. (1997) Distribution and severity of anthracnose canker and European canker of apple in Kings County, Nova Scotia. Can. J. Plant Pathol. 19, 78–82.

    Google Scholar 

  • Braun P.G., McRae K.B. (1992) Composition of a population of Venturia inaequalis resistant to myclobutanil. Can. J. Plant Pathol. 14, 215–220.

    CAS  Google Scholar 

  • Brooks C. (1912) Some apple diseases and their treatment. N.H. Agric. Exp. Stn. Bull. 157.

    Google Scholar 

  • Brown E.M., Sutton T.B. (1986) Control of sooty blotch and flyspeck of apple with captan, mancozeb, and mancozeb combined with dinocap in dilute and concentrate applications. Plant Dis. 70, 281–284.

    Article  CAS  Google Scholar 

  • Brown E.M., Sutton T.B. (1995) An empirical model for predicting the first symptoms of sooty blotch and flyspeck of apples. Plant Dis. 79, 1165–1168.

    Google Scholar 

  • Butt D.J., Santen van G., Xu X.M., Stone K.B. (1992) VENTEM™ – an apple scab (Venturia inaequalis) infection warning system, version 3.1. Computer software and users’ manual, Horticultural Research International, East Malling, Kent.

    Google Scholar 

  • Byrde R.J.W., Evans S.G., Rennison R.W. (1965) The control of apple canker in two Somerset orchards by a copper-spray programme. Plant Pathol. 14, 143–149.

    Article  Google Scholar 

  • Byrde R.J.W., Willetts H.J. (1977) The Brown Rot Fungi of Fruit: Their Biology and Control. Pergamon Press, Oxford, UK, 171 pp.

    Google Scholar 

  • Caffier V., Laurens F. (2005) Breakdown of Pl-2, a major gene of resistance to apple powdery mildew, in a French experimental orchard. Plant Pathol. 54, 116–124.

    Article  CAS  Google Scholar 

  • Caffier V., Parisi L. (2007) Development of apple powdery mildew on sources of resistance to Podosphaera leucotricha, exposed to an inoculum virulent against the major resistance gene Pl-2. Plant Breed. 126, 319–322.

    Article  CAS  Google Scholar 

  • Calpouzos L. (1966) Action of oil in the control of plant disease. Annu. Rev. Phytpathol. 4, 369–390.

    Article  CAS  Google Scholar 

  • Carisse O., Philion V., Rolland D., Bernie J. (2000). Effect of fall application of fungal antagonists on spring ascospore production of apple scab pathogen, Venturia inaequalis. Phytopathology 90, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Carisse O., Rolland D. (2004) Effect of timing of application of the biological control agent Microsphaeropsis ochracea on the production and ejection pattern of ascospores by Venturia inaequalis. Phytopathology 94, 1305–1314.

    Article  PubMed  CAS  Google Scholar 

  • Cheeke P.R. (2001) Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. In: Oleszek, W., Marston A. (Eds.), Saponins in Food, Feedstuffs and medicinal plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 241–254.

    Google Scholar 

  • Childers N.F., Morris J.R., Sibbett G.S. (1995) Modern Fruit Science. Orchard and Small Fruit Culture, University of Florida, Gainesville, USA, 632 pp.

    Google Scholar 

  • Cohen Y., Baider A., Ben-Daniel B., Ben-Daniel Y. (2002) Fungicidal preparations from Inula viscosa. 10th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing and Viticulture, 10, 152–156.

    Google Scholar 

  • Colby A.S. (1920) Sooty blotch of pomaceous fruits, Trans. Ill. Acad. Sci. 13, 139–175.

    Google Scholar 

  • Cooke L.R. (1999) The influence of fungicide sprays on infection of apple cv. Bramley’s seedling by Nectria galligena, Eur. J. Plant Pathol. 105, 783–790.

    Article  CAS  Google Scholar 

  • Cooke L.R., Watters B.S., Brown A.E. (1993) The effect of fungicide sprays on the incidence of apple canker (Nectria galligena) in Bramley’s seedling. Plant Pathol. 42, 432–442.

    Article  CAS  Google Scholar 

  • Cooley D.R., Autio W.R. (1997) Disease management components of advanced integrated pest management in apple orchards, Agric. Ecosyst. Environ. 66, 31–40.

    Article  Google Scholar 

  • Cooley D.R., Autio W.R., Gamble J.W. (1992) Second-level apple integrated pest management: the effects of summer pruning and a single fungicide application on flyspeck and sooty blotch. Fruit Notes 57(1), 16–17.

    Google Scholar 

  • Cooley D.R., Gamble J.W., Autio W.R. (1997) Summer pruning as a method for reducing flyspeck disease on apple fruit. Plant Dis. 81, 1123–1126.

    Article  Google Scholar 

  • Cooley D.R., Gamble J.W., Mazzola M. (1991) Effects of sulphur and copper fungicides on fruit finish, scab, and soil acidity. Fruit Notes 56(1), 22–23.

    Google Scholar 

  • Cooley D.R., Rosenberger D. (2005) Management of flyspeck disease of apple based on maturation of the causal agent (Schizothyrium pomi), wetting hours and fungicide properties. Phytopathology 95, S21.

    Google Scholar 

  • Corke A., Hunter T. (1979) Biocontrol of Nectria galligena infection of pruning wounds on apple shoots. J. Hortic. Sci. 54, 47–55.

    Google Scholar 

  • Corral L.G., Post L.S., Montville T.J. (1988) Antimicrobial activity of sodium bicarbonate. J. Food Sci. 53, 981–982.

    Article  CAS  Google Scholar 

  • Cronin M.J., Yohalem D.S., Harris R.F., Andrews J.H. (1996) Putative 2 mechanism and dynamics of inhibition of the apple scab pathogen Venturia inaequalis by compost extracts. Soil Biol. Biochem. 28, 1241–1249.

    Article  CAS  Google Scholar 

  • Cross J.V., Berrie A.M. (1995) Field evaluation of a tunnel sprayer and effects of spray volume at constant drop size on spray deposits and efficacy of disease control on apple, Ann. Appl. Biol. 127, 521–532.

    Article  Google Scholar 

  • Cross J.V., Dickler E. (1994) Guidelines for integrated production of pome fruits in Europe. Technical guideline III, IOBC/WPRS Bulletin 17(9), 1–8.

    Google Scholar 

  • Crowdy S.H. (1977) Translocation. In: Marsh R.W. (Ed.), Systemic Fungicides, 2nd edition. Longman, London, UK, pp. 92–114.

    Google Scholar 

  • Cullen D., Berbee F.M., Andrews J.H. (1984) Chaetomium globosum antagonizes the apple scab pathogen, Venturia inaequalis, under field conditions. Can. J. Bot. 62, 1814–1818.

    Article  Google Scholar 

  • Cunningham G.H. (1935) Plant Protection by the Aid of Therapeutants. John McIndoe Printer, Duendin, New Zealand, 243 pp.

    Google Scholar 

  • Curtis K.M. (1924) Black spot of apple and pear. New Zeal. J. Agron. 28, 21–28.

    Google Scholar 

  • Cutler H.G., Cutler, S.J. (1999) Biologically Active Natural Products: Agrochemicals. CRC Press, Boca Raton, 299 pp.

    Google Scholar 

  • Csorba Z. (1962) Az almafa-lisztharmat [Apple Powdery Mildew], Mezőgazdasági Kiadó, Budapest, Hungary.

    Google Scholar 

  • Davis R.F., Backman P.A., Rodriguez- Kabana, R., Kokalis-Burelle, N. (1991). Biological control of apple fruit diseases by Chaetomium globosum formulations containing a carbon source. Phytopathology 81, 1152.

    Google Scholar 

  • de Waard M.A. (1993) Recent developments in fungicides. In: Zadoks J.C. (Ed.), Modern Crop Protection: Developments and Perspectives. Wageningen Pers., Wageningen, The Netherlands.

    Google Scholar 

  • de Waard M.A., Andrade A.C., Hayashi K., Schoonbeek H., Stergiopoulos I., Zwiers, L. (2006) Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Manage. Sci. 62, 195–207.

    Article  CAS  Google Scholar 

  • Del Sorbo G., Andrade A.C., van Nistelrooy J.G.M., van Kan J.A.L., Balzi E., de Waard M.A. (1997) Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters. Mol. Genet. Genom. 254, 417–426.

    Article  CAS  Google Scholar 

  • DeLong D.M., Reid W.J., Darley M.M. (1930) The plant as a factor in the action of Bordeaux mixture as an insecticide. J. Econ. Entomol. 23, 383–390.

    CAS  Google Scholar 

  • Délye C., Bousset L., Corio-Costet M.F. (1998) PCR cloning and detection of point mutations in the eburicol 14α-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a “recalcitrant” fungus. Curr. Genet. 34, 399–403.

    Article  PubMed  Google Scholar 

  • Délye C., Laigret F., Corio-Costet M.F. (1997) A mutation in the 14-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl. Environ. Microbiol. 63, 2966–2970.

    PubMed  Google Scholar 

  • Dewdney M., Charest J., Paulitz T., Carisse O. (2003) Multivariate analysis of apple cultivar susceptibility to Venturia inaequalis under greenhouse conditions. Can. J. Plant Pathol. 25, 387–400.

    Google Scholar 

  • Doran A. (1922) Laboratory studies of the toxicity of some sulphur fungicides. New Hampshire Agricultural Experimental Station Technical Bulletin 19, 1–11.

