Skip to main content

Structure–Activity Relationships in Nitro-Aromatic Compounds

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry

Abstract

Many nitro-aromatic compounds show mutagenic and carcinogenic properties, posing a potential human health risk. Despite this potential health hazard, nitro-aromatic compounds continue to be emitted into ambient air from municipal incinerators, motor vehicles, and industrial power plants. As a result, understanding the structural and electronic factors that influence mutagenicity in nitro-aromatic compounds has been a long standing objective. Progress toward this goal has accelerated over the years, in large part due to the synergistic efforts among toxicology, computational chemistry, and statistical modeling of toxicological data. The concerted influence of several structural and electronic factors in nitro-aromatic compounds makes the development of structure–activity relationships (SARs) a paramount challenge. Mathematical models that include a regression analysis show promise in predicting the mutagenic activity of nitro-aromatic compounds as well as in prioritizing compounds for which experimental data should be pursued. A major challenge of the structure–activity models developed thus far is their failure to apply beyond a subset of nitro-aromatic compounds. Most quantitative structure–activity relationship papers point to statistics as the most important confirmation of the validity of a model. However, the experimental evidence shows the importance of the chemical knowledge in the process of generating models with reasonable applicability. This chapter will concisely summarize the structural and electronic factors that influence the mutagenicity in nitro-aromatic compounds and the recent efforts to use quantitative structure–activity relationships to predict those physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diesel and gasoline engine exhausts and some nitroarenes. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol 46 (World Health Organization, International Agency for Research on Cancer, Lyon, 1989).

    Google Scholar 

  2. R. Atkinson, J. Arey, Mechanisms of the gas-phase reactions of aromatic hydrocarbons and PAHS with OH and NO3 radicals. Polycyclic Aromat. Compd. 27, 15–40 (2007)

    Article  CAS  Google Scholar 

  3. H. Tokiwa, Y. Ohnishi, Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. Crit. Rev. Toxicol. 17, 23–60 (1986)

    Article  CAS  Google Scholar 

  4. L. Möller et al., Nitrated polycyclic aromatic hydrocarbons: A risk assessment for the urban citizen. Environ. Health Perspect. 101, 309–315 (1993)

    Article  Google Scholar 

  5. V. Purohit, A.K. Basu, Mutagenicity of nitroaromatic compounds. Chem. Res. Toxicol. 13, 673–692 (2000)

    Article  CAS  Google Scholar 

  6. H. Yu, Environmental carcinogenic polycyclic aromatic hydrocarbons: Photochemistry and phototoxicity. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. C20, 149–183 (2002)

    CAS  Google Scholar 

  7. V.M. Arlt, 3-Nitrobenzanthrone, a potential human cancer hazard in diesel exhaust and urban air pollution: A review of the evidence. Mutagenesis 20, 399–410 (2005)

    Article  CAS  Google Scholar 

  8. In IPCS INCHEM, Selected Nitro- and Nitro-Oxy-Polycyclic Aromatic Hydrocarbons. Environmental Health Criteria (EHC) Monographs, vol 229 (WHO, Geneva, 2003).

    Google Scholar 

  9. A. Kamiya, Y. Ose, Isolation of dinitropyrene in emission gas from a municipal incinerator and its formation by a photochemical reaction. Sci. Total Environ. 72, 1–9 (1988)

    Article  CAS  Google Scholar 

  10. T. Handa et al., In situ emission levels of carcinogenic and mutagenic compounds from diesel and gasoline engine vehicles on an expressway. Environ. Sci. Technol. 18, 895–902 (1984)

    Article  CAS  Google Scholar 

  11. T. Henderson et al., Triple-quadrupole mass spectrometry studies of nitroaromatic emissions from different diesel engines. Environ. Sci. Technol. 17, 443–449 (1983)

    Article  CAS  Google Scholar 

  12. A. Hönor et al., Monitoring polycyclic aromatic hydrocarbons in waste gases. J. Chromatogr. A 710, 129–137 (1995)

    Article  Google Scholar 

  13. A. Albinet et al., Sampling precautions for the measurement of nitrated polycyclic aromatic hydrocarbons in ambient air. Atmos. Environ. 41, 4988–4994 (2007)

