Skip to main content

DNA Lesions Caused by ROS and RNOS: A Review of Interactions and Reactions Involving Guanine

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry

Abstract

DNA is constantly attacked by a large number of endogenous and exogenous reactive oxygen species (ROS), reactive nitrogen oxide species (RNOS), and alkylating agents which produce a wide variety of modifications of its constituents, particularly the bases. Some of these modifications (lesions) are hazardous to normal cell functioning, and are implicated in several lethal conditions including chronic inflammatory diseases, atherosclerosis, aging, mutation, cancer, and neurodegenerative disorders, such as the Alzheimer's and Parkinson's diseases.

ROS and RNOS are present abundantly in living cells, and can oxidize and/or nitrate almost all the classes of biomolecules including DNA. Different ROS and RNOS primarily react with guanine in DNA to form 8-oxoguanine (8-oxoG) and 8-nitroguanine (8-nitroG) along with other mutagenic products. 8-OxoG readily mispairs with adenine during DNA replication to cause GC → AT transversion mutation. 8-OxoG and 8-nitroG are considered to be highly potent initiators of mutation and cancer.

Reactions of guanine and/or imidazole, the latter taken as a model for the five-membered ring of guanine, with different ROS and RNOS including the OHċ radical, H2O2, H2O3, ONOO, ONOOCO 2 , HOCl, and NO2Cl, have been studied using quantum chemical methods. The present review brings out the main, interesting features of the results obtained in such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Steenken, Purine bases, nucleosides, and nucleotides: Aqueous solution redox chemistry and transformation reactions of their radical cations and e- and OH· adducts. Chem. Rev. 89, 503–520 (1989)

    Article  CAS  Google Scholar 

  2. C.J. Burrows et al., Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 98, 1109–1151 (1998)

    Article  CAS  Google Scholar 

  3. B. Halliwell, Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat. Res. 443, 37–52 (1999)

    CAS  Google Scholar 

  4. J. Cadet et al., Oxidative damage to DNA: Formation, measurement and biochemical features. Mutat. Res. 531, 5–23 (2003)

    CAS  Google Scholar 

  5. H. Wiseman et al., Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29 (1996)

    CAS  Google Scholar 

  6. M.R. Bennett, Reactive oxygen species and death: Oxidative DNA damage in atherosclerosis. Circ. Res. 88, 648–650 (2001)

    Article  CAS  Google Scholar 

  7. S. Magder, Reactive oxygen species: toxic molecules or spark of life? Crit. Care 10, 208 (2006)

    Article  Google Scholar 

  8. J.P.E. Spencer et al., Nitrite-induced deamination and hypochlorite-induced oxidation of DNA in intact human respiratory tract epithelial cells. Free Radic. Biol. Med. 28, 1039–1050 (2000)

    Article  CAS  Google Scholar 

  9. J. Barciszewski et al., Some unusual nucleic acid bases are products of hydroxyl radical oxidation of DNA and RNA. Mol. Biol. Rep. 26, 231–238 (1999)

    Article  CAS  Google Scholar 

  10. J. Cadet et al., Hydroxyl radicals and DNA base damage. Mutat. Res. 424, 9–21 (1999)

    CAS  Google Scholar 

  11. P.C. Dedon et al., Reactive nitrogen species in the chemical biology of inflammation. Arch. Biochem. Biophys. 423, 12–22 (2004)

    Article  CAS  Google Scholar 

  12. L.J. Marnett et al., Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J. Clin. Invest. 111, 583–593 (2003)

    CAS  Google Scholar 

  13. T. Suzuki, DNA damage and mutation caused by vital biomolecules, water, nitric oxide and hypochlorous acid. Genes Environ. 28, 48–55 (2006)