    Google Scholar 

  • Doster M.A., Bostock R.M. (1988a) Susceptibility of almond cultivars and stone fruit species to pruning wound cankers caused by Phytophthora syringae. Plant Dis. 72, 490–492.

    Article  Google Scholar 

  • Doster M.A., Bostock R.M. (1988b) Effects of low temperature on resistance of almond trees to Phytophthora pruning wound cankers in relation to lignin and suberin formation in wounded bark tissue. Phytopathology 78, 478–483.

    Article  Google Scholar 

  • Dubin H.J., English, H. (1974a) Factors affecting control of European apple canker by Difolatan and basic copper sulfate. Phytopathology 64, 300–306.

    CAS  Google Scholar 

  • Dubin H.J., English, H. (1974b) Factors affecting apple leaf scar infection by Nectria galligena conidia. Phytopathology 64, 1201–1203.

    Google Scholar 

  • Dubin H.J., English H. (1975) Effects of temperature, relative humidity, and desiccation on germination of Nectria galligena conidia. Mycologia 67, 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Earles R., Ames G., Balasubrahmanyam R., Born, H. (1999) Organic and Low-Spray Apple Production. Appropriate Technology Transfer for Rural Areas, Fayetteville, USA, 38 pp.

    Google Scholar 

  • Edwards J.G., Howells O. (2001) The origin and hazard of inputs to crop protection in organic farming systems: are they sustainable? Agric. Systems 67, 31–47.

    Article  Google Scholar 

  • EEC (2000) Council Regulation (EEC) No 2092/91 of 24 June 1991 on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs. Official Journal L. 198, 22/07/1991, 1–15; http://www.prolink.de/hps/

  • El-Hamalawi Z.A., Menge J.A. (1994) Effects of wound age and fungicide treatment of wounds on susceptibility of avocado stems to infection by Phytophthora citricola. Plant Dis. 78, 700–704.

    CAS  Google Scholar 

  • Ellis M.A., Ferree D.C., Madden L.V. (1998) Effects of an apple scab-resistant cultivar on use patterns of inorganic and organic fungicides and economics of disease control. Plant Dis. 82, 428–433.

    Article  Google Scholar 

  • Ellis M.A., Madden L.V., Wilson L.L., Ferree D.C. (1994) Evaluations of organic and conventional fungicide programs for control of apple scab in Ohio. Ohio Agricultural Research Development Centre Research 298, 63–68.

    Google Scholar 

  • El-Masry M.H., Khalil A.I., Hassouna M.S., Ibrahim H.A.H. (2002) In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J. Microbiol. Biotechnol. 18, 551–558.

    Article  CAS  Google Scholar 

  • Evans K.M., James C.M. (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor. Appl. Genet. 106, 1178–1183.

    PubMed  CAS  Google Scholar 

  • Fernandez D.E., Beers E.H., Brunner J.F., Doerr M.D., Dun J.E. (2006) Horticultural mineral oil applications for apple powdery mildew and codling moth, Cydia pomonella (L.). Crop Prot. 25, 585–591.

    Article  Google Scholar 

  • Ferron P., Deguine J.P. (2005) Crop protection, biological control, habitat management and integrated farming. A review, Agron. Sustain. Dev. 25, 17–24, DOI: 10.1051/agro:2004050.

    Article  Google Scholar 

  • Fischer C., Fischer M. (1996) Results in apple breeding at Dresden-Pillnitz. Gartenbauwissenschaft 61, 139–146.

    Google Scholar 

  • Fischer C., Fischer M. (1999) Evaluation of Malus species and cultivars at the Fruit Genebank Dresden-Pillnitz and its use for apple resistance breeding. Genet. Resour. Crop Evol. 46, 235–241.

    Article  Google Scholar 

  • Fisher N., Meunier B. (2005) Reexamination of inhibitor resistance conferred by Qo-site mutations in cytochrome b using yeast as a model system. Pest Manage. Sci. 61, 973–978.

    Article  CAS  Google Scholar 

  • Flores-Veles L.M., Ducaroir J., Jaunet A.M., Robert M. (1996) Study of the distribution of copper in an acid sandy vineyard soil by three different methods. Eur. J. Soil Sci. 47, 523–532.

    Article  Google Scholar 

  • Friis K., Damgaard C., Holmstrup M. (2004) Sublethal soil copper increase mortality in the earthworm Aporrectodea caliginosa during drought. Ecotox. Environ. Safe. 57, 65–73.

    Article  CAS  Google Scholar 

  • Fuchs J.G., Häseli A., Tamm L. (2002) Influence of application strategy of coconut soap on the development of sooty blotch on apple. 10th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing and Viticulture, 10, 50–54.

    Google Scholar 

  • Gadoury D.M., MacHardy W.E. (1982) A model to estimate maturity of ascospore of Venturia inaequalis. Phytopathology 72, 901–904.

    Article  Google Scholar 

  • Gadoury D.M., MacHardy W.E. (1986) Forecasting ascospore dose of Venturia inaequalis in commercial apple orchards. Phytopathology 76, 112–118.

    Article  Google Scholar 

  • Gadoury D.M., MacHardy W.E., Rosenberger D.M. (1989) Integration of pesticide application schedules for disease and insect control in apple orchards of the Northeastern United States. Plant Dis. 73, 98–105.

    Article  Google Scholar 

  • Gadoury D.M., Seem R.C., Rosenberger D.A., Wilcox W.F., MacHardy W.E., Berkett L.P. (1992) Disparity between morphological maturity of ascospores and physiological maturity of asci in Venturia inaequalis. Plant Dis. 76, 277–282.

    Google Scholar 

  • Gessler C., Patocchi A., Sansavini S., Tartarini S., Gianfranceschi L. (2006) Venturia inaequalis resistance in apple. Crit. Rev. Plant Sci. 25, 1–31.

    Article  CAS  Google Scholar 

  • Gleason M.L., Babadoost M., McManus P.S., Wegulo S.N., Helland S.J. (2002) Performance of a warning system for sooty blotch and flyspeck on apple using on-site wetness measurements and site-specific wetness estimates. Phytopathology 92, S29.

    Google Scholar 

  • Gleason M.L., Zriba N., Domoto P.A. (1999) Performance of Skybit data input to a disease-warning model for sooty blotch and flyspeck, 1998, Fungic. Nematicide Tests 54, 6.

    Google Scholar 

  • Gold R.E., Ammermann E., Köhle H., Leinhos G.M.E., Lorenz G., Speakman J.B., Stark-Urnau M., Sauter H. (1996) The synthetic strobilurin BAS 490 F: profile of modern fungicide. In: Lyr H., Dehne H.W., Russell P.E. (Eds.), Modern Fungicides and Antifungal Compounds. Intercept Ltd., Andover, UK.

    Google Scholar 

  • Goldsworthy M.C. (1928) The fungicidal action of liquid lime sulphur. Phytopathology 18, 355–360.

    Google Scholar 

  • Gomez C., Brun L., Chauffour D., Le Vallee D. (2007) Effect of leaf litter management on scab development in an organic apple orchard. Agric. Ecosyst. Environ. 118, 249–255.

    Article  Google Scholar 

  • Grasso V., Palermo S., Sierotzki H., Garibaldi A., Gisi U. (2006) Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogen. Pest Manage. Sci. 62, 465–472.

    Article  CAS  Google Scholar 

  • Gross-Spangenberg, A. (1992) Untersuchungen zur Regulierung des Apfelschorfes Venturia ineaqualis mit Kompost und Kompostextracten, Ph.D dissertation. Rheinischen Friedrich-Wilhelms-Universitat zu Bonn, Germany.

    Google Scholar 

  • Grove G.G. (1990) Nectria canker. In: Jones A.L., Aldwinckle H.S. (Eds.), Compendium of Apple Diseases. The American Phytopathological Society, St. Paul, MN, USA, pp. 35–36.

    Google Scholar 

  • Grove G.G., Boal R.J. (1996) Horticultural oil sprays for the control of powdery mildew of apple at Quincy, WA, 1995. Fung. Nemat. Tests 51, 35.

    Google Scholar 

  • Gupta G.K. (1989) Diseases of pome-fruit orchards in India and research objectives. IOBC/WPRS Bulletin 12, 272–285.

    Google Scholar 

  • Hamilton J.M. (1931) Studies of fungicidal action of certain dust and sprays in the control of apple scab. Phytopathology 21, 445–523.

    CAS  Google Scholar 

  • Harich J. (1999) Antimicrobial grapefruit seed extract. Biotechnol. Adv. 14, 372–373.

    Google Scholar 

  • Hartman J.R. (1995) Evaluation of fungicide timing for sooty blotch and flyspeck control, 1994. Fungic. Nematicide Tests 50, 11.

    Google Scholar 

  • Hartman J.R. (1996a) Evaluation of fungicide timing for sooty blotch and flyspeck control, 1994. Fungic. Nematicide Tests 51, 6.

    Google Scholar 

  • Hartman J.R. (1996b) Evaluation of multilayer fruit bags for sooty blotch and flyspeck control, 1995. Biol. Cultural Tests 11, 38.

    Google Scholar 

  • Haynes, R.J. (1980) Influence of soil management practices on the orchard agro-ecosystem. Agro-Ecosystems 6, 3–32.

