Advertisement

An Introduction to Synthetic Biology

  • Carolyn M.C. Lam
  • Miguel Godinho
  • Vítor A.P. Martins dos Santos
Chapter

Abstract

Synthetic biology is a newly emerged discipline that came into light several years ago. It is an interdisciplinary field bringing together the expertise from science, engineering, and computing to create artificial parts or systems in the biological world. This chapter provides a concise overview of the background and developments in synthetic biology with focus on some of the latest research findings. It is believed that synthetic biology can open new doors for solutions to many existing daily life problems. However, there are still many challenges to be overcome due to the complex nature of biological systems. The discoveries and knowledge that will be gained from the ongoing studies in synthetic biology will enrich our understanding towards how life has been designed by nature and to what extent it can be altered or improved by artificial interference.

Keywords

Synthetic Biology Logic Gate Cyanic Acid Unnatural Amino Acid Mycoplasma Genitalium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EPS, Landgraf D, Phillips I and Silver PA (2007) Rational design of memory in eukaryotic cells. Genes Dev. 21: 2271–2276PubMedCrossRefGoogle Scholar
  2. Aldrich S, Newcomb J and Carlson R (2008) Scenarios for the future of synthetic biology. Ind. Biotechnol. 4: 39–49CrossRefGoogle Scholar
  3. Allen JJ, Li M, Brinkworth CS, Paulson JL, Wang D, Hubner A, Chou WH, Davis RJ, Burlingame AL, Messing RO, Katayama CD, Hedrick SM and Shokat KM (2007) A semisynthetic epitope for kinase substrates. Nat. Meth. 4: 511–516CrossRefGoogle Scholar
  4. Anderson JC, Clarke EJ, Arkin AP and Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355: 619–627PubMedCrossRefGoogle Scholar
  5. Anderson JC, Voigt CA and Arkin AP (2007) Environmental signal integration by a modular AND gate. Mol. Syst. Biol. 3: 133PubMedCrossRefGoogle Scholar
  6. Andrianantoandro E, Basu S, Karig DK and Weiss R (2006) Synthetic biology: New engineering rules for an emerging discipline. Mol. Syst. Biol. 2: 2006.0028PubMedCrossRefGoogle Scholar
  7. Arai T, Matsuoka S, Cho H-Y, Yukawa H, Inui M, Wong S-L and Doi RH (2007) Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation. Proc. Natl. Acad. Sci. U.S.A. 104: 1456–1460CrossRefGoogle Scholar
  8. Arkin AP and Fletcher DA (2006) Fast, cheap and somewhat in control. Genome Biol. 7: 114PubMedCrossRefGoogle Scholar
  9. Arnold FH (1998) Design by directed evolution. Acc. Chem. Res. 31: 125–131CrossRefGoogle Scholar
  10. Arnold FH and Volkov AA (1999) Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3: 54–59PubMedCrossRefGoogle Scholar
  11. Atsumi S, Hanai T and Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86–89PubMedCrossRefGoogle Scholar
  12. Balagadde FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR and You L (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4: 187PubMedCrossRefGoogle Scholar
  13. Bang D and Church GM (2008) Gene synthesis by circular assembly amplification. Nat. Meth. 5: 37–39CrossRefGoogle Scholar
  14. Banzhaf W, Beslon G, Christensen S, Foster JA, Kepes F, Lefort V, Miller JF, Radman M and Ramsden JJ (2006) Guidelines: From artificial evolution to computational evolution: A research agenda. Nat. Rev. Genet. 7: 729–735PubMedCrossRefGoogle Scholar
  15. Barrett CL, Kim TY, Kim HU, Palsson BØ and Lee SY (2006) Systems biology as a foundation for genome-scale synthetic biology. Curr. Opin. Biotechnol. 17: 488–492PubMedCrossRefGoogle Scholar
  16. Beaudry A and Joyce G (1992) Directed evolution of an RNA enzyme. Science 257: 635–641PubMedCrossRefGoogle Scholar
  17. Benner SA (2003) Synthetic biology: Act natural. Nature 421: 118PubMedCrossRefGoogle Scholar
  18. Benner SA (2004) Understanding nucleic acids using synthetic chemistry. Acc. Chem. Res. 37: 784–797PubMedCrossRefGoogle Scholar
  19. Benner SA and Sismour AM (2005) Synthetic biology. Nat. Rev. Genet. 6: 533–543PubMedCrossRefGoogle Scholar
  20. Benzer S and Champe SP (1962) A change from nonsense to sense in the genetic code. Proc. Natl. Acad. Sci. U.S.A. 48: 1114–1121PubMedCrossRefGoogle Scholar
  21. Bessho Y, Hodgson DRW and Suga H (2002) A tRNA aminoacylation system for non-natural amino acids based on a programmable ribozyme. Nat. Biotechnol. 20: 723–728PubMedCrossRefGoogle Scholar
  22. Blake WJ and Isaacs FJ (2004) Synthetic biology evolves. Trends Biotechnol. 22: 321–324PubMedCrossRefGoogle Scholar
