Advertisement

Extracting the Time-Domain Building Response From Random Vibrations

  • Roel Snieder
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

The extraction of the response from field fluctuations excited by random sources has received considerable attention in a variety of different fields. I show application of this principle to the motion recorded after an earthquake in the Millikan Library at the California Institute of Technology in Pasadena, California. Deconvolution of the recorded motion at different floors unravels the building response from the complicated excitation and from the unknown soil-structure interaction. I give arguments why analyzing the response function in the time domain is more informative than only using the amplitude spectrum of the transfer function. I provide examples showing that it is possible to extract the building response that satisfies the same dynamic equations as does the real building, but that may satisfy different boundary conditions at the base. This means one can obtain from the data the building response with different soil-structure interaction than that of the real building.

Keywords

building response time domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K. (1957) Space and time spectra of stationary stochastic waves with special reference to microtremors, B. Earthq. Res. Inst. 35, 415–456.MathSciNetGoogle Scholar
  2. Bakulin, A. and Calvert, R. (2006) The virtual source method: Theory and case study, Geophysics 71, SI139–SI150.CrossRefGoogle Scholar
  3. Bakulin, A., Mateeva, A., Mehta, K., Jorgensen, P., Ferrandis, J., Sinha Herhold, I., and Lopez, J. (2007) Virtual source applications to imaging and reservoir monitoring, The Leading Edge 26, 732–740.CrossRefGoogle Scholar
  4. Campillo, M. and Paul, A. (2003) Long-range correlations in the diffuse seismic coda, Science 299, 547–549.CrossRefGoogle Scholar
  5. Chávez-Garcia, F. and Luzón, F. (2005) On the correlation of seismic microtremors, J. Geophys. Res. 110, B11313, doi:10.1029/2005JB003686.CrossRefGoogle Scholar
  6. Curtis, A., Gerstoft, P., Sato, H., Snieder, R., and Wapenaar, K. (2006) Seismic interferometry — turning noise into signal, The Leading Edge 25, 1082–1092.CrossRefGoogle Scholar
  7. Draganov, D., Wapenaar, K., Mulder, W., Singer, J., and Verdel, A. (2007) Retrieval of reflections from seismic background-noise measurements, Geophys. Res. Lett. 34, L04305.CrossRefGoogle Scholar
  8. Hornby, B. and Yu, J. (2007) Interferometric imaging of a salt flank using walkaway VSP data, The Leading Edge 26, 760–763.CrossRefGoogle Scholar
  9. Kohler, M., Heaton, T., and Bradford, S. (2007) Propagating waves in the steel, moment-frame factor building recorded during earthquakes, B. Seismol. Soc Am. 97, 1334–1345.CrossRefGoogle Scholar
  10. Larose, E., Margerin, L., Derode, A., van Tiggelen, B., Campillo, M., Shapiro, N., Paul, A., Stehly, L., and Tanter, M. (2006a) Correlation of random wavefields: An interdisciplinary review, Geophysics 71, SI11–SI21.CrossRefGoogle Scholar
  11. Larose, E., Montaldo, G., Derode, A., and Campillo, M. (2006b) Passive imaging of localized reflectors and interfaces in open media, Appl. Phys. Lett. 88, 104103.CrossRefGoogle Scholar
  12. Lobkis, O. and Weaver, R. (2001) On the emergence of the Green's function in the correlations of a diffuse field, J. Acoust. Soc. Am. 110, 3011–3017.CrossRefGoogle Scholar
  13. Louie, J. (2001) Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor analysis, B. Seismol. Soc. Am. 91, 347–364.CrossRefGoogle Scholar
  14. Malcolm, A., Scales, J., and van Tiggelen, B. (2004) Extracting the Green's function from diffuse, equipartitioned waves, Phys. Rev. E 70, 015601.CrossRefGoogle Scholar
  15. Mehta, K., Bakulin, A., Sheiman, J., Calvert, R., and Snieder, R. (2007a) Improving the virtual source method by wavefield separation, Geophysics 72, V79–V86.CrossRefGoogle Scholar
  16. Mehta, K., Snieder, R., and Graizer, V. (2007b) Downhole receiver function: A case study, Bull. Seismol. Soc. Am. 97, 1396–1403.CrossRefGoogle Scholar
  17. Mehta, K., Sheiman, J., Snieder, R., and Calvert, R. (2008) Strengthening the virtual-source method for time-lapse monitoring, Geophysics 73, S73–S80.CrossRefGoogle Scholar