    Article  Google Scholar 

  • Heijne B., Jong, P.F., de, Linhard Pedersen H., Paaske K., Bengtsson M., Hockenhull J. (2007) Field efficacy of new compounds to replace copper for scab control in organic apple production. In: Niggli U., Leiffert C., Alföldi T., Lüvk L., Willer H. (Eds.), Proceedings of the 3rd International Congress of the European Integrated Project Quality Low Input Food (QLIF). Hohenheim, Germany, pp. 249–253.

    Google Scholar 

  • Heinrich E. (1982) Untersuchungen zum Obstbaumkrebs (N. galligena Bres.). Wirksamkeit von Fungiziden und standortabhängige Anfälligkeit des Baumes, Dissertation, Hannover, Germany.

    Google Scholar 

  • Heitefuss R. (2000) Pflanzenschutz: Grundlagen der Praktischen Phytomedizin, 3rd ed. Georg Thieme Verlag, Stuttgart, Germany.

    Google Scholar 

  • Hernandez S.M., Batzer J.C., Gleason M.L., Mueller D.S., Dixon P.M. (2004) Post-harvest removal of sooty blotch and flyspeck on apples by combining dipping and brushing treatments. Phytopathology 94, S40.

    Google Scholar 

  • Heye C.C. (1982) Biological control of the perfect stage of the apple scab pathogen, Venturia inaequalis (Cke.) Wint., PhD Thesis. University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Heye C.C., Andrews J.H. (1983) Antagonism of Athelia bombacina and Chaetomium globosum to the apple scab pathogen, Venturia inaequalis. Phytopathology 73, 650–654.

    Article  Google Scholar 

  • Hickey K.D. (1960) The sooty blotch and fly speck diseases of apple with emphasis on variation within Gloeodes pomigena (Schw.) Colby. Ph.D. dissertation. Pennsylvania State University, University Park, USA.

    Google Scholar 

  • Hickey K.D. (1977) Sooty blotch and flyspeck suppression with two late-season fungicide sprays, 1976. Fungic. Nematicide Tests 34, 8–9.

    Google Scholar 

  • Hickey K.D., Yoder K.S. (1990) Powdery mildew. In: Jones A.L., Aldwinckle H.S. (Eds.), Compendium of Apple and Pear Diseases. APS Press, St. Paul, Minnesota, USA, pp. 9–10.

    Google Scholar 

  • Hildebrand P.D., Lockhart C.L., Newbery R.J., Ross R.G. (1988) Resistance of Venturia inaequalis to bitertanol and other demethylation-inhibiting fungicides. Can. J. Plant Pathol. 10, 311–316.

    CAS  Google Scholar 

  • Holb I.J. (2005a) Effect of pruning on apple scab in organic apple production. Plant Dis. 89, 611–618.

    Article  Google Scholar 

  • Holb I.J. (2005b) Effect of pruning on disease incidence of apple scab and powdery mildew in integrated and organic apple production. Inter. J. Hortic. Sci. 11(1), 57–61.

    Google Scholar 

  • Holb I.J. (2006) Effect of six sanitation treatments on leaf decomposition, ascospore production of Venturia inaequalis and scab incidence in integrated and organic apple orchards. Eur. J. Plant Pathol. 115(3), 293–307.

    Article  Google Scholar 

  • Holb I.J. (2007a) Classification of apple cultivar reactions to scab in integrated and organic apple production systems. Can. J. Plant Pathol. 29, 251–260.

    CAS  Google Scholar 

  • Holb I.J. (2007b) Effect of four non-chemical sanitation treatments on leaf infection by Venturia inaequalis in organic apple orchards. Eur. J. Hort. Sci. 71, 60–65.

    Google Scholar 

  • Holb I.J. (2008a) Monitoring aerial dispersal of Monilinia fructigena conidia in relation to brown rot development in integrated and organic apple orchards. Eur. J. Plant Pathol. 120, 397–408.

    Article  Google Scholar 

  • Holb I.J. (2008b) Timing of first and final sprays against apple scab combined with leaf removal and pruning in organic apple production. Crop Prot. 27, 814–822.

    Article  Google Scholar 

  • Holb I.J., Heijne B. (2001) Evaluating primary scab control in organic apple production, Gartenbauwissenschaft 66, 254–261.

    CAS  Google Scholar 

  • Holb I.J., Jong de P.F., Heijne B. (2003a) Efficacy and phytotoxicity of lime sulphur in organic apple production, Ann. Appl. Biol. 142, 225–233.

    Article  CAS  Google Scholar 

  • Holb I.J., Heijne B., Jeger M.J. (2003b) Summer epidemics of apple scab: the relationship between measurements and their implications for the development of predictive models and threshold levels under different disease control regimes, J. Phytopathol. 151 (6), 335–343.

    Article  Google Scholar 

  • Holb I.J., Heijne B., Jeger M.J. (2004) Overwintering of conidia of Venturia inaequalis and the contribution to early epidemics of apple scab, Plant Dis. 88, 751–757.

    Article  Google Scholar 

  • Holb I.J., Heijne B., Jeger M.J. (2005a) The widespread occurrence of overwintered conidial inoculum of Venturia inaequalis on shoots and buds in organic and integrated apple orchards across the Netherlands. Eur. J. Plant Pathol. 111, 157–168.

    Article  Google Scholar 

  • Holb I.J., Heijne B., Withagen J.C.M., Gáll J.M., Jeger M.J. (2005b) Analysis of summer epidemic progress of apple scab in different apple production systems in the Netherlands and Hungary. Phytopathology 95, 1001–1020.

    Article  PubMed  CAS  Google Scholar 

  • Holb, I.J., Heijne, B., Jeger, M.J. (2006) Effects of a combined sanitation treatment on earthworm populations, leaf litter density and infection by Venturia inaequalis in integrated apple orchards. Agr. Ecosyst. Environ. 114, 287–295.

    Article  Google Scholar 

  • Holb I.J., Scherm H. (2007) Temporal dynamics of brown rot in different apple management systems and importance of dropped fruit for disease development. Phytopathology 97, 1004–1111.

    Article  Google Scholar 

  • Holb I.J., Scherm H. (2008) Quantitative relationships between different injury factors and development of brown rot caused by Monilinia fructigena in integrated and organic apple orchards. Phytopathology 98, 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Holb I.J., Schnabel G. (2005) Comparison of fungicide treatments combined with sanitation practices on brown rot blossom blight incidence, phytotoxicity, and yield for organic sour cherry production. Plant Dis. 89, 1164–1170.

    Article  CAS  Google Scholar 

  • Holmstrup M., Petersen B., Larsen M. (1998) Combined effects of copper, desiccation, and frost on the viability of earthworm cocoons. Environ. Toxicol. Chem. 17, 897–901.

    Article  CAS  Google Scholar 

  • Homma Y., Arimoto Y., Misato T. (1981) Studies on the control of plant disease by sodium bicarbonate formulation (Part 1). Effect of emulsifiers and surfactants on the protective values of sodium bicarbonate. J. Pest. Sci. 6, 145–153.

    CAS  Google Scholar 

  • Horst R.K., Kawamoto S.O., Porter L.L. (1992) Effect of sodium bicarbonate and oils on the control of powdery mildew and black spot of roses. Plant Dis. 76, 247–251.

    CAS  Google Scholar 

  • Ilhan K., Arslan U., Karabulut O.A. (2006) The effect of sodium bicarbonate alone or in combination with a reduced dose of tebuconazole on the control of apple scab. Crop Prot. 25, 963–967.

    Article  CAS  Google Scholar 

  • Jamar L., Lateur M. (2007) Strategies to reduce copper use in organic apple production. Acta Hortic. 737, 113–120.

    CAS  Google Scholar 

  • James C.M., Clarke J.B., Evans K.M. (2005) Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor. Appl. Genet. 110, 175–181.

    Article  CAS  Google Scholar 

  • Jobin T., Carisse O. (2007) Incidence of myclobutanil- and kresoxim-methyl-insensitive isolates of Venturia inaequalis in Quebec orchards. Plant Dis. 91, 1351–1358.

    Article  CAS  Google Scholar 

  • Kalamarakis A.E., de Waard M.A., Ziogas B.N., Georgopoulos S.G. (1991) Resistance to fenarimol in Nectria haematococca var. cucurbitae. Pestic. Biochem. Physiol. 40, 212–220.

    Article  CAS  Google Scholar 

  • Karabulut O.A., Smilanick J.L., Mlikota Gabler F., Mansour M., Droby S. (2003) Near-harvest applications of Metschnikowia fructicola, ethanol, and sodium bicarbonate to control postharvest diseases of grape in central California. Plant Dis. 87, 1384–1389.

    Article  CAS  Google Scholar 

  • Keitt G.W. (1936) Some problems and principles of orchard disease control with special reference to sanitation and related measures. J. Econ. Entomol. 29, 43–52.

    CAS  Google Scholar 

  • Kelderer M., Cesara C., Lardschneider E. (1997) Schorfregulierung: Verschiedene Kupferformulierungen – Alternativen zum Kupfer – Gezielte Behandlungen. 8th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit- Growing and Viticulture, LVWO Weinsberg, Germany, 8, 9–14.

    Google Scholar 

  • Kelderer M., Cesara C., Lardschneider E. (2000) Zwei Jahre Erfahrungen mit der gezielten Schorfbekämpfung durch die Oberkronenberegnung. 9th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing and Viticulture, LVWO Weinsberg, Germany, 9, 5–11.