  23. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S and Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31: 365–370PubMedCrossRefGoogle Scholar
  24. Bowen TA, Zdunek JK and Medford JI (2008) Cultivating plant synthetic biology from systems biology. New Phytol. 179: 583–587PubMedCrossRefGoogle Scholar
  25. Breithaupt H (2006) The engineer’s approach to biology. EMBO Rep. 7: 21–23PubMedCrossRefGoogle Scholar
  26. Brenner K, You L and Arnold FH (2008) Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnol. 26: 483–489PubMedCrossRefGoogle Scholar
  27. Canton B, Labno A and Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26: 787–793PubMedCrossRefGoogle Scholar
  28. Carr PA, Park JS, Lee Y-J, Yu T, Zhang S and Jacobson JM (2004) Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res. 32: e162PubMedCrossRefGoogle Scholar
  29. Cello J, Paul AV and Wimmer E (2002) Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science 297: 1016–1018PubMedCrossRefGoogle Scholar
  30. Chakrabarti AC, Breaker RR, Joyce GF and Deamer DW (1994) Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J. Mol. Evol. 39: 555–559PubMedCrossRefGoogle Scholar
  31. Chandrakant P and Bisaria VS (2000) Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase. Appl. Microbiol. Biotechnol. 53: 301–309PubMedCrossRefGoogle Scholar
  32. Chandran SS, Menzella HG, Carney JR and Santi DV (2006) Activating hybrid modular interfaces in synthetic polyketide synthases by cassette replacement of ketosynthase domains. Chem. Biol. 13: 469–474PubMedCrossRefGoogle Scholar
  33. Chang MCY, Eachus RA, Trieu W, Ro DK and Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3: 274–277PubMedCrossRefGoogle Scholar
  34. Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang Z and Schultz PG (2003) An expanded eukaryotic genetic code. Science 301: 964–96PubMedCrossRefGoogle Scholar
  35. Collins M, Irvine B, Tyner D, Fine E, Zayati C, Chang C, Horn T, 1Ahle D, Detmer J, Shen L, Kolberg J, Bushnell S, Urdea M and Ho D (1997) A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml. Nucleic Acids Res. 25: 2979–2984PubMedCrossRefGoogle Scholar
  36. Connor RE and Tirrell DA (2007) Non-canonical amino acids in protein polymer design. Polym. Rev. 47: 9–28CrossRefGoogle Scholar
  37. Cournac L, Guedeney G, Peltier G and Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J. Bacteriol. 186: 1737–1746PubMedCrossRefGoogle Scholar
  38. Cowie DB and Cohen GN (1957) Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochim. Biophys. Acta 26: 252–261PubMedCrossRefGoogle Scholar
  39. Cox RS, Surette MG and Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3: 145PubMedGoogle Scholar
  40. Cropp TA, Anderson JC and Chin JW (2007) Reprogramming the amino-acid substrate specificity of orthogonal aminoacyl-tRNA synthetases to expand the genetic code of eukaryotic cells. Nature protocols 2: 2590–2600PubMedCrossRefGoogle Scholar
  41. de Lorenzo V and Danchin A (2008) Synthetic biology: Discovering new worlds and new words. The new and not so new aspects of this emerging research field. EMBO Rep. 9: 822–827PubMedCrossRefGoogle Scholar
  42. de Oliveira MFF and Krassnig C (2007) Synthetic biology: A NEST pathfinder initiative. European Commission, BelgiumGoogle Scholar
  43. Deamer D (2005) A giant step towards artificial life? Trends Biotechnol. 23: 336–338PubMedCrossRefGoogle Scholar
  44. Dien BS, Cotta MA and Jeffries TW (2003) Bacteria engineered for fuel ethanol production: Current status. Appl. Microbiol. Biotechnol. 63: 258–266PubMedCrossRefGoogle Scholar
  45. Eiteman MA, Lee SA and Altman E (2008) A co-fermentation strategy to consume sugar mixtures effectively. J. Biol. Eng. 2: 3PubMedCrossRefGoogle Scholar
  46. Elowitz MB and Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338PubMedCrossRefGoogle Scholar
  47. Endy D (2005) Foundations for engineering biology. Nature 438: 449–453PubMedCrossRefGoogle Scholar
  48. Feng XJ, Hooshangi S, Chen D, Li G, Weiss R and Rabitz H (2004) Optimizing genetic circuits by global sensitivity analysis. Biophys. J. 87: 2195–2202PubMedCrossRefGoogle Scholar
  49. Filipovska A and Rackham O (2008) Building a parallel metabolism within the cell. ACS Chem. Biol. 3: 51–63PubMedCrossRefGoogle Scholar
  50. Firman K and Szczelkun MD (2000) Measuring motion on DNA by the type I restriction endonuclease Eco R124I using triplex displacement. EMBO J. 19: 2094–2102PubMedCrossRefGoogle Scholar