    Article  CAS  Google Scholar 

  14. Y.A. Lee et al., Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate. Chem. Eur. J. 13, 4571–4581 (2007)

    Article  CAS  Google Scholar 

  15. Y. Wang et al., Bulky DNA lesions induced by reactive oxygen species. Chem. Res. Toxicol. 21, 276–281 (2008)

    Article  CAS  Google Scholar 

  16. Y. Mishina et al., Direct reversal of DNA alkylation damage. Chem. Rev. 106, 215–232 (2006)

    Article  CAS  Google Scholar 

  17. M.D. Wyatt et al., Methylating agents and DNA repair responses: Methylated bases and sorces of strand breaks. Chem. Res. Toxicol. 19, 1580–1594 (2006)

    Article  CAS  Google Scholar 

  18. P.K. Shukla et al., Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation. Int. J. Quantum Chem. 107, 1270–1283 (2007)

    Article  CAS  Google Scholar 

  19. P.K. Shukla et al., Reactions of DNA bases with the anti-cancer nitrogen mustard mechlorethamine: A quantum chemical study. Chem. Phys. Lett. 449, 323–328 (2007)

    Article  CAS  Google Scholar 

  20. S. Shahin et al., Mitochondrial and nuclear DNA damage induced by sulphur mustard in keratinocytes. Chem. Biol. Interact. 138, 231–245 (2001)

    Article  CAS  Google Scholar 

  21. J. Simons, How do low energy (0.1-2 eV) electrons cause DNA strand breaks. Acc. Chem. Res 39, 772–779 (2006)

    Article  CAS  Google Scholar 

  22. J. Gu et al., Electron attachment-induced DNA single strand breaks: C3′-O3′ sigma-bond breaking of pyrimidine nucleotides predominates. J. Am. Chem. Soc. 128, 9322–9323 (2006)

    Article  CAS  Google Scholar 

  23. Z. Li et al., Low energy electron induced DNA damage: effects of terminal phosphate and base moieties on the distribution of damage. J. Am. Chem. Soc. 130, 5612–5613 (2008)

    Article  CAS  Google Scholar 

  24. Y. Zheng et al., DNA damage induced by low energy electrons: Electron transfer and diffraction. Phys. Rev. Lett. 96, 208101 (2006)

    Article  CAS  Google Scholar 

  25. M.R. Osborne et al., Alkylation of DNA by the nitrogen mustard bis(2-chloroethyl) methylamine. Chem. Res. Toxicol. 8, 316–320 (1995)

    Article  CAS  Google Scholar 

  26. D. Mu et al., Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol. Cell. Biol. 17, 760–769 (1997)

    CAS  Google Scholar 

  27. A.P. Grollman et al., Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 9, 246–249 (1993)

    Article  CAS  Google Scholar 

  28. M. Bignami et al., Unmasking a killer: DNA O 6-methylguanine and the cytotoxicity of methylating agents. Mutat. Res. 462, 71–82 (2000)

    Article  CAS  Google Scholar 

  29. W.L. Neeley et al., Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem. Res. Toxicol. 19, 491–505 (2006)

    Article  CAS  Google Scholar 

  30. K.C. Cheng et al., 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→T substitutions. J. Biol. Chem. 267, 166–172 (1992)

    CAS  Google Scholar 

  31. E.L. Loechler et al., In vivo mutagenesis by O6-methylguanine built into a unique site in a viral genome. Proc. Natl. Acad. Sci. U.S.A. 81, 6271–6275 (1984)

    Article  CAS  Google Scholar 

  32. A.K. Singh et al., Mismatch base pairing of the mutagen 8-oxoguanine and its derivatives with adenine: A theoretical search for possible antimutagenic agents. Int. J. Quantum Chem. 102, 343–351 (2005)

    Article  CAS  Google Scholar 

  33. G. Forde et al., Theoretical ab initio study of the effects of methylation on structure and stability of G:C Watson-Crick base pair. J. Biomol. Struct. Dyn. 20, 811–818 (2003)

    CAS  Google Scholar 

  34. B. Halliwell et al., Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 186, 1–85 (1990)

    Article  CAS  Google Scholar 

  35. M.S. Cooke et al., Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17, 1195–1214 (2003)

    Article  CAS  Google Scholar 

  36. G. Waris et al., Reactive oxygen species: Role in the development of cancer and various chronic conditions. J. Carcinog. 5, 14 (2006)