    Google Scholar 

  • Kellerhals M., Dolega E., Dilworth E., Koller B. Gessler C. (2000a) Advances in marker-assisted apple breeding. Acta Hort. 538, 535–540.

    Google Scholar 

  • Kellerhals M., Gianfranceschi L., Seglias N., Gessler C. (2000b) Marker assisted selection in apple breeding. Acta Hort. 521, 255–265.

    CAS  Google Scholar 

  • Kennel W. (1963) Zur pathogenes des obstbaumkrebes (Nectria galligena Bres.) am apfel. Gartenbauwissenschaft 28, 29–64.

    Google Scholar 

  • Kiyomoto R.K. (1999) Effects of Trichoderma harzianum strain T-22 on control of sooty blotch and flyspeck of apple, 1997–1998. Biol. Cultural Tests 14, 44.

    Google Scholar 

  • Klopp K., Kruse P., Maxim P., Palm G. (2004) Results in research on lime sulphur and other products to control apple scab under northern German climate conditions. 11th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing and Viticulture, LVWO Weinsberg, Germany, 11, 96–100.

    Google Scholar 

  • Knight R.L., Alston F.H. (1968) Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Can. J. Genet. Cytol. 10, 294–298.

    Google Scholar 

  • Korban S.S., Dayton D.F. (1983) Evaluation of Malus germplasm for resistance to powdery mildew. HortScience 18, 219–220.

    Google Scholar 

  • Köller W. (1988) Sterol demethylation inhibitors: Mechanism of action and resistance. In: Delp C.J. (Ed.), Fungicide Resistance in North America. The American Phytopathological Society, St. Paul, MN, USA.

    Google Scholar 

  • Köller W., Parker D.M., Turechek W.W., Avila-Adame C. (2004) A two-phase resistance response of Venturia inaequalis populations to the QoI fungicides kresoxim-methyl and trifloxystrobin. Plant Dis. 88, 537–544.

    Article  Google Scholar 

  • Köller W., Scheinpflug H. (1987) Fungal resistance to sterol biosynthesis inhibitors: a new challenge. Plant Dis. 71, 1066–1074.

    Article  Google Scholar 

  • Köller W., Wilcox W.F. (2000) Interactive effects of dodine and the DMI fungicide fenarimol in the control of apple scab. Plant Dis. 84, 863–870.

    Article  Google Scholar 

  • Köller W., Wilcox W.F. (2001) Evidence for the predisposition of fungicide-resistant isolates of Venturia inaequalis to a preferential selection for resistance to other fungicides. Phytopathology 91, 776–781.

    Article  PubMed  Google Scholar 

  • Köller W., Wilcox W.F., Barnard J., Jones A.L., Braun P.G. (1997) Detection and quantification of resistance of Venturia inaequalis populations to sterol demethylation inhibitors. Phytopathology 87, 184–190.

    Article  PubMed  Google Scholar 

  • Köller W., Wilcox W.F., Parker, D.M. (2005) Sensitivity of Venturia inaequalis populations to anilinopyrimidine fungicides and their contribution to scab management in New York. Plant Dis. 89, 357–365.

    Article  CAS  Google Scholar 

  • Krähmer H. (1980) Wound reactions of apple trees and their influence on infections with Nectria galligena. J. Plant Dis. Prot. 87, 97–112.

    Google Scholar 

  • Krüger J. (1983) Anfälligkeiten von Apfelsorten und Kruzungsnachkommenschaften für den Obstbaumkrebs nach natürlicher und künstlicher Infektion. Erwerbsobstbau 25, 114–116.

    Google Scholar 

  • Kunz S., Deising H., Mendgen K. (1997) Acquisition of resistance to sterol demethylation inhibitors by populations of Venturia inaequalis. Phytopathology 87, 1272–1278.

    Article  PubMed  CAS  Google Scholar 

  • Kunz S., Lutz B., Deising H., Mendgen K. (1998) Assessment of sensitivities to anilinopyrimidine- and strobilurin-fungicides in populations of the apple scab fungus Venturia inaequalis. J. Phytopathol. 146: 231–238.

    Article  CAS  Google Scholar 

  • Kunz S., Mögel G., Hinze M., Volk F. (2008) Control of apple scab by curative applications of biocontrol agents. 13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing and Viticulture, LVWO Weinsberg, Germany, 13, 35–43.

    Google Scholar 

  • Kühn B.F., Andersen T.T., Pedersen H.L. (2003) Evaluation of 14 old unsprayed apple cultivars. Biol. Agric. Hortic. 20, 301–310.

    Google Scholar 

  • Küng R., Chin K.M., Gisi U. (1999) Sensitivity of Venturia inaequalis to cyprodinil. In: Lyr H., Russel P.E., Dehne H.W., Sisler H.D., (Eds.), Modern Fungicides and Antifungal Compounds II., Intercept, Andover, UK, pp. 313–322.

    Google Scholar 

  • Lamson H.H. (1894) Some fungus diseases of plants and their treatment. N.H. Agric. Exp. Stn. Bull. 19.

    Google Scholar 

  • Lancon J., Wery J., Rapidel B., Angokaye M., Gérardeaux E., Gaborel C., Ballo D., Fadegnon, B. (2007) An improved methodology for integrated crop management systems. Agron. Sustain. Dev. 27, 101–110, DOI: 10.1051/agro:2006037.

    Article  Google Scholar 

  • Latham A.J., Hollingsworth M.H. (1973) Incidence and control of sooty blotch and flyspeck of apples in Alabama. Auburn University Agricultural Experimental Station Circle 208.

    Google Scholar 

  • Latorre B.A., Rioja M.E., Lillo C., Munoz M. (2002) The effect of temperature and wetness duration on infection and a warning system for European canker (Nectria galligena) of apple in Chile. Crop Prot. 21, 285–291.

    Article  Google Scholar 

  • Laurens F. (1999) Review of the current apple breeding programmes in the world: objective for scion cultivar improvement. Acta Hort. 484, 162–170.

    Google Scholar 

  • Leeuwen van G.C.M., Holb I.J., Jeger M.J. (2002) Factors affecting mummification and sporulation of pome fruit infected by Monilinia fructigena in Dutch orchards. Plant Pathol. 51, 787–793.

    Article  Google Scholar 

  • Leeuwen van G.C.M., Stein A., Holb I.J., Jeger M.J. (2000) Yield loss in apple caused by Monilinia fructigena (Aderh. & Ruhl.) Honey, and spatio-temporal dynamics of disease development. Eur. J. Plant Pathol. 106, 519–528.

    Article  Google Scholar 

  • Lesemann S.S., Schimpke S., Dunemann F., Deising H.B. (2006) Mitochondrial heteroplasmy for the cytochrome b gene controls the level of strobilurin resistance in the apple powdery mildew fungus Podosphaera leucotricha (Ell. & Ev.) ES Salmon. J. Plant Dis. Prot. 113, 259–266.

    CAS  Google Scholar 

  • Lespinasse Y. (1983) Am´elioration du pommier pour la rèsistance a l’oïdium (Podosphaera leucotricha) – premiers resultants concernant la virulence du champignon. IOBC/WPRS Bulletin 6(4), 96–110.

    Google Scholar 

  • Lespinasse Y. (1989) Three genes, resistance mechanisms, present work and prospects. IOBC/WPRS Bulletin 12, 100–115.

    Google Scholar 

  • Lespinasse Y., Parisi L., Pinet C., Laurens F., Durel C.E. (1999) Rèsistance du pommier à la tavelure et a l’oïdium. Phytoma 154, 23–26.

    Google Scholar 

  • Lewis F.H., Hickey K.D. (1958) Effective life of fungicides as a factor in the control of sooty blotch and flyspeck of apple. Phytopathology 48, 462.

    Google Scholar 

  • Lewis F.H, Hickey K.D. (1972) Fungicide usage on deciduous fruit trees. Annu. Rev. Phytopathol. 10, 399–428.

    Article  CAS  Google Scholar 

  • Lolas M., Latorre B.A. (1997) Efecto comparativo de fungicidas en el control del cancro europeo del manzano causado por Nectria galligena. Fitopatologia 32, 131–136.

    Google Scholar 

  • Lortie M. (1964) Pathogenesis in cankers caused by Nectria galligena. Phytopathology 54, 261–263.

    Google Scholar 

  • Louw A.J. (1948) Fusicladium of apples. IV. Can this disease be stamped out? Farming Suppl. Afr. J. 5, 28–32.

    Google Scholar 

  • MacHardy W.E. (1996) Apple Scab, Biology, Epidemiology and Management. APS Press, St. Paul, Minnesota, USA, 545 pp.

    Google Scholar 

  • MacHardy W.E. (2000) Current status of IPM in apple orchards. Crop Prot. 19, 801–806.

    Article  Google Scholar 

  • MacHardy W.E., Gadoury D.M. (1989) A revision of Mills’ criteria for predicting apple scab infection periods. Phytopathology 79, 304–310.

    Article  Google Scholar 

  • MacHardy W.E., Gadoury D.M., Rosenberger D.A. (1993) Delaying the onset of fungicide programs for control of apple scab in orchards of low potential ascospore dose of Venturia inaequalis. Plant Dis. 77, 372–375.

