Advertisement

Computational Design in Synthetic Biology

  • Maria Suarez
  • Guillermo Rodrigo
  • Javier Carrera
  • Alfonso Jaramillo
Chapter

Abstract

One of the most ambitious goals in biological engineering is the ability to computationally design an organism using unsupervised algorithms. We discuss the development of new automatic methodologies to design biological parts and devices using computational design. Some of them rely on the appropriate characterisation of single genetic elements into SBML models and their posterior assembly to generate the final transcriptional network with targeted behaviour (such as an oscillatory dynamics). This modular construction approach allows implementing a successful modelling-construction-characterization cycle. Currently, it is not clear what role is played by cellular context, and to which extent it is possible to fruitfully use such a modular approach, but the perspectives of a model-based design of biological networks overwhelms the corresponding risk.

Keywords

Synthetic Biology Genetic Network Biological Part Genetic Circuit Synthetic Biologist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Spanish Ministry of Education and Science (ref. TIN 2006-12860), the Structural Funds of the European Regional Development Fund (ERDF), the EU grants BioModularH2 (FP6-NEST contract 043340) and EMERGENCE (FP6-NEST contract 043338) and the ATIGE Genopole/UEVE CR-A3405. GR acknowledges a graduate fellowship from the Conselleria d’Educacio de la Generalitat Valenciana (ref. BFPI 2007/160) and an EMBO Short-term fellowship (ref. ASTF-343.00-2007).