    Article  CAS  Google Scholar 

  37. J. Tuo et al., Importance of guanine nitration and hydroxylation in DNA in vitro and in vivo. Free Radic. Biol. Med. 29, 147–155 (2000)

    Article  CAS  Google Scholar 

  38. S.D. Bruner et al., Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859 (2000)

    Article  CAS  Google Scholar 

  39. M. Aslam et al., Reactive oxygen and nitrogen species in Alzheimer's disease. Curr. Alzheimer Res. 1, 111–119 (2004)

    Article  Google Scholar 

  40. T. Finkel et al., Oxidants, oxidative stress and the biology of aging. Nature 408, 239–247 (2000)

    Article  CAS  Google Scholar 

  41. J.E. Klaunig et al., The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44, 239–267 (2004)

    Article  CAS  Google Scholar 

  42. R. Olinski et al., Oxidative DNA damage: Assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome. Free Radic. Biol. Med. 33, 192–200 (2002)

    Article  CAS  Google Scholar 

  43. A. Parihar et al., Oxidative stress and anti-oxidative mobilization in burn injury. Burns 34, 6–17 (2008)

    Article  Google Scholar 

  44. J.S. Beckman et al., Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U S A 87, 1620–1624 (1990)

    Article  CAS  Google Scholar 

  45. P.C. Dedon, The chemical toxicology of 2-Deoxyribose oxidation in DNA. Chem. Res. Toxicol. 21, 206–219 (2008)

    Article  Google Scholar 

  46. B. Halliwell et al., Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean. British J. Phramacol. 142, 231–255 (2004)

    Article  CAS  Google Scholar 

  47. V. Shafirovich et al., Photochemically catalyzed generation of site-specific 8-nitroguanine of long-lived neutral guanine radicals with nitrogen dioxide. Chem. Res. Toxicol. 15, 591–597 (2002)

    Article  CAS  Google Scholar 

  48. M. Dong et al., Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species. Mutat. Res. 594, 120–134 (2006)

    CAS  Google Scholar 

  49. J.C. Niles et al., Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: Structures and mechanisms of product formation. Nitric Oxide 14, 109–121 (2006)

    Article  CAS  Google Scholar 

  50. R. Misiaszek et al., Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair of mechanisms via radical trapping. J. Biol. Chem. 279, 32106–32115 (2004)

    Article  CAS  Google Scholar 

  51. N.R. Jena et al., Mechanisms of formation of 8-oxoguanine due to reactions of one and two OHċ radicals and the H2O2 molecule with guanine: A quantum computational study. J. Phys. Chem. B 109, 14205–14218 (2005)

    Article  CAS  Google Scholar 

  52. N.R. Jena et al., Formation of 8-nitroguanine and 8-oxoguanine due to reactions of peroxynitrite with guanine. J. Comput. Chem. 28, 1321–1335 (2007)

    Article  CAS  Google Scholar 

  53. P.K. Shukla et al., H2O3 as a reactive oxygen species: formation of 8-oxoguanine from its reaction with guanine. J. Phys. Chem. B 111, 4603–4615 (2007)

    Article  CAS  Google Scholar 

  54. P.K. Shukla et al., Catalytic involvement of CO2 in the mutagenesis caused by reactions of ONOO- with guanine. J. Phys. Chem. B 112, 4779–44789 (2008)

    Article  CAS  Google Scholar 

  55. J. Cadet et al., Assessment of oxidative base damage to isolated and cellular DNA by HPLC-MS/MS measurement. Free Radic. Biol. Med. 33, 441–449 (2002)

    Article  CAS  Google Scholar 

  56. J.-L. Ravanat et al., Singlet oxygen oxidation of 2′-deoxyguanosine. Formation and mechanistic insights. Tetrahedron 62, 10709–10715 (2006)

    Article  CAS  Google Scholar 

  57. Y.H. Jang et al., First principle calculations of the tautomers and pKa values of 8-oxoguanine: Implications for mutagenicity and repair. Chem. Res. Toxicol. 15, 1023–1035 (2002)