    Article  CAS  Google Scholar 

  14. H. Tokiwa et al., The presence of mutagens/carcinogens in the excised lung and analysis of lung cancer induction. Carcinogenesis 14, 1933–1938 (1993)

    Article  CAS  Google Scholar 

  15. P.P. Fu, Metabolism of nitro-polycyclic aromatic hydrocarbons. Drug Metab. Rev. 22, 209–268 (1990)

    Article  CAS  Google Scholar 

  16. P.P. Fu et al., DNA adducts and carcinogenicity of nitro-polycyclic aromatic hydrocarbons. Environ. Health Perspect. 102(6), 177–183 (1994)

    Article  CAS  Google Scholar 

  17. P.P. Fu, D. Herreno-Saenz, Nitro-polycyclic aromatic hydrocarbons: A class of genotoxic environmental pollutants. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. C17, 1–43 (1999)

    CAS  Google Scholar 

  18. F.A. Beland, F.F. Kadlubar, Metabolic activation and DNA adducts of aromatic amines and nitroaromatic hydrocarbons, in Handbook on Experimental Pharmacology, 94, ed. by C.S. Cooper, P.L. Grover (Springer, Heidelberg, 1990), pp. 267–325

    Google Scholar 

  19. F.A. Beland, M.M. Marques, DNA adducts of nitropolycyclic aromatic hydrocarbons. IARC Sci. Publ. 125, 229–244 (1994)

    CAS  Google Scholar 

  20. T. Sugimura, S. Takayama, Biological actions of nitroarenes in short-term tests on Salmonella, cultured mammalian cells and cultured human tracheal tissues: Possible basis for regulatory control. Environ. Health Perspect. 47, 171–176 (1983)

    Article  CAS  Google Scholar 

  21. M.W. Chou et al., Synthesis, spectral analysis, and mutagenicity of 1-, 3-, and 6-nitrobenzo[a]pyrene. J. Med. Chem. 27, 1156–1161 (1984)

    Article  CAS  Google Scholar 

  22. B.S. Hass et al., Mutagenicity of the mononitrobenzo[a]pyrenes in Chinese hamster ovary cells mediated by rat hepatocytes or liver S9. Carcinogenesis 7, 681–684 (1986)

    Article  CAS  Google Scholar 

  23. R.H. Heflich et al., Mutagenicity of 1-, 3- and 6-nitrosobenzo[a]pyrene in Salmonella typhimurium and Chinese hamster ovary cells. Mutat. Res. Lett. 225, 157–163 (1989)

    Article  CAS  Google Scholar 

  24. H.S. Rosenkranz, R. Mermelstein, Mutagenicity and genotoxicity of nitroarenes. All nitro-containing chemicals were not created equal. Mutat. Res. Rev Genet. 114, 217–267 (1983)

    CAS  Google Scholar 

  25. J.R. Thornton-Manning et al., Microsomal activation of 1- and 3-nitrobenzo[a]pyrene to mutagens in Chinese hamster ovary cells. Mutagenesis 3, 233–237 (1988)

    Article  CAS  Google Scholar 

  26. C.M. White, Nitrated Polycyclic Aromatic Hydrocarbons (Heidelberg, New York, 1985)

    Google Scholar 

  27. B.N. Ames et al., Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31, 347–363 (1975)

    CAS  Google Scholar 

  28. N. Sera et al., Mutagenicity of nitrophenanthrene derivatives for Salmonella typhimurium: Effects of nitroreductase and acetyltransferase. Mutat. Res. 349, 137–144 (1996)

    Google Scholar 

  29. Y. Hagiwara et al., Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possessing elevated levels of both nitroreductase and acetyltransferase activity. Mutat. Res. 291, 171–180 (1993)

    CAS  Google Scholar 

  30. F.A. Beland et al., The in vitro metabolic activation of nitro polycyclic aromatic hydrocarbons. ACS Sym. Ser. 283, 371–396 (1985)

    Article  CAS  Google Scholar 

  31. P.P. Fu et al., Effects of nitro substitution on the in vitro metabolic activation of polycyclic aromatic hydrocarbons, in Polycyclic Aromatic Hydrocarbon Carcinogenesis: Structure–Activity Relationships, ed. by S.K. Yang, B.D. Silverman (CRC Press, Florida, 1988), pp. 37–65