  51. Fischer A, Franco A and Oberholzer T (2002) Giant vesicles as microreactors for enzymatic mRNA synthesis. Chem. Bio. Chem. 3: 409–417PubMedGoogle Scholar
  52. Forster AC and Church GM (2006) Towards synthesis of a minimal cell. Mol. Syst. Biol. 2: 45PubMedCrossRefGoogle Scholar
  53. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E and Keasling JD (2008) Biofuel alternatives to ethanol: Pumping the microbial well. Trends Biotechnol. 26: 375–381PubMedCrossRefGoogle Scholar
  54. Francois P and Hakim V (2004) Design of genetic networks with specified functions by evolution in silico. Proc. Natl. Acad. Sci. U.S.A. 101: 580–585PubMedCrossRefGoogle Scholar
  55. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman JL, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb J-F, Dougherty BA, Bott KF, Hu P-C and Lucier TS (1995) The minimal gene complement of Mycoplasma genitalium. Science 270: 397–404PubMedCrossRefGoogle Scholar
  56. Fung E, Wong WW, Suen JK, Bulter T, Lee S-g and Liao JC (2005) A synthetic gene-metabolic oscillator. Nature 435: 118–122PubMedCrossRefGoogle Scholar
  57. Fuqua C, Parsek MR and Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35: 439–468PubMedCrossRefGoogle Scholar
  58. Gardner TS, Cantor CR and Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403: 339–342PubMedCrossRefGoogle Scholar
  59. Geyer CR, Battersby TR and Benner SA (2003) Nucleobase pairing in expanded Watson-crick-like genetic information systems. Structure 11: 1485–1498PubMedCrossRefGoogle Scholar
  60. Ghirardi ML, King PW, Posewitz MC, Maness PC, Fedorov A, Kim K, Cohen J, Schulten K and Seibert M (2005) Approaches to developing biological H2-photoproducing organisms and processes. Biochem. Soc. Trans. 33: 70–72PubMedCrossRefGoogle Scholar
  61. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison III CA and Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319: 1215–1220PubMedCrossRefGoogle Scholar
  62. Gil R, Sabater-Munoz B, Latorre A, Silva FJ and Moya A (2002) Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life. Proc. Natl. Acad. Sci. U.S.A. 99: 4454–4458PubMedCrossRefGoogle Scholar
  63. Gil R, Silva FJ, Pereto J and Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol. Mol. Biol. Rev. 68: 518–537PubMedCrossRefGoogle Scholar
  64. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, Smith HO and Venter JC (2006) Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. U.S.A. 103: 425–430PubMedCrossRefGoogle Scholar
  65. Greber D and Fussenegger M (2007) Mammalian synthetic biology: Engineering of sophisticated gene networks. J. Biotechnol. 130: 329–345PubMedCrossRefGoogle Scholar
  66. Guet C, Abreve CL, Elowitz MB, Hsing W and Leibler S (2002) Combinatorial synthesis of genetic networks. Science 296: 1466–1470PubMedCrossRefGoogle Scholar
  67. Hanai T, Atsumi S and Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl. Environ. Microbiol. 73: 7814–7818PubMedCrossRefGoogle Scholar
  68. Hanczyc MM, Fujikawa SM and Szostak JW (2003) Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science 302: 618–622PubMedCrossRefGoogle Scholar
  69. Hartman MC, Josephson K, Lin CW and Szostak JW (2007) An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS ONE 2: e972PubMedCrossRefGoogle Scholar
  70. Hasty J, McMillen D, Isaacs F and Collins JJ (2001) Computational studies of gene regulatory networks: In numero molecular biology. Nat. Rev. Genet. 2: 268–279PubMedCrossRefGoogle Scholar
  71. Hawkins KM and Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat. Chem. Biol. 4: 564–573PubMedCrossRefGoogle Scholar
  72. Heinemann M and Panke S (2006) Synthetic biology – putting engineering into biology. Bioinformatics 22: 2790–2799PubMedCrossRefGoogle Scholar
  73. Hino N, Hayashi A, Sakamoto K and Yokoyama S (2006) Site-specific incorporation of non-natural amino acids into proteins in mammalian cells with an expanded genetic code. Nature protocols 1: 2957–2962PubMedCrossRefGoogle Scholar
  74. Hirao I, Kimoto M, Mitsui T, Fujiwara T, Kawai R, Sato A, Harada Y and Yokoyama S (2006) An unnatural hydrophobic base pair system: Site-specific incorporation of nucleotide analogs into DNA and RNA. Nat. Meth. 3: 729–735CrossRefGoogle Scholar
  75. Hirao I, Ohtsuki T, Fujiwara T, Mitsui T, Yokogawa T, Okuni T, Nakayama H, Takio K, Yabuki T, Kigawa T, Kodama K, Yokogawa T, Nishikawa K and Yokoyama S (2002) An unnatural base pair for incorporating amino acid analogs into proteins. Nat. Biotechnol. 20: 177–182PubMedCrossRefGoogle Scholar