    Article  CAS  Google Scholar 

  58. V.I. Bruskov et al., Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. Nucleic Acids Res. 30, 1354–1363 (2002)

    Article  CAS  Google Scholar 

  59. X. Cheng et al., Dynamic behavior of DNA base pairs containing 8-oxoguanine. J. Am. Chem. Soc. 127, 13906–13918 (2005)

    Article  CAS  Google Scholar 

  60. R. Saffhill et al., Mechanisms of carcinogenesis induced by alkylating agents. Biochim. Biophys. Acta 823, 111–145 (1985)

    CAS  Google Scholar 

  61. D.T. Beranek, Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat. Res. 231, 11–30 (1990)

    CAS  Google Scholar 

  62. S.A. Kyrtopoulos et al., DNA adducts in humans after exposure to methylating agents. Mutat. Res. 405, 135–143 (1998)

    CAS  Google Scholar 

  63. K.S. Ekanayake et al., Activation barriers for DNA alkylation by carcinogenic methane diazonium ions. J. Comput. Chem. 27, 277–286 (2006)

    Article  CAS  Google Scholar 

  64. G.K. Forde et al., Comprehensive study of the effects of methylation on tautomeric equilibria of nucleic acid bases. J. Phys. Chem. B 110, 15564–15571 (2006)

    Article  CAS  Google Scholar 

  65. A.C. Povey et al., Elevated levels of the pro-carcinogenic adduct, O6-methylguanine, in normal DNA from the cancer prone regions of the large bowel. Gut 47, 362–365 (2000)

    Article  CAS  Google Scholar 

  66. G.P. Margison et al., O6-alkylguanine-DNA alkyltransferase: Role in carcinogenesis and chemotherapy. Bioessays 24, 255–266 (2002)

    Article  CAS  Google Scholar 

  67. H.J. Helbock et al., 8-Hydroxydeoxyguanosine and 8-hydroxyguanine as biomarkers of oxidative DNA damag. Methods Enzymol. 300, 155–166 (1999)

    Google Scholar 

  68. S. Shibutani et al., Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349, 431–434 (1991)

    Article  CAS  Google Scholar 

  69. H. Maki et al., MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355, 273–275 (1992)

    Article  CAS  Google Scholar 

  70. T.K. Hazra et al., Repair of hydantoins, one electron oxidation product of 8-oxoguanine by DNA glycosylases of Escherichia coli. Nucleic Acids Res. 29, 1967–1974 (2001)

    Article  CAS  Google Scholar 

  71. O.M. Panasenko et al., Oxidative modification and nitration of human low-density lipoproteins by the reaction of hypochlorous acid with nitrite. Arch. Biochem. Biophys. 343, 254–259 (1997)

    Article  CAS  Google Scholar 

  72. A.C. Carr et al., The nitric oxide congener nitrite inhibits myeloperoxidase/H2O2/Cl–mediated modification of low density lipoprotein. J. Biol. Chem. 276, 1822–1828 (2001)

    Article  CAS  Google Scholar 

  73. F. Yamakura et al., Modification of tryptophan and tryptophan residues in proteins by reactive nitrogen species. Nitric Oxide 14, 152–161 (2006)

    Article  CAS  Google Scholar 

  74. M. Whiteman et al., Lack of tyrosine nitration by hypochlorous acid in the presence of physiological concentration of nitrite. J. Biol. Chem. 278, 8380–8384 (2003)

    Article  CAS  Google Scholar 

  75. A.S. Ptolemy et al., Strategies for comprehensive analysis of amino acid biomarkers of oxidative stress. Amino Acids 33, 3–18 (2007)

    Article  CAS  Google Scholar 

  76. N.R. Jena et al., Reaction of hypochlorous acid with imidazole: Formation of 2-chloro- and 2-oxoimidazoles. J. Comput. Chem. 29, 98–107 (2008)

    Article  CAS  Google Scholar 

  77. O. Augusto et al., Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology. Free Radic. Biol. Med. 32, 841–859 (2002)