    Google Scholar 

  32. P.P. Fu et al., Nitroreduction of 6-nitrobenzo[a]pyrene: A potential activation pathway in humans. Mutat. Res. Lett. 209, 1213–1219 (1988)

    Google Scholar 

  33. P.J. Andrews et al., Identification of the DNA adduct formed by metabolism of 1, 8-dinitropyrene in Salmonella typhimurium. Carcinogenesis 7, 105–110 (1986)

    Article  CAS  Google Scholar 

  34. K.K. Colvert, P.P. Fu, Xanthine oxidase-catalyzed DNA binding of dihydrodiol derivatives of nitro-polycyclic aromatic hydrocarbons. Biochem. Bioph. Res. Co. 141, 245–250 (1986)

    Article  CAS  Google Scholar 

  35. J.A. DiPaolo et al., Nitration of carcinogenic and noncarcinogenic polycyclic aromatic hydrocarbons results in products able to induce transformation of Syrian hamster cells. Carcinogenesis 4, 357–359 (1983)

    Article  CAS  Google Scholar 

  36. M.Y. Wang et al., Microsomal metabolism of 3-nitrobenzo[a]pyrene: Effect of the nitro substituent on the regioselective metabolism of benzo[a]pyrene. J. Chinese Biochem. Soc. 17, 1–11 (1988)

    CAS  Google Scholar 

  37. P.P. Fu, L.S. Von Tungelin, Metabolic formation of stable 9-nitroanthracene 1, 2- and 3, 4-epoxides. Polycyclic Aromat. Compd. 2, 29–37 (1991)

    Article  CAS  Google Scholar 

  38. R.H. Heflich et al., 1-Nitrosopyrene: An intermediate in the metabolic activation of 1-nitropyrene to a mutagen in Salmonella typhimurium TA1538. Mutat. Res. 149, 25–32 (1985)

    CAS  Google Scholar 

  39. E.K. Fifer et al., Synthesis and mutagenicity of 1-nitro-6-nitrosopyrene and 1-nitro-8-nitrosopyrene, potential intermediates in the metabolic activation of 1, 6- and 1, 8-dinitropyrene. Carcinogenesis 7, 65–70 (1986)

    Article  CAS  Google Scholar 

  40. R.H. Heflich et al., DNA adduct formation and mutation induction by nitropyrenes in Salmonella and Chinese hamster ovary cells: Relationships with nitroreduction and acetylation. Environ. Health Perspect. 62, 135–143 (1985)

    Article  CAS  Google Scholar 

  41. P.P. Fu et al., Metabolism of isomeric nitrobenzo[a]pyrenes leading to DNA adducts and mutagenesis. Mutat. Res. 376, 43–51 (1997)

    CAS  Google Scholar 

  42. P.P. Fu et al., The orientation of the nitro substituent predicts the direct-acting bacterial mutagenicity of nitrated polycyclic aromatic hydrocarbons. Mutat. Res. 143, 173–181 (1985)

    CAS  Google Scholar 

  43. P.P. Fu et al., Effect of the orientation of nitro substituent on the bacterial mutagenicity of dinitrobenzo[e]pyrenes. Mutat. Res. Lett. 225, 121–125 (1989)

    Article  CAS  Google Scholar 

  44. H. Jung et al., Nitro group orientation, reduction potential, and direct-acting mutagenicity of nitro-polycyclic aromatic hydrocarbons. Environ. Mol. Mutagen. 17, 169–180 (1991)

    Article  CAS  Google Scholar 

  45. K. Fukuhara et al., Di- and Trinitrophenanthrenes: Synthesis, Separation, and Reduction Property. Chem. Res. Toxicol. 8, 47–54 (1995)

    Article  CAS  Google Scholar 

  46. IARC monographs on the evaluation of carcinogenic risks to humans. Diesel and gasoline engine exhausts and some nitroarenes. International Agency for Research on Cancer, IARC monographs on the evaluation of carcinogenic risks to humans / World Health Organization, vol 46 (International Agency for Research on Cancer, Lyon 1989), 1–458.