    Google Scholar 

  • MacHardy W.E., Sondej J. (1981) Weather monitoring instrumentation for plant disease management programs and epidemiological studies. N. H. Agric. Exp. Sm. Bull. 519, 40 pp.

    Google Scholar 

  • Marsh R.W. (1939) Observation on apple canker II. Experiments on the incidence and control of shoot infections. Ann. Appl. Biol. 26, 458–469.

    Article  CAS  Google Scholar 

  • Martin H., Salmon E.S. (1931) The fungicidal properties of certain spray-fluids. VIII. The fungicidal properties of mineral, tar and vegetable oils. J. Agric. Sci. 21, 638–658.

    Article  CAS  Google Scholar 

  • Martin H., Salmon E.S. (1932) The fungicidal properties of certain spray-fluids, IX. The fungicidal properties of the products of hydrolysis of sulphur. J. Agric. Sci. 22, 595–616.

    Article  CAS  Google Scholar 

  • Martin H., Salmon E.S. (1933) The fungicidal properties of certain spray-fluids. X. Glyceride oils. J. Agric. Sci. 23, 228–251.

    Article  CAS  Google Scholar 

  • Martin H., Wain R.L., Wilkinson E.H. (1942) Studies upon the copper fungicides. V. A critical examination of the fungicidal value of copper compounds. Ann. Appl. Biol. 29, 412–438.

    Article  CAS  Google Scholar 

  • McCallan S.E.A. (1967) History of fungicides. In: Torgeson D.C. (Ed.), Fungicides: An Advanced Treatise 1. Academic Press, New York, USA, pp. 1–37.

    Google Scholar 

  • McCallan S.E.A., Wilcoxon F. (1936) The action of fungous spores on Bordeaux mixture. Contrib. Boyce Thompson Inst. 8, 151–165.

    CAS  Google Scholar 

  • McCracken A.R., Berrie A., Barbara D.J., Locke T., Cook L.R., Phelps K., Swinburne T.R., Brown A.E., Ellerker B., Langrell S.R.H. (2003) Relative significance of nursery infections and orchard inoculum in the development and spread of apple canker (Nectria galligena) in young orchards. Plant Pathol. 52, 553–566.

    Article  Google Scholar 

  • Merwin I.A., Brown S.K., Rosenberger D.A., Cooley D.R., Berkett L.P. (1994) Scab-resistant apples for the Northeastern United States: New prospects and old problems. Plant Dis. 78, 4–10.

    Google Scholar 

  • Merwin I.A., Wilcox W.F., Stiles W.C. (1992) Influence of orchard ground cover management on the development of Phytophthora crown and root rots of apple. Plant Dis. 76, 199–205.

    Google Scholar 

  • Miedtke U., Kennel W. (1990) Athelia bombacina and Chaetomium globosum as antagonists of the perfect stage of the apple scab pathogen (Venturia inaequalis) under field conditions. J. Plant Dis. Prot. 97, 24–32.

    Google Scholar 

  • Miller L.P., McCallan S.E.A., Weed R.M. (1953) Quantitative studies on the role of hydrogen sulfide formation in the toxic action of sulphur to fungus spores. Contrib. Boyce Thompson Inst. 17, 151–171.

    CAS  Google Scholar 

  • Mills W.D. (1944) Efficient use of sulphur dusts and sprays during rain to control apple scab. Cornell University Bulletin 630, 1–4.

    Google Scholar 

  • Mills W.D. (1947) Effects of sprays of lime sulphur and of elemental sulphur on apple in relation to yield. Ithaca, N.Y., Cornell University Agricultural Experiment Station 273, 38.

    Google Scholar 

  • Mlikota Gabler F., Smilanick J.L. (2001) Postharvest control of table grape gray mold on detached berries with carbonate and bicarbonate salts and disinfectants. Am. J. Enol. Vitic. 52, 12–20.

    Google Scholar 

  • Montag J., Schreiber L., Schönherr J. (2005) An in vitro study on the postinfection activities of hydrated lime and lime sulphur against apple scab (Venturia inaequalis). J. Phytopathol. 153, 485–491.

    Article  CAS  Google Scholar 

  • Montag J., Schreiber L., Schönherr J. (2006) An in vitro study on the postinfection activities of copper hydroxide and copper sulfate against conidia of Venturia inaequalis. J. Agric. Food Chem. 54, 893–899.

    Article  PubMed  CAS  Google Scholar 

  • Mullick D.B. (1975) A new tissue essential to necrophylactic periderm formation in the bark of four conifers. Can. J. Bot. 53, 2443–2457.

    Article  Google Scholar 

  • Mullick D.B. (1977) The non-specific nature of defense in bark and wood during wounding, insect, and pathogen attack. Recent Adv. Phytochem. 11, 395–441.

    CAS  Google Scholar 

  • Nakaune R., Adachi K., Nawata O., Tomiyama M., Akutsu K., Hibi T. (1998) A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Appl. Environ. Microbiol. 64, 3983–3988.

    PubMed  CAS  Google Scholar 

  • Nesme T., Bellon S., Lescourret F., Habib R. (2006) Survey-based analysis of irrigation and N fertilisation practices in apple orchards. Agron. Sustain. Dev. 26, 215–225, DOI: 10.1051/agro:2006018.

    Article  Google Scholar 

  • Niklaus J., Kennel W. (1981) The role of the earthworm, Lumbricus terrestris (L) in removing sources of phytopathogenic fungi in orchards. Gartenbauwissenschaft 46, 138–142.

    Google Scholar 

  • Northover J., Schneider K.E. (1993) Activity of plant oils on diseases caused by Podosphaera leucotricha, Venturia inaequalis, and Albugo occidentialis. Plant Dis. 77, 152–157.

    Google Scholar 

  • Northover J., Schneider K.E. (1996) Physical modes of action of petroleum and plant oils on powdery and downy mildews of grapevines. Plant Dis. 80, 544–550.

    Google Scholar 

  • Norton R.A. (1981) Field susceptibility of apple cultivars to scab, Venturia inaequalis, and powdery mildew, Podosphaera leucotricha in a cool, humid climate. Fruit Varieties J. 32, 2–5.

    Google Scholar 

  • NRC (1987) Regulating Pesticides in Food: The Delaney Paradox. National Academy Press, Washington, DC, USA.

    Google Scholar 

  • Ocamb-Basu C.M., Sutton T.B., Nelson L.A. (1988) The effects of pruning on incidence and severity of Zygophiala jamaicensis and Gloeodes pomigena infections of apple fruit. Phytopathology 78, 1004–1008.

    Article  Google Scholar 

  • Olaya G., Köller W. (1999a) Baseline sensitivities of Venturia inaequalis populations to the strobilurin fungicide kresoxim-methyl. Plant Dis. 83, 274–278.

    Article  CAS  Google Scholar 

  • Olaya G., Köller W. (1999b) Diversity of kresoxim-methyl sensitivities in baseline populations of Venturia inaequalis. Pestic. Sci. 55, 1083–1088.

    Article  CAS  Google Scholar 

  • Palmer C.L., Horst R.K., Langhans R.W. (1997) Use of bicarbonates to inhibit in vitro colony growth of Botrytis cinerea. Plant Dis. 81, 1432–1438.

    Article  Google Scholar 

  • Palti J. (1981) Cultural Practices and Infectious Crop Diseases. Springer-Verlag, New York, USA.

    Google Scholar 

  • Paoletti M.G., Sommaggio D., Favretto M.R., Petruzzelli G., Pezzarossa B., Barbafieri M. (1998) Earthworm as useful bioindicators of agroecosystem sustainability in orchards and vineyards with different inputs. Appl. Soil Ecol. 10, 137–150.

    Article  Google Scholar 

  • Pedersen H.L., Christensen J.V., Hansen P. (1994) Susceptibility of 15 apple cultivars to apple scab, powdery mildew, cancer and mites. Fruit Varieties J. 48, 97–100.

    Google Scholar 

  • Penrose L.J. (1995) Fungicide reduction in apple production – potentials or pipe dreams? Agric. Ecosyst. Environ. 53, 231–242.

    Article  Google Scholar 

  • Pickering S. U. (1912) Copper fungicides. J. Agric. Sci. 4, 273–281.

    Article  CAS  Google Scholar 

  • Ploper L.D., Backman P.A. (1991) Modification of leaf microflora by foliar amendments and effects on diseases of tomato, potato, and apple. Phytopathology 81, 1152.

    Google Scholar 

  • Prokopy R.J. (1993) Stepwise progress toward IPM and sustainable agriculture. IPM Pract. 15(3), 1–4.

    Google Scholar 

  • Prokopy R.J. (2003) Two decades of bottom-up, ecologically based pest management in a small commercial apple orchard in Massachusetts. Agric. Ecosyst. Environ. 94, 299–309.

    Article  Google Scholar 

  • Prokopy R.J., Cooley D.R., Autio W.R., Coli W.M. (1994) Second level integrated pest management in commercial apple orchards., Amer. J. Alternative Agric. 9, 148–155.

    Article  Google Scholar 

  • Prokopy R.J., Mason J.L., Christie M.M., Wright S.E. (1996) Arthropod pest and natural enemy abundance under second level versus first-level integrated pest management practices in apple orchards: a 4-year study. Agric. Ecosyst. Environ. 57, 35–47.

    Article  Google Scholar 

  • Quamme H.A., Hampson C.R., Sholberg P.L. (2005) Evaluation of scab (Venturia inaequalis) on 54 cultivars of apple in an unsprayed common planting. J. Am. Pomol. Soc. 59, 78–90.