    Article  CAS  Google Scholar 

  78. P.K. Shukla et al., Reactions of NO2Cl with imidazole: A model study for the corresponding reactions of guanine. J. Phys. Chem. B 112, 7925–7936 (2008)

    Article  CAS  Google Scholar 

  79. M.G. Bonini et al., Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate. J. Biol. Chem. 279, 51836–51843 (2004)

    Article  CAS  Google Scholar 

  80. J.F. Turrens, Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 (2003)

    Article  CAS  Google Scholar 

  81. Y. Xia et al., Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc. Natl Acad. Sci. USA 94, 6954–6958 (1997)

    Article  CAS  Google Scholar 

  82. J.F. Torrens et al., Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mito. Arch. Biochem. Biophys. 237, 408–414 (1985)

    Article  Google Scholar 

  83. G.L. Squadrito et al., Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med. 25, 392–403 (1998)

    Article  CAS  Google Scholar 

  84. J. Carlsson et al., Hydrogen peroxide and superoxide radical formation in anaerobic broth media exposed to atmospheric oxygen. Appl. Environ. Microbiol. 36, 223–229 (1978)

    CAS  Google Scholar 

  85. W.A. Pryor et al., The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, L699–L722 (1995)

    CAS  Google Scholar 

  86. R. Misiaszek et al., Combination reactions of superoxide with 8-oxoG radicals in DNA: kinetics and enol products. J. Biol. Chem. 280, 6293–6300 (2005)

    Article  CAS  Google Scholar 

  87. B. Epe, Genotoxicity of singlet O2. Chem.-Biol. Intteract 80, 239–260 (1992)

    Article  Google Scholar 

  88. D.B. Min et al., Chemistry and reaction of singlet oxygen in foods. Compr. Rev. Food Sci. Food Safety 1, 58–72 (2002)

    Article  CAS  Google Scholar 

  89. F. Wilkinson et al., Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 22, 113–262 (1993)

    Article  CAS  Google Scholar 

  90. P.F. Santos et al., Singlet oxygen generation ability of squarylium cyanine dyes. J. Photochem. Phtobiol. A 160, 159–161 (2003)

    Article  CAS  Google Scholar 

  91. E. Skovsen et al., Two-photon singlet oxygen microscopy: The challenges of working with single cells. Photochem. Photobiol. 73, 1187–1197 (2006)

    Article  CAS  Google Scholar 

  92. P.C. Mishra et al., Interaction of singlet oxygen and superoxide radical anion with guanine and formation of its mutagenic modification 8-oxoguanine. Int. J. Quantum Chem. 102, 282–301 (2005)

    Article  CAS  Google Scholar 

  93. J.M. McCord et al., Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem 244, 6049–6055 (1969)

    CAS  Google Scholar 

  94. I. Fridovich, Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97–112 (1995)

    Article  CAS  Google Scholar 

  95. H.G.D. Niekus et al., Superoxide dismutase and hydrogen peroxide formation in campylobacter sptorum subspecies bubulus. Arch. Microbiol. 119, 37–42 (1978)

    Article  CAS  Google Scholar 

  96. R. Kevin et al., Mechanism of superoxide and hydrogen peroxide formation by fumarate reductases, succinate dehydrogenase, aspartate oxidase. J. Biol. Chem. 277, 42563–42571 (2002)

    Article  CAS  Google Scholar 

  97. L. Brambilla et al., Mitochondrial formation of hydrogen peroxide is casually linked to the antimycin A-mediated prevention of tert- butylhydroperoxide- induced U937 cell death. FEBS Lett. 431, 245–249 (1998)

    Article  CAS  Google Scholar 

  98. R. Fritz et al., Compartment-dependent management of H2O2 by peroxisomes. Free Radic. Biol. Med. 42, 1119–1129 (2007)

    Article  CAS  Google Scholar 

  99. B.M. Babior, Phagocytes and oxidative stress. Am. J. Med. 109, 33–44 (2000)

    Article  CAS  Google Scholar 

  100. E. Graf et al., Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J. Biol. Chem 259, 3620–3624 (1984)

    CAS  Google Scholar 

  101. H. Fickl et al., Vanadium promotes hydroxyl radical formation by activated human neutrophils. Free Radic. Biol. Med. 40, 146–155 (2006)