    Google Scholar 

  47. M.W. Chou et al., Multiple metabolic pathways for the mutagenic activation of 3-nitrobenzo[a]pyrene. Carcinogenesis 6, 1235–1238 (1985)

    Article  CAS  Google Scholar 

  48. M.W. Chou et al., Metabolism of 1-nitrobenzo[a]pyrene by rat liver microsomes to potent mutagenic metabolites. Carcinogenesis 7, 1837–1844 (1986)

    Article  CAS  Google Scholar 

  49. J.N. Pitts Jr. et al., Isomeric mononitrobenzo[a]pyrenes: Synthesis, identification and mutagenic activities. Mutat. Res. 140, 81–85 (1984)

    Article  CAS  Google Scholar 

  50. S. Yu et al., Mutagenicity of nitro-polycyclic aromatic hydrocarbons with the nitro substituent situated at the longest molecular axis. Mutat. Res. 283, 45–52 (1992)

    Article  CAS  Google Scholar 

  51. M. Arlt Volker et al., Mutagenicity and DNA adduct formation by the urban air pollutant 2-nitrobenzanthrone. Toxicol. Sci. 98, 445–457 (2007)

    Article  CAS  Google Scholar 

  52. G. Klopman et al., Relationship between polarographic reduction potential and mutagenicity of nitroarenes. Mutat. Res. 126, 139–144 (1984)

    CAS  Google Scholar 

  53. W.A. Lopes et al., Electrochemical reduction potentials of 1-nitropyrene, 9-nitroanthracene, 6-nitrochrysene and 3-nitrofluoranthene and their correlation with direct-acting mutagenicities. J. Braz. Chem. Soc. 16, 1099–1103 (2005)

    CAS  Google Scholar 

  54. W.A. Vance, D.E. Levin, Structural features of nitroaromatics that determine mutagenic activity in Salmonella typhimurium. Environ. Mutagen. 6, 797–811 (1984)

    Article  CAS  Google Scholar 

  55. P. Gramatica et al., Approaches for externally validated QSAR modelling of Nitrated Polycyclic Aromatic Hydrocarbon mutagenicity. SAR QSAR Environ. Res. 18, 169–178 (2007)

    Article  CAS  Google Scholar 

  56. K. El-Bayoumy et al., The influence of methyl substitution on the mutagenicity of nitronaphthalenes and nitrobiphenyls. Mutat. Res. 81, 143–153 (1981)

    CAS  Google Scholar 

  57. K. El-Bayoumy et al., The effects of bay-region methyl substitution on 6-nitrochrysene mutagenicity in Salmonella typhimurium and tumorigenicity in newborn mice. Carcinogenesis 10, 1685–1689 (1989)

    Article  CAS  Google Scholar 

  58. W.A. Vance et al., Disubstituted amino-, nitroso-, and nitrofluorenes: A physicochemical basis for structure–activity relationships in Salmonella typhimurium. Environ. Mutagen. 9, 123–141 (1987)

    Article  CAS  Google Scholar 

  59. G. Klopman, H.S. Rosenkranz, Structural requirements for the mutagenicity of environmental nitroarenes. Mutat. Res. 126, 227–238 (1984)

    CAS  Google Scholar 

  60. M. Klein et al., From mutagenic to non-mutagenic nitroarenes: Effect of bulky alkyl substituents on the mutagenic activity of 4-nitrobiphenyl in Salmonella typhimurium. Part I. Substituents ortho to the nitro group and in 2′-position. Mutat. Res. 467, 55–68 (2000)

    CAS  Google Scholar 

  61. M. Klein et al., From mutagenic to non-mutagenic nitroarenes: Effect of bulky alkyl substituents on the mutagenic activity of nitroaromatics in Salmonella typhimurium. Part II. Substituents far away from the nitro group. Mutat. Res. 467, 69–82 (2000)

    CAS  Google Scholar 

  62. T.R. Juneja et al., Effect of various alkyl and unsaturated substituents on the mutagenicity of some nitrophenyl thioethers. Mutat. Res. 495, 97–102 (2001)

    CAS  Google Scholar 

  63. R. Benigni, Structure–activity relationship studies of chemical mutagens and carcinogens: Mechanistic investigations and prediction approaches. Chem. Rev. 105, 1767–1800 (2005)

    Article  CAS  Google Scholar 

  64. R. Franke, Theoretical Drug Design Methods (Elsevier, New York, 1984)

    Google Scholar 

  65. R. Franke, A. Gruska, General Introduction to QSAR (CRC Press, Boca Raton, 2003)

    Google Scholar 

  66. C. Hansch, A. Leo, Exploring QSAR. 1. Fundamentals and applications in chemistry and biology (American Chemical Society, Washington, DC, 1995)