  76. Ho NWY, Chen Z and Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64: 1852–1859PubMedGoogle Scholar
  77. Hohsaka T and Sisido M (2002) Incorporation of non-natural amino acids into proteins. Curr. Opin. Chem. Biol. 6: 809–815PubMedCrossRefGoogle Scholar
  78. Hohsaka T, Ashizuka Y, Murakami H and Sisido M (2001a) Five-base codons for incorporation of nonnatural amino acids into proteins. Nucleic Acids Res. 29: 3646–3651Google Scholar
  79. Hohsaka T, Ashizuka Y, Taira H, Murakami H and Sisido M (2001b) Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system. Biochem. 40: 11,060–11,064Google Scholar
  80. Hooshangi S, Thiberge S and Weiss R (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. U.S.A. 102: 3581–3586PubMedCrossRefGoogle Scholar
  81. Hwang YW and Miller DL (1987) A mutation that alters the nucleotide specificity of elongation factor Tu, a GTP regulatory protein. J. Biol. Chem. 262: 13,081–13,085Google Scholar
  82. iGEM (2007) iGEM 2007 Wiki: International genetically engineered machine competition http://parts.mit.edu/igem07/index.php/MainPage. Accessed Oct. 2007
  83. Ingram LO, Conway T, Clark DP, Sewell GW and Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53: 2420–2425PubMedGoogle Scholar
  84. Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP and York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol. Bioeng. 58: 204–214PubMedCrossRefGoogle Scholar
  85. Ishikawa K, Sato K, Shima Y, Urabe I and Yomo T (2004) Expression of a cascading genetic network within liposomes. FEBS Lett. 576: 387–390PubMedCrossRefGoogle Scholar
  86. Islas S, Becerra A, Luisi PL and Lazcano A (2004) Comparative genomics and the gene complement of a minimal cell. Orig. Life Evol. Biosph. 34: 243–256PubMedCrossRefGoogle Scholar
  87. Itaya M, Fujita K, Kuroki A and Tsuge K (2008) Bottom–up genome assembly using the Bacillus subtilis genome vector. Nat. Meth. 5: 41–43CrossRefGoogle Scholar
  88. Itaya M, Tsuge K, Koizumi M and Fujita K (2005) Combining two genomes in one cell: Stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc. Natl. Acad. Sci. U.S.A. 102: 15,971–15,976CrossRefGoogle Scholar
  89. Jewett MC, Calhoun KA, Voloshin A, Wuu JJ and Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol. Syst. Biol. 4: 220PubMedCrossRefGoogle Scholar
  90. Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas Iii CF, Hilvert D, Houk KN, Stoddard BL and Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319: 1387–1391PubMedCrossRefGoogle Scholar
  91. Kalscheuer R, Stölting T and Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152: 2529–2536PubMedCrossRefGoogle Scholar
  92. Kaper JB and Sperandio V (2005) Bacterial cell-to-cell signalling in the gastrointestinal tract. infect. Immun. 73: 3197–3209Google Scholar
  93. Keller EF (2003) Making sense of life: Explaining biological development with models, metaphors, and machines. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  94. Kleerebezem M and Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: A case of multicellular behavior. Peptides 22: 1579–1596PubMedCrossRefGoogle Scholar
  95. Knight T (2003) Idempotent vector design for standard assembly of biobricks. MIT Artificial Intelligence Laboratory. http://hdl.handle.net/1721.1/21168 Accessed Oct 2008
  96. Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR and Collins JJ (2004) Programmable cells: Interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. U.S.A. 101: 8414–8419PubMedCrossRefGoogle Scholar
  97. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O’Reilly M, O’Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JFML, Sekiguchi J, Sekowska A, Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U and Ogasawara N (2003) Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. U.S.A. 100: 4678–4683PubMedCrossRefGoogle Scholar
  98. Kodumal SJ, Patel KG, Reid R, Menzella HG, Welch M and Santi DV (2004) Total synthesis of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl. Acad. Sci. U.S.A. 101: 15,573–15,578CrossRefGoogle Scholar
  99. Kolisnychenko V, Plunkett G, III, Herring CD, Feher T, Posfai J, Blattner FR and Posfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res. 12: 640–647PubMedCrossRefGoogle Scholar
  100. Koonin EV (2000) How many genes can make a cell: The minimal-gene-set concept. Annu. Rev. Genomics Hum. Genet. 1: 99–116PubMedCrossRefGoogle Scholar
  101. Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 1: 127–136PubMedCrossRefGoogle Scholar