    Article  CAS  Google Scholar 

  102. J.P. Kehrer, The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149, 43–50 (2000)

    Article  CAS  Google Scholar 

  103. L.P. Candeias et al., Reaction of HOċ with guanine derivatives in aqueous solution: Formation of two different redox active OH·-adduct radicals and their unimolecular transformation reactions. Properties of G(-H). Chem. Eur. J 6, 475–484 (2000)

    Article  CAS  Google Scholar 

  104. N.R. Jena et al., Addition and hydrogen abstraction reactions of an OH· radical with 8-oxoguanine. Chem. Phys. Lett. 422, 417–423 (2006)

    Article  CAS  Google Scholar 

  105. Y.J. Ji et al., Theoretical study of the OH· reaction with cytosine. J. Mol. Struct.: THEOCHEM 723, 123–129 (2005)

    Article  CAS  Google Scholar 

  106. J. Llano et al., Mechanism of hydroxyl radical addition to imidazole and subsequent water elimination. J. Phys. Chem. B 103, 5598–5607 (1999)

    Article  CAS  Google Scholar 

  107. W. Hiraoka et al., Free-radical reactions induced by OH·-radical attack on cytosine-related compounds: a study by a method combining ESR, spin trapping and HPLC. Nucleic Acids Res. 18, 1217–1223 (1990)

    Article  CAS  Google Scholar 

  108. Y. Wu et al., On the Mechanisms of OH· Radical Induced DNA-Base Damage: A Comparative Quantum Chemical and Car-Parrinello Molecular Dynamics Study. J. Phys. Chem. A 108, 2922–2929 (2004)

    Article  CAS  Google Scholar 

  109. P. Schyaman et al., Hydroxyl radical-thymine adduct induced DNA damage. Chem. Phys. Lett. 458, 186–189 (2008)

    Article  CAS  Google Scholar 

  110. S. Sun et al., Radical-mediated cytosine and S-methylcytosine hydrolytic deamination reactions. Int. J. Quantum Chem. 106, 1878–1894 (2006)

    Article  CAS  Google Scholar 

  111. A. Grand et al., H atom and OH· radical reactions with 5-methylcytosine. J. Phys. Chem. A 111, 8968–8972 (2007)

    Article  CAS  Google Scholar 

  112. B.G. Eatock et al., Ab intio SCF MO calculation on the reaction of hydroxyl radical with cytosine. Can. J. Chem. 64, 914–919 (1986)

    Article  CAS  Google Scholar 

  113. C.S. Foote et al., Assessment of chlorination by human neutrophills. Nature 301, 715–716 (1983)

    Article  CAS  Google Scholar 

  114. M. Masuda et al., Chlorination of guanosine and other nucleosides by hypochlorous acid and myeloperoxidase of activated human neutrophils. J. Biol. Chem. 276, 40486–40496 (2001)

    Article  CAS  Google Scholar 

  115. J. Marcinkiewicz et al., Antimicrobial and cytotoxic activity of hypochlorous acid: Interactions with taurine and nitrite. Inflamm. Res. 49, 280–289 (2000)

    Article  CAS  Google Scholar 

  116. M. Whiteman et al., Hypochlorous acid-induced DNA base modification: Potentiation by nitrite: Biomarkers of DNA damage by reactive oxygen species. Biochem. Biophys. Res. Commun. 257, 572–576 (1999)

    Article  CAS  Google Scholar 

  117. P.T. Nyffeller et al., Dihydrogen trioxide (HOOOH) is generated during the thermal reaction between hydrogen peroxide and ozone. Angew. Chem. Int. Ed. 43, 4656–4659 (2004)