    Google Scholar 

  • Raw F. (1962) Studies of earthworm populations in orchards. I. Leaf burial in apple orchards. Ann. Appl. Biol. 50, 389–404.

    Article  Google Scholar 

  • Reckendorfer P. (1936) Uber den zerfall des kupferkalkbruhekomplexes. J. Plant Dis. Prot. 46, 418–438.

    CAS  Google Scholar 

  • Reganold J.P., Glover J.D., Andrews P.K., Hinman H.R. (2001) Sustainability of three apple production systems. Nature, London 410, 926–930.

    Article  CAS  Google Scholar 

  • Reuveni M. (2000) Efficacy of trifloxystrobin (Flint), a new strobilurin fungicide, in controlling powdery mildews on apple, mango and nectarine, and rust on prune tree. Crop Prot. 19, 335–341.

    Article  CAS  Google Scholar 

  • Reuveni M., Oppenheim D., Reuveni R. (1998) Integrated control of powdery mildew on apple trees by foliar sprays of mono-potassium phosphate fertilizer and sterol inhibiting fungicides. Crop Prot. 17, 563–568.

    Article  CAS  Google Scholar 

  • Rickerl D.H., Curl E.A., Toughton J.T., Gordon W.B. (1992) Crop mulch effects on Rhizoctonia soil infestation and disease severity in conservation-tilled cotton. Soil Biol. Biochem. 24, 553–559.

    Article  Google Scholar 

  • Rollinger J.M., Spitaler R., Menz M., Schneider P., Ellmerer E.P., Marschall K., Zelger R., Stuppner H. (2007) Constituents from Morus root bark against Venturia inaequalis – the causal agent of apple scab. Planta Medica 73, P231.

    Google Scholar 

  • Rollinger J.M., Spitaler R., Menz M., Marschall K., Zelger R., Ellmerer E.P., Schneider P., Stuppner H. (2006) Venturia inaequalis – inhibiting Diels–Alder adducts from Morus root bark. J. Agric. Food Chem. 54, 8432–8436.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberger D.A., Engle-Ahler C.A., Meyer F.W. (1999) Using Benlate and Topsin M as eradicants for flyspeck following a midsummer spray gap, 1998. Fungic. Nematicide Tests 54, 17.

    Google Scholar 

  • Rosenberger D.A., Engle C.A., Meyer, F.W. (1996a) Effects of management practices and fungicides on sooty blotch and flyspeck diseases and productivity of Liberty apples. Plant Dis. 80, 798–803.

    Google Scholar 

  • Rosenberger D.A., Meyer F.W., Engle C.A. (1996b) Effects of fungicides and application timing on incidence of flyspeck on Liberty apples, 1995. Fungic. Nematicide Tests 51, 19.

    Google Scholar 

  • Rosenberger D.A., Meyer F.W., Engle C.A. (1997a) Controlling flyspeck with ziram, captan, Benlate, and sulphur used in various combinations, 1996. Fungic. Nematicide Tests 52, 26.

    Google Scholar 

  • Rosenberger D.A., Meyer F.W., Engle C.A. (1997b) Timing summer fungicide sprays for sooty blotch and flyspeck, 1996. Fungic. Nematicide Tests 52, 23.

    Google Scholar 

  • Rosenberger D.A., Meyer F.W., Engle C.A. (1998) Using Benlate and Topsin M as eradicants for flyspeck following a mid-summer spray gap, 1997. Fungic. Nematicide Tests 53, 27.

    Google Scholar 

  • Ross R.G., Burchill R.T. (1968) Experiments using sterilized apple-leaf discs to study the mode of action of urea in suppressing perithecia of Venturia ineaqualis (Cke.) Wint. Ann. Appl. Biol. 62, 289–296.

    Article  Google Scholar 

  • Römpp, H. (1995) Römpp Chemie Lexicon. Georg Thieme Verlag, Stuttgart, New York, USA.

    Google Scholar 

  • Sallato B.V., Latorre B.A. (2006) First report of practical resistance to QoI fungicides in Venturia inaequalis(apple scab) in Chile. Plant Dis. 90, 375.

    Article  Google Scholar 

  • Sandskär B., Gustafsson M. (2002) Susceptibility of twenty-two apple cultivars to apple scab in Sweden. J. Plant Dis. Prot. 109, 338–349.

    Google Scholar 

  • Sansavini S. (1990) Integrated fruit growing in Europe. HortScience 25, 842–846.

    Google Scholar 

  • Sansavini S. (1997) Integrated fruit production in Europe: research and strategies for a sustainable industry. Scient. Hortic. 68, 25–36.

    Article  Google Scholar 

  • Sansavini S. (1999) La sfida delle variet`a di melo resistenti ai patogeni. Riv. Frutticoltura 10, 9–18.

    Google Scholar 

  • Sansavini S., Wollesen J. (1992) The organic farming movement in Europe. Hortic. Technol. 2, 276–281.

    Google Scholar 

  • Saure M. (1962) Untersuchungen über die Voraussetzungen für ein epidemisches Auftreten des Obstbaumkrebses (Nectria galligena Bres.). Mitteilungen der Obstbauversuchanstalt, Jork 1, 1–74.

    Google Scholar 

  • Scheer H.A.Th. van der (1987) Supervised control of scab and powdery mildew on apple. Obstbau and Weinbau 24, 249–251.

    Google Scholar 

  • Scheer H.A.Th. van der (1989) Susceptibility of apple cultivars and selections to scab and powdery mildew in The Netherlands. IOBC/WPRS Bulletin 12(6), 205–211.

    Google Scholar 

  • Scheinpflug H., Kuck K.H. (1987) Sterol biosynthesis inhibiting piperazine, pyridine, pyrimidine and azole fungicides. In: Lyr H. (Ed.), Modern Selective Fungicides – Properties, Applications and Mechanisms of Action. John Wiley & Sons, Inc., New York, USA.

    Google Scholar 

  • Schmidt H. (1994) Progress in combining mildew resistance from Malus robusta and Malus zumi with fruit quality. In: Schmidt H., Kellerhals M. (Eds.), Progress in Temperate Fruit Breeding. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 3–6.

    Google Scholar 

  • Schnabel G., Jones A.L. (2001) The 14α-demethylase (CYP51A1)gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology 91, 102–110.

    Article  PubMed  CAS  Google Scholar 

  • Schnabel G., Layne R.D., Holb I.J. (2007) Micronised and non-micronised sulphur applications control peach scab equally well with negligible differences in fruit quality. Ann. Appl. Biol. 150, 131–139.

    Article  CAS  Google Scholar 

  • Schouten H.J., Krens F.A., Jacobsen E. (2006) Do cisgenic plants warrant less stringent oversight? Nat. Biotechnol. 24, 9.

    Article  CAS  Google Scholar 

  • Schulze K., Schönherr J. (2003) Calcium hydroxide, potassium carbonate and alkyl polyglycosides prevent spore germination and kill germ tubes of apple scab (Venturia inaequalis). J. Plant Dis. Prot. 110, 36–45.

    CAS  Google Scholar 

  • Seaby D.A., Swinburne T.R. (1976) Protection of pruning wounds on apple trees from Nectria galligena Bres. Using modified pruning shears. Plant Pathol. 25, 50–54.

    Article  Google Scholar 

  • Seem R.C., Shoemaker C.A., Reynolds K.L., Eschenbach E.A. (1989) Simulation and optimization of apple scab management. IOBC/WPRS Bulletin 12, 66–87.

    Google Scholar 

  • Shirane N., Takenaka H., Ueda K., Hashimoto Y., Katoh K., Ishii H. (1996) Sterol analysis of DMI-resistant and sensitive strains of Venturia inaequalis. Phytochemistry 41, 1301–1308.

    Article  CAS  Google Scholar 

  • Sholberg P.L., Haag P.D. (1993) Sensitivity of Venturia inaequalis isolates from British Columbia to flusilazole and myclobutanil. Can. J. Plant Pathol. 15, 102–106.

    CAS  Google Scholar 

  • Sholberg P.L., Haag P. (1994) Control of apple powdery mildew (Podosphaera leucotricha) in British-Columbia by demethylation-inhibiting fungicides. Can. Plant Dis. Surv. 74, 5–11.

    Google Scholar 

  • Sholberg P.L., Lane W.D., Haag P., Bedford K., Lashuk L. (2001) A novel technique for evaluation of apple (Malus x domestica Borkh.) cultivars for susceptibility to powdery mildew. Can. J. Plant Sci. 81, 289–296.

    Google Scholar 

  • Smigell C.G., Hartman J.R. (1998a) Evaluation of fungicide timing for sooty blotch and flyspeck control, 1997. Fungic. Nematicide Tests 53, 31.

    Google Scholar 

  • Smigell C.G., Hartman J.R. (1998b) Evaluation of multi-layer fruit bags for cork spot, sooty blotch and flyspeck control, 1997. Biol. Cultural Tests 13, 44.

    Google Scholar 

  • Smith F.D., Parker D.M., Köller W. (1991) Sensitivity distribution of Venturia inaequalis to the sterol demethylation inhibitor flusilazole: baseline sensitivity and implications for resistance monitoring. Phytopathology 81, 392–396.

    Article  CAS  Google Scholar 

  • Spitaler R., Marschall K., Zidorn C., Kelderer M., Zelger R., Stuppner H. (2004) Apple scab control with grapefruit seed extract: no alternative to chemical fungicides. 11th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit Growing. Förderungsgemeinschaft Ökologischer Obstbau, Weinsberg, 11, 208–211.

    Google Scholar 

  • Spotts R.A., Cervantes L.A. (1986) Effects of fungicides that inhibit ergosterol biosynthesis on apple powdery mildew control, yield, and fruit growth factors. Plant Dis. 70, 305–306.

    Article  CAS  Google Scholar 

  • Stanis V.F., Jones A.L. (1985) Reduced sensitivity to sterol-inhibiting fungicides in field isolates of Venturia inaequalis. Phytopathology 75, 1098–1101.

    Article  CAS  Google Scholar 

  • Steffek R. (1999) Managing apple scab (Venturia inaequalis) in organic fruit growing – influence of the reduction of practical copper- and lime-sulphur dose rates. Pflanzenschutzberichte 321 1999, 58, 7–12.

    Google Scholar 

  • Stevens F.L., Hall J.G. (1910) Diseases of Economic Plants. MacMillan Company, New York, USA.

    Google Scholar 

  • Subhash C.V. (1988) Nontarget Effects of Agricultural Fungicides. CRC Press, London, UK, 443 pp.

    Google Scholar 

  • Sumner D.R., Doupnik B. Jr., Boosalis M.G. (1981) Effects of reduced tillage and multiple cropping on plant diseases. Annu. Rev. Phytopathol. 19, 167–187.

    Article  Google Scholar 

  • Sumner D.R., Phatak S.C., Gay J.D., Chalfant R.B., Brunson K.E., Bugg R.L. (1995) Soilborne pathogens in a vegetable double-crop with conservation tillage following winter cover crops. Crop Prot. 14, 495–500.

    Article  Google Scholar 

  • Sutton D.K., MacHardy W.E. (1993) The reduction of ascosporic inoculum of Venturia inaequalis by orchard sanitation. Phytopathology 83, 247.

    Article  Google Scholar 

  • Sutton D.K., MacHardy W.E., Lord W.G. (2000) Effect of leaf shredding or treating apple leaves litter with urea on ascospore dose of Venturia inaequalis and disease buildup. Plant Dis. 84, 1319–1326.

    Article  Google Scholar 

  • Sutton T.B. (1990a) Dispersal of conidia of Zygophiala jamaicensis in apple orchards. Plant Dis. 74, 643–646.

    Article  Google Scholar 

  • Sutton T.B. (1990b) Sooty blotch and flyspeck. In: Jones A.L., Aldwinkle H.S. (Eds.), Compendium of Apple and Pear Diseases. American Phytopathological Society, St. Paul, MN, USA, pp. 20–22.

    Google Scholar 

  • Sutton T.B., Unrath C.R. (1984) Evaluation of the tree-row-volume concept with density adjustments in relation to spray deposits in apple orchards. Plant Dis. 68, 480–484.

    Article  Google Scholar 

  • Sutton T.B., James J.R., Nardacci J.F. (1981) Evaluation of a New York ascospore maturity model for Venturia inaequalis in North Carolina. Phytopathology 71, 1030–1032.

    Article  Google Scholar 

  • Swinburne T.R. (1971) The seasonal release of spores of Nectria galligena from apple cankers in Northern Ireland. Ann. Appl. Biol. 69, 97–104.

    Article  Google Scholar 

  • Swinburne T.R. (1975) European canker of apple (Nectria galligena). Rev. Plant Pathol. 54, 787–799.

    Google Scholar 

  • Swinburne T.R., Cartwright J., Flack N.J., Brown A.E. (1975) The control of apple canker (Nectria galligena) in a young orchard with established infections. Ann. Appl. Biol. 81, 61–73.

    Article  CAS  Google Scholar 

  • Szkolnik, M. and Gilpatrick, J.D. (1973) Tolerance of Venturia inaequalis to dodine in relation to the history of dodine usage in apple orchards. Plant Dis. Rep. 57, 817–821.

    CAS  Google Scholar 

  • Sztejnberg A., Galper S., Mazar S., Lisker N. (1989) Ampelomyces quisqualis for biological and integrated control of powdery mildew in Israel. J. Phytopathol. 124, 285–295.

    CAS  Google Scholar 

  • Takeoka G., Dao L., Wong R.Y., Lundin R., Mahoney N. (2001) Identification of benzethonium chloride in commercial grapefruit seed extracts. J. Agric. Food Chem. 49, 3316–3320.

    Article  PubMed  CAS  Google Scholar 

  • Tamm L., Amsler T., Schärer H., Refardt M. (2006) Efficacy of Armicarb (potassium bicarbonate) against scab and sooty blotch on apples. 12th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit Growing, Fördergemeinschaft Ökologischer Obstbau, Weinsberg, Germany, 12, 87–92.

    Google Scholar 

  • Tamm L., Häseli J., Fuchs J.G., Weibel F.P., Wyss E. (2004) Organic fruit production in humid climates of Europe: bottlenecks and new approaches in disease and pest control. Acta Hort. 638, 333–339.

    Google Scholar 

  • Tamm L., Köpke U., Cohen Y., Leifert C. (2007) Development of strategies to improve quality and safety and reduce cost of production in organic and low-input crop production systems. In: Nigli U. (Eds.), Proceedings of the 3rd International Congress of the European Integrated Project Quality Low Input Food (QLIF) FiBL, Frick, Switzerland, pp. 151–157.

    Google Scholar 

  • Tate K.G., Manktelow D.W., Walker J.T., Stiefel H. (2000) Disease management in Hawke’s Bay apple orchards converting to organic production. New Zeal. Plant Prot. 53, 1–6.

    Google Scholar 

  • Thomas A.L., Muller M.E., Dodson B.R., Ellersieck M.R., Kaps M. (2004) A kaolin-based particle film suppresses certain insect and fungal pests while reducing heat stress in apples. J. Am. Pomol. Soc. 58, 42–51.

    Google Scholar 

  • Träckner A., Kirchner-Bierschenk R. (1988) Vorlaeufigue Ergebnisse bei Bekaempfung des Apfelschorfes durch Extrakte aus Kopmostierten organischen Materialien. Med. Fac. Landbouww. Rijksuniv. Gent 53, 359–362.

    Google Scholar 

  • Träckner A. (1992) Use of agricultural and municipal organic wastes to develop suppressiveness to plant pathogens. In: Tjamos E.C., Papavisas G.C., Cook R.J. (Eds.), Biological Control of Plant Diseases: Progress and Challenges for the Future. Plenum Press, New York, pp. 35–42.

    Google Scholar 

  • Trapman M.C. (1994) Development and evaluation of a simulation model for ascospore infections of Venturia inaequalis. Norw. J. Agric. Sci. 17, 55–67.

    Google Scholar 

  • Trapman M. (2001) Schurft curatief weren met kalkzwavel, Fruittelt 91(3), 10–11.

    Google Scholar 

  • Trapman M. (2002) The postinfection use of lime sulphur to control apple scab. Experiences in the Netherlands 1999–2002. 10th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing and Viticulture, 10, 63–74.

    Google Scholar 

  • Trapman M. (2004) A simulation program for the timing of fungicides to control sooty blotch in organic apple growing. 11th International Conference on Cultivation-Technique and Phytopathological Problems in Organic Fruit-Growing, 11, 23–29.

    Google Scholar 

  • Trapman M., Drechsler-Elias E. (2000) Die kurative Wirkung von Schwefelkalk gegen Apfelschorf. Obstbau 25(10), 559–561.

    Google Scholar 

  • Trapman M., Tamm L., Fuchs J.G. (2004) The effectiveness of winter treatments with copper or lime sulphur to control sooty blotch. 11th International Conference on Cultivation-Technique and Phytopathological Problems in Organic Fruit-Growing, 11, 23–29.

    Google Scholar 

  • Travis J.W., Latin R.X. (1991) Development, implementation and adoption of expert systems in plant pathology. Annu. Rev. Phytoptahol. 29, 343–360.

    Article  Google Scholar 

  • Tweedy B.G. (1969) Elemental sulphur. In: Torgeson D.C. (Ed.), Fungicides: An Advanced treatise 1. Academic Press, New York, USA, pp. 119–145.

    Google Scholar 

  • Tweedy B.G. (1981) Inorganic sulphur as a fungicide. Residue Reviews 78, 43–68.

    CAS  Google Scholar 

  • Tweedy B.G., Turner N. (1966) The mechanism of sulphur reduction by conidia of Monilinia fructicola. Contrib. Boyce Thompson Inst. 23, 255–265.

    CAS  Google Scholar 

  • Van Rhee J.A. (1976) Effects of soil pollution on earthworms. Pedobiologia 17, 201–208.

    Google Scholar 

  • Vincent C., Rancourt B., Carisse O. (2004) Apple leaf shredding as a non-chemical tool to manage apple scab and spotted tentiform leafminer. Agric. Ecosyst. Environ. 104, 595–604.

    Article  Google Scholar 

  • Vogt G. (2000) Origins, development and future challenges of organic farming. Proceedings 13th International Congress of International Federation of Organic Movements (IFOAM), August 24–30, Basel, Switzerland, pp. 708–711.