  102. Kramer BP and Fussenegger M (2005) Hysteresis in a synthetic mammalian gene network. Proc. Natl. Acad. Sci. U.S.A. 102: 9517–9522PubMedCrossRefGoogle Scholar
  103. Kramer BP, Fischer C and Fussenegger M (2004) BioLogic gates enable logical transcription control in mammalian cells. Biotechnol. Bioeng. 87: 478–484PubMedCrossRefGoogle Scholar
  104. Kramer BP, Weber W and Fussenegger M (2003) Artificial regulatory networks and cascades for discrete multilevel transgene control in mammalian cells. Biotechnol. Bioeng. 83: 810–820PubMedCrossRefGoogle Scholar
  105. Kumaki Y, Ukai-Tadenuma M, Uno K-iD, Nishio J, Masumoto K-H, Nagano M, Komori T, Shigeyoshi Y, Hogenesch JB and Ueda HR (2008) Analysis and synthesis of high-amplitude Cis-elements in the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 105: 14,946–14,951CrossRefGoogle Scholar
  106. Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchison CA, III, Smith HO and Venter JC (2007) Genome transplantation in bacteria: Changing one species to another. Science 317: 632–638PubMedCrossRefGoogle Scholar
  107. Leconte AM, Hwang GT, Matsuda S, Capek P, Hari Y and Romesberg FE (2008) Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. J. Am. Chem. Soc. 130: 2336–2343PubMedCrossRefGoogle Scholar
  108. Leduc S (1912) La biologie synthétique. A. Poinat, ParisGoogle Scholar
  109. Leonard E, Nielsen D, Solomon K and Prather KJ (2008) Engineering microbes with synthetic biology frameworks. Trends Biotechnol. 26: 674–681PubMedCrossRefGoogle Scholar
  110. Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM and Voigt CA (2005) Synthetic biology: Engineering Escherichia coli to see light. Nature 438: 441–442PubMedCrossRefGoogle Scholar
  111. Lian Y, Jia Z, He K, Liu Y, Song F, Wang B and Wang G (2008) Transgenic tobacco plants expressing synthetic Cry1Ac and Cry1Ie genes are more toxic to cotton bollworm than those containing one gene. Chin. Sci. Bull. 53: 1381–1387CrossRefGoogle Scholar
  112. Linshiz G, Yehezkel TB, Kaplan S, Gronau I, Ravid S, Adar R and Shapiro E (2008) Recursive construction of perfect DNA molecules from imperfect oligonucleotides. Mol. Syst. Biol. 4: 191Google Scholar
  113. Litman RM and Szybalski W (1963) Enzymatic synthesis of transforming DNA. Biochem. Biophys. Res. Commun. 10: 473–481PubMedCrossRefGoogle Scholar
  114. Liu S-C, Minton N, Giaccia A and Brown J (2002) Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther. 9: 291–296PubMedCrossRefGoogle Scholar
  115. Liu W, Brock A, Chen S, Chen S and Schultz PG (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat. Meth. 4: 239–244CrossRefGoogle Scholar
  116. Loessner H, Endmann A, Leschner S, Westphal K, Rohde M, Miloud T, Hammerling G, Neuhaus K and Weiss S (2007) Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of l-arabinose as inducer of bacterial gene expression in vivo. Cell. Microbiol. 9: 1529–1537PubMedCrossRefGoogle Scholar
  117. Looger LL, Dwyer MA, Smith JJ and Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423: 185–190PubMedCrossRefGoogle Scholar
  118. Luisi PL (2002) Toward the engineering of minimal living cells. Anat. Rec. 268: 208–214PubMedCrossRefGoogle Scholar
  119. Luisi P, Ferri F and Stano P (2006a) Approaches to semi-synthetic minimal cells: A review. Naturwissenschaften 93: 1–13Google Scholar
  120. Luisi PL, Chiarabelli C and Stano P (2006b) From never born proteins to minimal living cells: Two projects in synthetic biology. Origins Life Evol. Biosph. 36: 605–616Google Scholar
  121. Luisi PL, Souza TPd and Stano P (2008) Vesicle behavior: In search of explanations. J. Phys. Chem. B 112: 14,655–14,664CrossRefGoogle Scholar
  122. Lyon GJ and Novick RP (2004) Peptide signalling in Staphylococcus aureus and other gram-positive bacteria. Peptides 25: 1389–1403PubMedCrossRefGoogle Scholar
  123. Magliery TJ, Anderson JC and Schultz PG (2001) Expanding the genetic code: Selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli. J. Mol. Biol. 307: 755–769PubMedCrossRefGoogle Scholar
  124. Mansy SS, Schrum JP, Krishnamurthy M, Tobe S, Treco DA and Szostak JW (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454: 122–125PubMedCrossRefGoogle Scholar
  125. Marchisio MA and Stelling J (2008) Computational design of synthetic gene circuits with composable parts. Bioinformatics 24: 1903–1910PubMedCrossRefGoogle Scholar
  126. Martin VJJ, Pitera DJ, Withers ST, Newman JD and Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796–802PubMedCrossRefGoogle Scholar