    Article  CAS  Google Scholar 

  118. B. Plesničar, Progress in the chemistry of dihydrogen trioxide (HOOOH). Acta Chim. Slov. 52, 1–12 (2005)

    Google Scholar 

  119. P. Wentworth et al., Antibody catalysis of the oxidation of water. Science 273, 1806–1811 (2001)

    Article  Google Scholar 

  120. B.H.J. Bielski et al., Absorption spectra and kinetics of hydrogen sesquioxide and the perhydroxyl radical. J. Phys. Chem. 72, 3836–3841 (1968)

    Article  CAS  Google Scholar 

  121. P.A. Giguere et al., Raman study of matrix isolated H2O2 and D2O2. Chem. Phys. Lett. 33, 479–482 (1975)

    Article  CAS  Google Scholar 

  122. A. Engdahl et al., Vibrational spectrum of H2O3. Science 295, 482–483 (2002)

    Article  CAS  Google Scholar 

  123. K. Suma et al., The rotational spectrum and structure of HOOOH. J. Am. Chem. Soc. 127, 14998–14999 (2005)

    Article  CAS  Google Scholar 

  124. X. Xu et al., The gas phase reaction of singlet oxygen with water: A water-catalyzed mechanism. Proc. Natl. Acad. Sci. U S A 99, 3376–3381 (2002)

    Article  CAS  Google Scholar 

  125. D.J. Mckay et al., How long can you make an oxygen chain. J. Am. Chem. Soc. 120, 1003–1013 (1999)

    Article  Google Scholar 

  126. F.B. Jensen, Nitric oxide formation from the reaction of nitrite with carp and rabit hemoglobin at intermediate oxygen saturations. FEBS J. 275, 3375–3387 (2008)

    Article  CAS  Google Scholar 

  127. H. Ischiropoulos, Biological tyrosine nitration: A pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356, 1–11 (1998)

    Article  CAS  Google Scholar 

  128. J.P. Kiss, Role of nitric oxide in the regulation of monoaminergic neurotransmission. Brain Res. Bullet. 52, 459–466 (2000)

    Article  CAS  Google Scholar 

  129. S.V. Lymar et al., CO2-catalyzed one-electron oxidations by peroxynitrite: Properties of the reactive intermediate. Inorg. Chem. 37, 294–301 (1998)

    Article  CAS  Google Scholar 

  130. R.M. Uppu et al., Acceleration of peroxynitrite oxidations by carbon dioxide. Arch. Biochem. Biophys. 327, 335–343 (1996)

    Article  CAS  Google Scholar 

  131. A. Denicola et al., Peroxynitrite reaction with carbon dioxide/ bicarbonate: Kinetics and influence on peroxynitrite-mediated oxidations. Arch. Biochem. Biophys. 333, 49–58 (1996)

    Article  CAS  Google Scholar 

  132. S. Goldstein et al., Formation of peroxynitrate from the reaction of peroxynitrite with CO2: Evidence for carbonate radical production. J. Am. Chem. Soc. 120, 3458–3463 (1998)

    Article  CAS  Google Scholar 

  133. G.L. Squadrito et al., Mapping the reaction of peroxynitrite with CO2: Energetics, reactive species, and biological implications. Chem. Res. Toxicol. 15, 885–895 (2002)

    Article  CAS  Google Scholar 

  134. M.G. Bonini et al., Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. J. Biol. Chem. 274, 10802–10806 (1999)

    Article  CAS  Google Scholar 

  135. M.C. González et al., QM-MM investigation of the reaction of peroxynitrite with carbon dioxide in water. J. Chem. Theory Comput. 3, 1405–1411 (2007)

    Article  CAS  Google Scholar 

  136. S. Steenken et al., How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc. 119, 617–618 (1997)

    Article  CAS  Google Scholar 

  137. C. Richter et al., Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. U S A 85, 6465–6467 (1988)

    Article  CAS  Google Scholar 

  138. M.K. Shigenaga et al., Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc. Natl. Acad. Sci. U S A 86, 9697–9701 (1989)

    Article  CAS  Google Scholar 

  139. D.C. Malins et al., Major alterations in the nucleotide structure of DNA in cancer of the female breast. Cancer Res. 51, 30–32 (1991)

    Google Scholar 

  140. S.J. Culp et al., Structural and conformational analyses of 8-hydroxy-2′-deoxyguanosine. Chem. Res. Toxicol. 2, 416–422 (1989)

    Article  CAS  Google Scholar 

  141. D. Venkateswarlu et al., Tautomeric equilibria in 8-oxopurines: Implications for mutagenicity. J. Comput.-Aid. Mol. Design 12, 373–382 (1998)

    Article  CAS  Google Scholar 

  142. L.G. Brieba et al., Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA polymerase. EMBO J. 23, 3452–3461 (2004)

    Article  CAS  Google Scholar 

  143. N. Suzuki et al., Miscoding Events during DNA Synthesis Past the Nitration-Damaged Base 8-Nitroguanine. Biochemistry 44, 9238–9245 (2005)

    Article  CAS  Google Scholar 

  144. K.J. Laidler, Chemical Kinetics, third edn. (Pearson Education (Singapore) Pte. Ltd, Delhi, India, 2004)

    Google Scholar 

  145. I.N. Levine, Quantum Chemistry, fourth edn. (Prentice-Hall, Inc, Englewood Cliffs, N.J., U S A, 1994)

    Google Scholar 

  146. S. Olivella et al., Mechanisms for the reaction of hydroxyl radicals with acrolein: A theoretical study. J. Chem. Theory Comput. 4, 941–950 (2008)

    Article  CAS  Google Scholar 

  147. S.S. Ramalho et al., Theoretical rate constants for the reaction BF2 + NF = BF3 + N of importance in boron nitride chemistry. Chem. Phys. Lett. 413, 151–156 (2005)

    Article  CAS  Google Scholar 

  148. E. Henon et al., Comparative ab initio MO investigation on the reactivity of the three NH(a1Δ), NH(X3-) and NH22B1) radical species in their bimolecular abstraction gas-phase reaction with the HN3 molecule. J. Mol. Struct. (THEOCHEM) 531, 283–299 (2000)

    Article  CAS  Google Scholar 

  149. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648 (1993)

    CAS  Google Scholar 

  150. C. Lee et al., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  151. M.J. Frisch et al., A direct MP2 gradient method. Chem. Phys. Lett. 166, 275–280 (1990)

    Article  CAS  Google Scholar 

  152. M.J. Frisch et al., Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 166, 281–289 (1990)

    Article  CAS  Google Scholar 

  153. B. Mennucci et al., Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries. J. Chem. Phys. 106, 5151 (1997)

    Article  CAS  Google Scholar 

  154. C. Gonzalez et al., An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154 (1989)

    Article  CAS  Google Scholar 

  155. J. Koller et al., Mechanism of the participation of water in the decomposition of hydrogen trioxide (HOOOH). A theoretical study. J. Am. Chem. Soc. 118, 2470–2472 (1996)

    Article  CAS  Google Scholar 

  156. J.A. Kerr, Bond dissociation energies by kinetics methods. Chem. Rev. 66, 465–500 (1966)

    Article  CAS  Google Scholar 

  157. M. Litorja et al., A photoionization study of the hydroperoxyl radical, HO2, and hydrogen peroxide, H2O2. J. Electron Spectrosc. 97, 131–146 (1998)

    Article  CAS  Google Scholar 

  158. V. Gogonea, Potential energy surface of the reaction of imidazole with peroxynitrite: density functional theory study. Int. J. Quantum Chem. 104, 342–353 (2005)

    Article  CAS  Google Scholar 

  159. C. Crean et al., Oxidation of guanine and 8-oxo-7, 8-dihydroguanine by carbonate radical anions: Insight from oxygen-18 labeling experiments. Angew. Chem. Int. Ed. 44, 5057–5060 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research (New Delhi) and the University Grants Commission (New Delhi) for financial support. PKS gratefully acknowledges the research fellowships received from the University Grants Commission (New Delhi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shukla, P.K., Mishra, P.C. (2009). DNA Lesions Caused by ROS and RNOS: A Review of Interactions and Reactions Involving Guanine. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_22

Download citation

Publish with us

Policies and ethics