    Google Scholar 

  67. H. Kubinyi (ed), 3D QSAR in Drug Design: Theory Methods and Applications (ESCOM Science Publishers, The Netherlands, 1993)

    Google Scholar 

  68. M.S. Tute, Comprehensive Medicinal Chemistry (Pergamon Press, New York, 1990)

    Google Scholar 

  69. R. Benigni, C. Bossa, Predictivity of QSAR. J. Chem. Inf. Model. 48, 971–980 (2008)

    Article  CAS  Google Scholar 

  70. D.B. Walsh, L.D. Claxton, Computer-assisted structure–activity relationships of nitrogenous cyclic compounds tested in Salmonella assays for mutagenicity. Mutat. Res. 182, 55–64 (1987)

    CAS  Google Scholar 

  71. A.T. Maynard et al., An Ab initio study of the relationship between nitroarene mutagenicity and electron affinity. Mol. Pharmacol. 29, 629–636 (1986)

    CAS  Google Scholar 

  72. R.L. Lopez de Compadre et al., The role of hydrophobicity in the Ames test. The correlation of the mutagenicity of nitropolycyclic hydrocarbons with partition coefficients and molecular orbital indexes. Int. J. Quantum Chem. 34, 91–101 (1988).

    Google Scholar 

  73. R.L. Lopez de Compadre et al., LUMO energies and hydrophobicity as determinants of mutagenicity by nitroaromatic compounds in Salmonella typhimurium. Environ. Mol. Mutagen. 15, 44–55 (1990).

    Google Scholar 

  74. A.K. Debnath et al., Quantitative structure–activity relationship investigation of the role of hydrophobicity in regulating mutagenicity in the Ames test: 2: Mutagenicity of aromatic and heteroaromatic nitro compounds in Salmonella typhimurium TA100. Environ. Mol. Mutagen. 19, 53–70 (1992)

    Article  CAS  Google Scholar 

  75. A.K. Debnath, C. Hansch, Structure–activity relationship of genotoxic polycyclic aromatic nitro compounds: Further evidence for the importance of hydrophobicity and molecular orbital energies in genetic toxicity. Environ. Mol. Mutagen. 20, 140–144 (1992)

    Article  CAS  Google Scholar 

  76. R. Benigni et al., QSAR models for both mutagenic potency and activity: Application to nitroarenes and aromatic amines. Environ. Mol. Mutagen. 24, 208–219 (1994)

    Article  CAS  Google Scholar 

  77. A.K. Debnath et al., Structure–activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34, 786–797 (1991)

    Article  CAS  Google Scholar 

  78. A.K. Debnath et al., Mechanistic interpretation of the genotoxicity of nitrofurans (antibacterial agents) using quantitative structure–activity relationships and comparative molecular field analysis. J. Med. Chem. 36, 1007–1016 (1993)

    Article  CAS  Google Scholar 

  79. R.D. Cramer III et al., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959–5967 (1988)

    Article  CAS  Google Scholar 

  80. G. Caliendo et al., Shape-dependent effects in a series of aromatic nitro compounds acting as mutagenic agents on S. typhimurium TA98. SAR QSAR Environ. Res. 4, 21–27 (1995)

    Article  CAS  Google Scholar 

  81. M. Fan et al., Comparison of CoMFA models for Salmonella typhimurium TA98, TA100, TA98 + S9 and TA100 + S9 mutagenicity of nitroaromatics. SAR QSAR Environ. Res. 9, 187–215 (1998)

    Article  CAS  Google Scholar 

  82. V. Mersch-Sundermann et al., The structural basis of the genotoxicity of nitroarenofurans and related compounds. Mutat. Res. 304, 271–84 (1994)

    CAS  Google Scholar 

  83. A.H. Morales et al., Quantitative structure activity relationship for the computational prediction of nitrocompounds carcinogenicity. Toxicology 220, 51–62 (2006)

    Article  Google Scholar 

  84. J. Singh et al., Mutagenicity of nitrated polycyclic aromatic hydrocarbons: A QSAR investigation. Chem. Biol. Drug Design 71, 230–243 (2008)