  127. Matsuda S, Fillo JD, Henry AA, Rai P, Wilkens SJ, Dwyer TJ, Geierstanger BH, Wemmer DE, Schultz PG, Spraggon G and Romesberg FE (2007) Efforts toward expansion of the genetic alphabet: Structure and replication of unnatural base pairs. J. Am. Chem. Soc. 129: 10,466–10,473CrossRefGoogle Scholar
  128. McDaniel R and Weiss R (2005) Advances in synthetic biology: On the path from prototypes to applications. Curr. Opin. Biotechnol. 16: 476–483PubMedCrossRefGoogle Scholar
  129. Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA and Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat. Biotechnol. 23: 1171–1176PubMedCrossRefGoogle Scholar
  130. Meyer A, Pellaux R and Panke S (2007) Bioengineering novel in vitro metabolic pathways using synthetic biology. Curr. Opin. Microbiol. 10: 246–253PubMedCrossRefGoogle Scholar
  131. Mitsui T, Kitamura A, Kimoto M, To T, Sato A, Hirao I and Yokoyama S (2003) An unnatural hydrophobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methylimidazo[(4,5)-b]pyridine. J. Am. Chem. Soc. 125: 5298–5307PubMedCrossRefGoogle Scholar
  132. Mizoguchi H, Mori H and Fujio T (2007) Escherichia coli minimum genome factory. Biotechnol. Appl. Biochem. 46: 157–167PubMedCrossRefGoogle Scholar
  133. Munteanu A, Attolini CS-O, Rasmussen S, Ziock H and Solé RV (2007) Generic Darwinian selection in catalytic protocell assemblies. Philos. Trans. R. Soc. B 362: 1847–1855CrossRefGoogle Scholar
  134. Murtas G, Kuruma Y, Bianchini P, Diaspro A and Luisi PL (2007) Protein synthesis in liposomes with a minimal set of enzymes. Biochem. Biophys. Res. Commun. 363: 12–17PubMedCrossRefGoogle Scholar
  135. Mushegian AR and Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. U.S.A. 93: 10,268–10,273Google Scholar
  136. Nanda V (2008) Do-it-yourself enzymes. Nat. Chem. Biol. 4: 273–275PubMedCrossRefGoogle Scholar
  137. Noireaux V and Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. U.S.A. 101: 17,669–17,674CrossRefGoogle Scholar
  138. Nomura S-IM, Tsumoto K, Hamada T, Akiyoshi K, Nakatani Y and Yoshikawa K (2003) Gene expression within cell-sized lipid vesicles. Chem. Bio. Chem. 4: 1172–1175PubMedGoogle Scholar
  139. Oberholzer T and Luisi PL (2002) The Use of Liposomes for Constructing Cell Models. J. Biol. Phys. 28: 733–744CrossRefGoogle Scholar
  140. Oberholzer T, Nierhaus KH and Luisi PL (1999) Protein Expression in Liposomes. Biochem. Biophys. Res. Commun. 261: 238–241PubMedCrossRefGoogle Scholar
  141. Ohtsuki T, Kimoto M, Ishikawa M, Mitsui T, Hirao I and Yokoyama S (2001) Unnatural base pairs for specific transcription. Proc. Natl. Acad. Sci. U.S.A. 98: 4922–4925PubMedCrossRefGoogle Scholar
  142. Okumoto S, Takanaga H and Frommer WB (2008) Quantitative imaging for discovery and assembly of the metabo-regulome: Tansley review. New Phytol. 180: 271–295PubMedCrossRefGoogle Scholar
  143. O’Malley MA, Powell A, Davies JF and Calvert J (2008) Knowledge-making distinctions in synthetic biology. BioEssays 30: 57–65PubMedCrossRefGoogle Scholar
  144. Pharkya P, Burgard AP and Maranas CD (2004) OptStrain: A computational framework for redesign of microbial production systems. Genome Res. 14: 2367–2376PubMedCrossRefGoogle Scholar
  145. Piccirilli JA, Krauch T, Moroney SE and Benner SA (1990) Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343: 33–37PubMedCrossRefGoogle Scholar
  146. Pleiss J (2006) The promise of synthetic biology. Appl. Microbiol. Biotechnol. 73: 735–739PubMedCrossRefGoogle Scholar
  147. Plummer KA, Carothers JM, Yoshimura M, Szostak JW and Verdine GL (2005) In vitro selection of RNA aptamers against a composite small molecule-protein surface. Nucleic Acids Res. 33: 5602–5610PubMedCrossRefGoogle Scholar
  148. Pohorille A and Deamer D (2002) Artificial cells: Prospects for biotechnology. Trends Biotechnol. 20: 123–128PubMedCrossRefGoogle Scholar
  149. Pósfai G, Plunkett Iii G, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, De Arruda M, Burland V, Harcum SW and Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312: 1044–1046PubMedCrossRefGoogle Scholar
  150. Rackham O and Chin JW (2005a) Cellular logic with orthogonal ribosomes. J. Am. Chem. Soc. 127: 17,584–17,585Google Scholar
  151. Rackham O and Chin JW (2005b) A network of orthogonal ribosome x mRNA pairs. Nat. Chem. Biol. 1: 159–166Google Scholar
  152. Rajasekaran K, Cary JW, Jaynes JM and Cleveland TE (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol. J. 3: 545–554PubMedCrossRefGoogle Scholar