References

  1. Arita M (2004) The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci 101: 1543–1547.PubMedGoogle Scholar
  2. Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ, Stoddard BL and Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441: 656–659.PubMedCrossRefGoogle Scholar
  3. Bailey JE (1991) Toward a science of metabolic engineering. Science 252: 1668–1675.PubMedCrossRefGoogle Scholar
  4. Blum T and Kohlbacher O (2008) MetaRoute: Fast search for relevant metabolic routes for interactive network navigation and visualization. Bioinformatics 24: 2108–2109.PubMedCrossRefGoogle Scholar
  5. Carrera J, Rodrigo G, Jaramillo A (2009a) Model-based redesign of global transcription regulation. Nucleic Acids Res 37: e38.PubMedCrossRefGoogle Scholar
  6. Carrera J, Rodrigo G, Jaramillo A (2009b) Towards the automated engineering of a synthetic genome. Mol Biosyst DOI: 10.1039/b904400k.Google Scholar
  7. Cox RS, Surette MG and Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3: 145.PubMedGoogle Scholar
  8. Croes D, Couche F, Wodak SJ and van Helden J (2005) Metabolic pathfinding: Inferring relevant pathways in biochemical networks. Nucleic Acids Res 33: W326–330.PubMedCrossRefGoogle Scholar
  9. Dasika MS and Maranas CD (2008) OptCircuit: An optimization based method for computational design of genetic circuits. BMC Syst Biol 2: 24.PubMedCrossRefGoogle Scholar
  10. François P and Hakim V (2004) Design of genetic networks with specified functions by evolution in silico. Proc Natl Acad Sci 101: 580–585.PubMedCrossRefGoogle Scholar
  11. Genbank (2008) National center for biotechnology information. A USA national resource of molecular biology information. http://www.ncbi.nlm.nih.gov/Genbank/index.html. Data taken 20th November, 2008.
  12. Handorf T and Ebenhöh O (2007) MetaPath Online: A web server implementation of the network expansion algorithm. Nucleic Acids Res 35: W613–618.PubMedCrossRefGoogle Scholar
  13. Haro MA and de Lorenzo V (2001) Metabolic engineering of bacteria for environmental applications: Construction of pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotechnol 85: 103–113.PubMedCrossRefGoogle Scholar
  14. Hou BK, Wackett LP and Ellis LBM (2003) Microbial pathway prediction: A functional group approach. J Chem Inf Comput Sci 43: 1051–1057.PubMedGoogle Scholar
  15. Hyland C, Pinney JW, McConkey GA and Westhead DR (2006) metaSHARK: A WWW platform for interactive exploration of metabolic networks. Nucleic Acids Res 34: W725–728.PubMedCrossRefGoogle Scholar
  16. Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF, Hilvert D, Houk KN, Stoddard BL and Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319: 1387–1391.PubMedCrossRefGoogle Scholar
  17. Kanehisa M and Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30.PubMedCrossRefGoogle Scholar
  18. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V and López-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33: 6083–6089.PubMedCrossRefGoogle Scholar
  19. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL and Baker D (2008) Design of a novel globular protein fold with atomic-level accuracy. Science 302: 1364–1368.CrossRefGoogle Scholar
  20. Li C, Henry CS, Jankowski MD, Ionita JA, Hatzimanikatis V and Broadbelt LJ (2004) Computational discovery of biochemical routes to specialty chemicals. Chem Eng Sci 59: 5051–5060.CrossRefGoogle Scholar
  21. Looger LL, Dwyer MA, Smith JJ and Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423: 185–190.PubMedCrossRefGoogle Scholar
  22. Marchisio MA and Stelling J (2008) Computational design of synthetic gene circuits with composable parts. Bioinformatics 24: 1903–1910.PubMedCrossRefGoogle Scholar
  23. Martin JJ, Pitera DJ, Withers ST, Newman JD and Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21: 796–802.PubMedCrossRefGoogle Scholar
  24. Mason J, Linsay P, Collins JJ and Glass L (2004) Evolving complex dynamics in electronic models of genetic networks. Chaos 14: 707–715.PubMedCrossRefGoogle Scholar
  25. Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55: 263–283.PubMedCrossRefGoogle Scholar
  26. Paladugu SR, Chickarmane V, Deckard A, Frumkin JP, McCormack M and Sauro HM (2006) In silico evolution of functional modules in biochemical networks. IEE Proc Syst Biol 153: 223–235.CrossRefGoogle Scholar
  27. Pazos F, Guijas D, Valencia A and de Lorenzo V (2005) MetaRouter: Bioinformatics for bioremediation. Nucleic Acids Res 33: D588–592.PubMedCrossRefGoogle Scholar
  28. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungum JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R and Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943.PubMedCrossRefGoogle Scholar
  29. Rodrigo G, Carrera J and Jaramillo A (2007a) Genetdes: Automatic design of transcriptional networks. Bioinformatics 23: 1857–1858.PubMedCrossRefGoogle Scholar
  30. Rodrigo G, Carrera J and Jaramillo A (2007b) Asmparts: Assembly of biological model parts. Syst Synth Biol 1: 167–170.PubMedCrossRefGoogle Scholar
  31. Rodrigo G, Carrera J, Prather KJ and Jaramillo A (2008) DESHARKY: Automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24: 2554–2556.PubMedCrossRefGoogle Scholar
  32. Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, Dechancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS and Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 9: 1–6.Google Scholar
  33. Schaaff I, Heinisch J and Zimmermann FK (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5: 285–290.PubMedCrossRefGoogle Scholar
  34. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G and Schomburg D (2004) BRENDA, the enzyme database: Updates and major new developments. Nucleic Acids Res 1: D431–433.CrossRefGoogle Scholar
  35. Suarez M, Tortosa P and Jaramillo A (2009) PROTDES: CHARMM toolbox for computational protein design. Systems and Synthetic Biology.Google Scholar
  36. Tagkopoulos I, Liu Y and Tavazoie S (2008) Predictive behavior within microbial genetic networks. Science 320: 1313–1317.PubMedCrossRefGoogle Scholar
  37. Win MN and Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322: 456–460.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Maria Suarez
    • 1
    • 2
  • Guillermo Rodrigo
    • 3
  • Javier Carrera
    • 3
    • 4
  • Alfonso Jaramillo
    • 1
    • 2
  1. 1.Lab BiochimieEcole PolytechniquePalaiseauFrance
  2. 2.Epigenomics ProjectGenopoleEvry CedexFrance
  3. 3.Institute of Biologia Molecular y Celular de Plantas, CSIC-UPVValenciaSpain
  4. 4.Institute of Aplic. en Tecnologias de la Informacion y las Comunicaciones Avanzadas, UPVValenciaSpain

Personalised recommendations