  18. Rickett, J. and Claerbout, J. (1999) Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring, The Leading Edge 18, 957–960.CrossRefGoogle Scholar
  19. Rickett, J. and Claerbout, J. (2000) Calculation of the sun's acoustic impulse response by multidimensional spectral factorization, Sol. Phys. 192, 203–210.CrossRefGoogle Scholar
  20. Roux, P. and Fink, M. (2003) Green's function estimation using secondary sources in a shallow water environment, J. Acoust. Soc. Am. 113, 1406–1416.CrossRefGoogle Scholar
  21. Roux, P., Kuperman, W., and Group, N. (2004) Extracting coherent wave fronts from acoustic ambient noise in the ocean, J. Acoust. Soc. Am. 116, 1995–2003.CrossRefGoogle Scholar
  22. Roux, P., Sabra, K., Gerstoft, P., and Kuperman, W. (2005) P-waves from cross correlation of seismic noise, Geophys. Res. Lett. 32, L19303, doi:10.1029/2005GL023803.CrossRefGoogle Scholar
  23. Sabra, K., Conti, S., Roux, P., and Kuperman, W. (2007) Passive in-vivo elastography from skeletal muscle noise, Appl. Phys. Lett. 90, 194101.CrossRefGoogle Scholar
  24. Sabra, K., Gerstoft, P., Roux, P., Kuperman, W., and Fehler, M. (2005a) Surface wave tomography from microseisms in Southern California, Geophys. Res. Lett. 32, L14311, doi:10.1029/2005GL023155.CrossRefGoogle Scholar
  25. Sabra, K., Roux, P., Thode, A., D'Spain, G., and Hodgkiss, W. (2005b) Using ocean ambient noise for array self-localization and self-synchronization, IEEE J. of Oceanic Eng. 30, 338–347.CrossRefGoogle Scholar
  26. Sabra, K., Roux, P., Gerstoft, P., Kuperman, W., and Fehler, M. (2006) Extracting coherent coda arrivals from cross-correlations of long period seismic waves during the Mount St. Helens 2004 eruption, J. Geophys. Res. 33, L06313, doi:1029.2005GL025563.Google Scholar
  27. Sabra, K., Srivastava, A., Lanza di Scalea, F., Bartoli, I., Rizzo, P., and Conti, S. (2008) Structural health monitoring by extraction of coherent guided waves from diffuse fields, J. Acoust. Soc. Am. 123(1), EL8–EL13.CrossRefGoogle Scholar
  28. Schuster, G., Yu, J., Sheng, J., and Rickett, J. (2004) Interferometric/daylight seismic imaging, Geophys. J. Int. 157, 838–852.CrossRefGoogle Scholar
  29. Sens-Schönfelder, C. and Wegler, U. (2006) Passive image interferometry and seasonal variations at Merapi volcano, Indonesia, Geophys. Res. Lett. 33, L21302, doi:10.1029/ 2006GL027797.CrossRefGoogle Scholar
  30. Shapiro, N. and Campillo, M. (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett. 31, L07614, doi10.1029/ 2004GL019491.CrossRefGoogle Scholar
  31. Shapiro, N., Campillo, M., Stehly, L., and Ritzwoller, M. (2005) High-resolution surface-wave tomography from ambient seismic noise, Science 307, 1615–1618.CrossRefGoogle Scholar
  32. Snieder, R. and Safak, E. (2006) Extracting the building response using seismic interfero-metry: Theory and application to the Millikan Library in Pasadena, California, Bull. Seismol. Soc. Am. 96, 586–598.CrossRefGoogle Scholar
  33. Snieder, R., Sheiman, J., and Calvert, R. (2006) Equivalence of the virtual source method and wavefield deconvolution in seismic interferometry, Phys. Rev. E 73, 066620.CrossRefGoogle Scholar
  34. Thompson, D. and Snieder, R. (2006) Seismic anisotropy of a building, The Leading Edge 25, 1093.CrossRefGoogle Scholar
  35. van Wijk, K. (2006) On estimating the impulse response between receivers in a controlled ultrasonic experiment, Geophysics 71, SI79–SI84.CrossRefGoogle Scholar
  36. Weaver, R. and Lobkis, O. (2001) Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies, Phys. Rev. Lett. 87, 134301.CrossRefGoogle Scholar
  37. Weaver, R. and Lobkis, O. (2003) On the emergence of the Green's function in the correlations of a diffuse field: Pulse-echo using thermal phonons, Ultrasonics 40, 435–439.CrossRefGoogle Scholar
  38. Wegler, U. and Sens-Schönfelder, C. (2007) Fault zone monitoring with passive image interferometry, Geophys. J. Int. 168, 1029–1033.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Roel Snieder
    • 1
  1. 1.Center for Wave Phenomena and Department of GeophysicsColorado School of MinesGoldenUSA

Personalised recommendations