  153. Rao S, Hu S, McHugh L, Lueders K, Henry K, Zhao Q, Fekete RA, Kar S, Adhya S and Hamer DH (2005) Toward a live microbial microbicide for HIV: Commensal bacteria secreting an HIV fusion inhibitor peptide. Proc. Natl. Acad. Sci. U.S.A. 102: 11,993–11,998Google Scholar
  154. Rasmussen S, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF and Bedau MA (2004) Evolution: Transitions from nonliving to living matter. Science 303: 963–965PubMedCrossRefGoogle Scholar
  155. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R and Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943PubMedCrossRefGoogle Scholar
  156. Rodrigo G and Jaramillo A (2007) Computational design of digital and memory biological devices. Syst. Synth. Biol. 1: 183–195PubMedCrossRefGoogle Scholar
  157. Rodrigo G, Carrera J and Jaramillo A (2007) Genetdes: Automatic design of transcriptional networks. Bioinformatics 23: 1857–1858PubMedCrossRefGoogle Scholar
  158. Rodrigo G, Carrera J and Jaramillo A (2008) Computational design and evolution of the oscillatory response under light-dark cycles. Biochimie 90: 888–897PubMedCrossRefGoogle Scholar
  159. Saleh OA, Perals C, Barre FX and Allemand JF (2004) Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment. EMBO J. 23: 2430–2439PubMedCrossRefGoogle Scholar
  160. Savage DF, Way J and Silver PA (2008) Defossiling fuel: How synthetic biology can transform biofuel production. ACS Chem. Biol. 3: 13–16PubMedCrossRefGoogle Scholar
  161. Scheller J, Guhrs K-H, Grosse F and Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat. Biotechnol. 19: 573–577PubMedCrossRefGoogle Scholar
  162. Schmidli PK, Schurtenberger P and Luisi PL (1991) Liposome-mediated enzymatic synthesis of phosphatidylcholine as an approach to self-replicating liposomes. J. Am. Chem. Soc. 113: 8127–8130CrossRefGoogle Scholar
  163. Seidel R and Dekker C (2007) Single-molecule studies of nucleic acid motors. Curr. Opin. Struct. Biol. 17: 80–86PubMedCrossRefGoogle Scholar
  164. Seidel R, van Noort J, van der Scheer C, Bloom JGP, Dekker NH, Dutta CF, Blundell A, Robinson T, Firman K and Dekker C (2004) Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nat. Struct. Mol. Biol. 11: 838–843PubMedCrossRefGoogle Scholar
  165. Shah K, Liu Y, Deirmengian C and Shokat KM (1997) Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl. Acad. Sci. U.S.A. 94: 3565–3570PubMedCrossRefGoogle Scholar
  166. Shen CR and Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10: 312–320PubMedCrossRefGoogle Scholar
  167. Shou W, Ram S and Vilar JMG (2007) Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. U.S.A. 104: 1877–1882PubMedCrossRefGoogle Scholar
  168. Silva-Rocha R and de Lorenzo V (2008) Mining logic gates in prokaryotic transcriptional regulation networks. FEBS Lett. 582: 1237–1244PubMedCrossRefGoogle Scholar
  169. Smith HO, Hutchison CA, Pfannkoch C and Venter JC (2003) Generating a synthetic genome by whole genome assembly: ϕX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. U.S.A. 100: 15,440–15,445CrossRefGoogle Scholar
  170. Solé RV, Munteanu A, Rodriguez-Caso C and Macía J (2007) Synthetic protocell biology: From reproduction to computation. Philos. Trans. R. Soc. B 362: 1727–1739CrossRefGoogle Scholar
  171. Soria-Guerra R, Rosales-Mendoza S, Márquez-Mercado C, López-Revilla R, Castillo-Collazo R and Alpuche-Solís Á (2007) Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene. Plant Cell Rep. 26: 961–968PubMedCrossRefGoogle Scholar
  172. Sprinzak D and Elowitz MB (2005) Reconstruction of genetic circuits. Nature 438: 443–448PubMedCrossRefGoogle Scholar
  173. Steidler L and Rottiers P (2006) Therapeutic drug delivery by genetically modified Lactococcus lactis. Ann. N. Y. Acad. Sci. 1072: 176–186PubMedCrossRefGoogle Scholar
  174. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP and Remaut E (2003) Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21: 785–789PubMedCrossRefGoogle Scholar
  175. Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS and Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456: 516–519Google Scholar
  176. Surzycki R, Cournac L, Peltier G and Rochaix JD (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc. Natl. Acad. Sci. U.S.A. 104: 17,548–17,553CrossRefGoogle Scholar
  177. Synthetic Biology (2008) Synthetic biology: FAQ http://syntheticbiology.org/FAQ.html. Accessed Oct. 2008
  178. Szybalski W and Skalka A (1978) Nobel prizes and restriction enzymes. Gene 4: 181–182PubMedCrossRefGoogle Scholar
  179. Tang Z, Mallikaratchy P, Yang R, Kim Y, Zhu Z, Wang H and Tan W (2008) Aptamer switch probe based on intramolecular displacement. J. Am. Chem. Soc. 130: 11,268–11,269Google Scholar