    Google Scholar 

  • Von Woedtke T., Schluter B., Pflegel P., Lindequist U., Julich W.D. (1999) Aspects of the antimicrobial efficacy of grapefruit seed extract and its relation to preservative substances contained. Pharmazie 54, 452–456.

    Google Scholar 

  • Washington W.S., Villalta O.N., Ingram J., Bardon D. (1998) Susceptibility of apple cultivars to apple scab and powdery mildew in Victoria, Australia. Austr. J. Experim. Agric. 38, 625–629.

    Article  Google Scholar 

  • Weaver L.O. (1953) Relation of fungicides to control of apple diseases on Stayman and Golden Delicious apples. Proceedings of Cumberland – Shenandoah Fruit Workers Conference 29, 26.

    Google Scholar 

  • Weg van de W.E. (1989) Screening for resistance to Nectria galligena Bres. in cut shoots of apple. Euphytica 42, 233–240.

    Article  Google Scholar 

  • Weg van de W.E., Giezen S., Jansen R.C. (1992) Influence of temperature on infection of seven apple cultivars by Nectria galligena. Acta Phytopathol. Entomol. Hung. 27, 631–635.

    Google Scholar 

  • Weibel F. (2002) Organic fruit production in Europe. The Compact Fruit Tree 35(3), 77–82.

    Google Scholar 

  • Weibel F., Häseli A. (2003) Organic apple production – with emphasis on European experiences. In: Ferree, D.C., Warrington, I.J. (Eds.), Apples: Botany, Production and Uses. CAB International, Wallingford, UK, pp. 551–583.

    Chapter  Google Scholar 

  • Weltzien H.C. (1991) Biocontrol of foliar fungal diseases with compost extracts. In: Andrews J.H., Hirano S.S. (Eds.), Microbial Ecology of Leaves. Springer Verlag, New York, USA, pp. 430–450.

    Google Scholar 

  • Wicks, T. (1974) Tolerance of apple scab fungus to benzimidazole fungicides. Plant Dis. Rep. 58, 886–889.

    CAS  Google Scholar 

  • Wicks, T. (1976) Persistence of benomyl tolerance in Venturia inaequalis. Plant Dis. Rep. 60, 818–819.

    CAS  Google Scholar 

  • White A.G., Bus V.G. (1999) Breeding commercial apple cultivars in New Zealand with resistances to pests and diseases. Acta Hort. 484, 157–161.

    Google Scholar 

  • Wilcox W.F., Wasson D.I., Kovach J. (1992) Development and evaluation of an integrated, reduced-spray program using sterol demethylation inhibitor fungicides for control of primary apple scab. Plant Dis. 76, 669–677.

    CAS  Google Scholar 

  • Wilcoxon F., McCallan S.E.A. (1930) The fungicidal action of sulphur. I. The alleged role of pentathionic acid. Phytopathology 20, 391–417.

    CAS  Google Scholar 

  • Williams E.B., Kuc J. (1969) Resistance in Malus to Venturia inaequalis. Annu. Rev. Phytopathol. 7, 223–246.

    Article  CAS  Google Scholar 

  • Williamson S.M., Sutton T.B. (2000) Sooty blotch and flyspeck of apple: etiology, biology, and control. Plant Dis. 84, 714–724.

    Article  Google Scholar 

  • Wilson E.E. (1966) Development of European canker in a California apple district. Plant Dis. Rep. 50, 182–186.

    Google Scholar 

  • Wormald H. (1954) The brown rot diseases of fruit trees. Ministry of Agriculture. Fisheries and Food Technical Bulletin 3, 113 pp.

    Google Scholar 

  • Xu X-M. (1999) Modelling and forecasting the epidemics of apple powdery mildew (Podosphaera leucotricha). Plant Pathol. 48, 462–471.

    Article  Google Scholar 

  • Xu X.-M., Butt D.J. (1993) PC-based disease warning systems for use by apple growers. EPPO Bull. 23, 595–600.

    Article  Google Scholar 

  • Xu X.-M., Butt D.J. (1994) The biology and epidemiology of Nectria galligena and an infection warning system. Nor. J. Agric. Sci. Suppl. 17, 317–324.

    Google Scholar 

  • Xu X., Butt D.J. (1996) Tests of fungicides for post-germination activity against Nectria galligena, causal agent of canker and fruit rot of apple. Crop Prot. 15, 513–519.

    Article  CAS  Google Scholar 

  • Xu X.M., Butt D.J., Ridout M.S. (1998) The effects of inoculum dose, duration of wet period, temperature and wound age on infection by Nectria galligena of pruning wounds on apple. Eur. J. Plant Pathol. 104, 511–519.

    Article  Google Scholar 

  • Xu X-M., Madden L.V. (2002) Incidence and density relationships of powdery mildew on apple. Phytopathology 92, 1005–1014.

    Article  PubMed  Google Scholar 

  • Xu X.M., Robinson J.D. (2000) Epidemiology of brown rot (Monilinia fructigena) on apple: infection of fruits by conidia. Plant Pathol. 49, 201–206.

    Article  Google Scholar 

  • Xu X.M., Robinson J.D., Berrie A.M., Harris D.C. (2001) Spatio-temporal dynamics of brown rot (Monilinia fructigena) on apple and pear. Plant Pathol. 50, 569–578.

    Article  Google Scholar 

  • Yoder K.S. (2000) Effect of powdery mildew on apple yield and economic benefits of its management in Virginia. Plant Dis. 84, 1171–1176.

    Article  Google Scholar 

  • Yoder K.S., Hickey K.D. (1983) Control of apple powdery mildew in the mid-Atlantic region. Plant Dis. 67, 245–248.

    Article  Google Scholar 

  • Yoder K.S., Hickey K.D. (1995) Apple powdery mildew. In: Mid-Atlantic Orchard Monitoring Guide, 238 pp.

    Google Scholar 

  • Yoder K.S., Cochran A.E.I., Royston Jr. W.S., Kilmer S.W. (2002) Comparison of biocontrol, oil-related and conventional fungicides on Idared apple, 2001. Fung. Nemat. Tests 57, PF31.

    Google Scholar 

  • Yohalem D.S., Harris R.F., Andrews J.H. (1994) Aqueous extracts of spent mushroom substrate for foliar disease control. Compost Sci. Util. 2, 67–74.

    Google Scholar 

  • Yohalem D.S., Voland R.P., Nordheim E.V., Harris R.F., Andrews J.H. (1996) Sample size requirements to evaluate spore germination inhibition by compost extracts. Soil Biol. Biochem. 28, 519–525.

    Article  CAS  Google Scholar 

  • Young C.S., Andrews J.H. (1990a) Inhibition of pseudothecial development of Venturia inaequalis by the basidiomycete Athelia bombacina in apple leaf litter. Phytopathology 80, 536–542.

    Article  Google Scholar 

  • Young C.S., Andrews J.H. (1990b) Recovery of Athelia bombacina from apple leaf litter. Phytopathology 80, 530–535.

    Article  Google Scholar 

  • Ypema H., Gold R.E. (1999) Kresoxim-methyl: modification of a naturally occurring compound to produce a new fungicide. Plant Dis. 83, 4–19.

    Article  CAS  Google Scholar 

  • Zagaja S.W., Millikan D.F., Kaminski W., Myszka T. (1971) Field resistance to Nectria canker in apple. Plant Dis. Rep. 55, 445–447.

    Google Scholar 

  • Zalom F.G. (1993) Reorganizing to facilitate the development and use of integrated pest management. Agric. Ecosyst. Environ. 46, 245–256.

    Article  Google Scholar 

  • Zemmer F., Marschall K., Kelderer M., Trapman M., Zegler R. (2002) Mode of action of lime sulphur against apple-scab (Venturia inaequalis). 10th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing and Viticulture, LVWO Weinsberg, Germany, 10, 94–95.

    Google Scholar 

  • Zhang W., Han D.Y., Dick W.A., Davis K.R., Hoitink H.A.J. (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and arabidopsis. Phytopathology 88, 450–454.

    Article  PubMed  CAS  Google Scholar 

  • Zheng D., Olaya G., Köller W. (2000) Characterization of laboratory mutants of Venturia inaequalis resistant to the strobilurin related fungicide kresoxim-methyl. Curr. Genet. 38, 148–155.

    Article  PubMed  CAS  Google Scholar 

  • Ziv O., Zitter T.A. (1992) Effects of bicarbonates and film-forming polymers on cucurbit foliar diseases. Plant Dis. 76, 513–517.

    CAS  Google Scholar 

  • Zuck M.G., Hyland F., Caruso F.L. (1982) Possible hyperparasitism of Venturia inaequalis by Cladosporium spp. and Hyalodendron spp. Phytopathology 72, 268.

    Google Scholar 

Download references

Acknowledgements

The author thanks Dr. A. F. Fieldsend (University of Debrecen, Centre for Land Utilisation, Technology and Regional Development) and Dr. J. M. Gáll (University of Debrecen, Institute of Mathematics and Informatics) for their critical reading of the manuscript and valuable suggestions. Thanks are also due to J. Holb and F. Abonyi for their excellent cooperation. This research was supported partly by a grant of the Hungarian Scientific Research Fund and a János Bolyai Research Fellowship awarded to I.J. Holb.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Holb, I.J. (2009). Fungal Disease Management in Environmentally Friendly Apple Production – A Review. In: Lichtfouse, E. (eds) Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Sustainable Agriculture Reviews, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2716-0_10

Download citation

Publish with us

Policies and ethics