    Article  CAS  Google Scholar 

  85. E. Papa et al., Prediction of PAH mutagenicity in human cells by QSAR classification. SAR QSAR Environ. Res. 19, 115–127 (2008)

    Article  CAS  Google Scholar 

  86. R.A. Vogt et al., unpublished results

    Google Scholar 

  87. M.J. Frisch et al., Gaussian 03 (Gaussian, Wallingford, 2004)

    Google Scholar 

  88. V. Librando et al., Computational study on dipole moment, polarizability and second hyperpolarizability of nitronaphthalenes. THEOCHEM 856, 105–111 (2008)

    Article  CAS  Google Scholar 

  89. V. Librando et al., Electronic properties of some nitrobenzo[a]pyrene isomers: A possible relationship to mutagenic activity. J. Mol. Model. 14, 489–497 (2008)

    Article  CAS  Google Scholar 

  90. K.K. Onchoke et al., Density functional theoretical study of nitrated polycyclic aromatic hydrocarbons. Polycyclic Aromat. Compd. 24, 37–64 (2004)

    Article  CAS  Google Scholar 

  91. K.K. Onchoke et al., Structure and vibrational spectra of mononitrated benzo[a]pyrenes. J. Phys. Chem. A 110, 76–84 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the ACS Petroleum Research Fund, Type DNI. The authors also thank the Department of Chemistry, Case Western Reserve University and the National Science Foundation, Academic Careers in Engineering and Science Program (NSF ACES) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Crespo-Hernández .

Editor information

Editors and Affiliations

Glossary of Molecular Descriptors of Table 10.1

LUMO

Energy of the lowest unoccupied molecular orbital

log P

Logarithm of the octanol/water partition coefficient (descriptor pertaining to the hydrophobic character of the molecule)

log TA100

Mutagenic activity in TA100 strain cells

log TA98

Mutagenic activity in TA98 strain cells

LUMO

Energy of the lowest unoccupied molecular orbital

I a

Indicator variable for which the value is 1 if an acenthrylene ring is present; otherwise the value is zero

I l

Indicator variable for which the value is 1 for compounds with three or more fused rings; otherwise the value is zero

I and

Indicator variable for which the value is 1 for 1- and 2-methylindazole derivatives; otherwise the value is zero

log β

5.48 for the log TA98, and −5.7 for the log TA100

SOSIP

SOS induction potential in E.coli PQ37, measure the genotoxicity of the compound

q c2

Partial atomic charge on the carbon attached to the nitrogen of the nitro group

I sat

Indicator variable for which the value is 1 for saturated ring compounds; otherwise the value is zero

I 5,6

Indicator variable for which the value is 1 for compounds with substituents at the 5- or 6- position of 2-nitronaphtofurans and pyrenofurans; otherwise the value is zero

MR

Molecular refractivity, which is a measure of the substituent bulk for any substituents that are next to the nitro group, negative coefficient indicates its detrimental effect toward log SOSIP

TD50

Carcinogenic potency

\({\Omega^1}\mu_9^{\rm{H}},{\Omega^2}\mu_6^{\rm{H}},{\Omega^3}\mu_{15}^{\rm{H}} \)

Descriptors related to hydrophobicity

\( {\Omega^5}{\mu_1}\mu_4^{\rm{Dip}} \)

Descriptor related to dipole moment

\( {\Omega^4}{\mu_0}\mu_{15}^{\rm{GM}} \)

Descriptor related to the Gasteiger-Marsili charge

\( {\Omega^6}{\mu_0}\mu_{11}^{\rm{MR}},{\Omega^7}\mu_{11}^{\rm{MR}} \)

Descriptors related to molar refractivity (similar to MR above)

CIC1

Descriptor that gives information regarding molecular size; the more rings and nitro groups the more active the compound is

PW2

Descriptor related to the shape of the molecule; the less linear and more circular the molecule the more active the compound is

\( ^3{\chi^v} \) and \( ^2{\chi^{\rm{shape}}} \)

Descriptors that weights the contributions of compound’s size and shape to mutagenicity

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vogt, R.A., Rahman, S., Crespo-Hernández, C.E. (2009). Structure–Activity Relationships in Nitro-Aromatic Compounds. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_10

Download citation

Publish with us

Policies and ethics