  180. Tsumoto K, Nomura S-iM, Nakatani Y and Yoshikawa K (2001) Giant liposome as a biochemical reactor: Transcription of DNA and transportation by laser tweezers. Langmuir 17: 7225–7228CrossRefGoogle Scholar
  181. Tucker JB and Zilinskas RA (2006) The promise and perils of synthetic biology. New Atlantis (Washington, D.C.) 12: 25–45Google Scholar
  182. Ukai-Tadenuma M, Kasukawa T and Ueda HR (2008) Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat. Cell Biol. 10: 1154–1163PubMedCrossRefGoogle Scholar
  183. Wackett LP (2008) Microbial-based motor fuels: Science and technology. Microb. Biotechnol. 1: 211–225PubMedCrossRefGoogle Scholar
  184. Walde P, Goto A, Monnard PA, Wessicken M and Luisi PL (1994) Oparin’s reactions revisited: Enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J. Am. Chem. Soc. 116: 7541–7547CrossRefGoogle Scholar
  185. Wall ME, Hlavacek WS and Savageau MA (2004) Design of gene circuits: Lessons from bacteria. Nat. Rev. Genet. 5: 34–42PubMedCrossRefGoogle Scholar
  186. Wang Q and Wang L (2008) New methods enabling efficient incorporation of unnatural amino acids in yeast. J. Am. Chem. Soc. 130: 6066–6067PubMedCrossRefGoogle Scholar
  187. Wang L, Brock A, Herberich B and Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292: 498–500PubMedCrossRefGoogle Scholar
  188. Wang K, Neumann H, Peak-Chew SY and Chin JW (2007) Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat. Biotechnol. 25: 770–777PubMedCrossRefGoogle Scholar
  189. Weber W, Link N and Fussenegger M (2006) A genetic redox sensor for mammalian cells. Metab. Eng. 8: 273–280PubMedCrossRefGoogle Scholar
  190. Weber W, Kramer BP and Fussenegger M (2007a) A genetic time-delay circuitry in mammalian cells. Biotechnol. Bioeng. 98: 894–902Google Scholar
  191. Weber W, Daoud-El Baba M and Fussenegger M (2007b) Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc. Natl. Acad. Sci. U.S.A. 104: 10,435–10,440Google Scholar
  192. Weber W, Schoenmakers R, Keller B, Gitzinger M, Grau T, Baba MDE, Sander P and Fussenegger M (2008) A synthetic mammalian gene circuit reveals antituberculosis compounds. Proc. Natl. Acad. Sci. U.S.A. 105: 9994–9998PubMedCrossRefGoogle Scholar
  193. Weiss R, Basu S, Hooshangi S, Kalmbach A, Karig D, Mehreja R and Netravali I (2003) Genetic circuit building blocks for cellular computation, communications, and signal processing. Nat. Comput. 2: 47–84CrossRefGoogle Scholar
  194. Wöhler F (1828) Ueber künstliche Bildung des Harnstoffs. Ann. Phys. Chem. 87: 253–256Google Scholar
  195. Xie J and Schultz PG (2006) A chemical toolkit for proteins – An expanded genetic code. Nat. Rev. Mol. Cell Biol. 7: 775–782PubMedCrossRefGoogle Scholar
  196. Xiong A-S, Yao Q-H, Peng R-H, Duan H, Li X, Fan H-Q, Cheng Z-M and Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nature Protocols 1: 791–797PubMedCrossRefGoogle Scholar
  197. Xiong A-S, Yao Q-H, Peng R-H, Li X, Fan H-Q, Cheng Z-M and Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. 32: e98PubMedCrossRefGoogle Scholar
  198. Xu H-T, Fan B-L, Yu S-Y, Huang Y-H, Zhao Z-H, Lian Z-X, Dai Y-P, Wang L-L, Liu Z-L, Fei J and Li N (2007) Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim. Biotechnol. 18: 1–12PubMedCrossRefGoogle Scholar
  199. Yehezkel TB, Linshiz G, Buaron H, Kaplan S, Shabi U and Shapiro E (2008) De novo DNA synthesis using single molecule PCR. Nucleic Acids Res. 36: e107Google Scholar
  200. Yokobayashi Y, Weiss R and Arnold FH (2002) Directed evolution of a genetic circuit. Proc. Natl. Acad. Sci. U.S.A. 99: 16,587–16,591CrossRefGoogle Scholar
  201. Yoshikuni Y, Dietrich JA, Nowroozi FF, Babbitt PC and Keasling JD (2008) Redesigning enzymes based on adaptive evolution for optimal function in synthetic metabolic pathways. Chem. Biol. 15: 607–618PubMedCrossRefGoogle Scholar
  202. Youell J and Firman K (2008) EcoR124I: From plasmid-encoded restriction-modification system to nanodevice. Microbiol. Mol. Biol. Rev. 72: 365–377PubMedCrossRefGoogle Scholar
  203. Yu W, Sato K, Wakabayashi M, Nakaishi T, Ko-Mitamura EP, Shima Y, Urabe I and Yomo T (2001) Synthesis of functional protein in liposome. J. Biosci. Bioeng. 92: 590–593PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Carolyn M.C. Lam
    • 1
  • Miguel Godinho
    • 1
  • Vítor A.P. Martins dos Santos
    • 1
  1. 1.Systems and Synthetic Biology GroupHelmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations