Skip to main content

The Use of Metabolomics in Cancer Research

  • Chapter
  • First Online:
An Omics Perspective on Cancer Research

Abstract

The use of metabolite profiling techniques (metabonomics or metabolomics) in toxicology is a relatively new branch of this science. Due to their unique biochemical properties, cancer cells should, in principle, be an ideal field of application for metabolite profiling. However, due to technical and study design limitations there are only a few reliably metabolite profiles for human tumors. This chapter provides examples for the recognition of metabolic changes in animals induced by exposure to (carcinogenic) chemicals. In two major projects (COMET and MetaMapTox), data bases have been developed which are sufficiently large to evaluate the full potential of metabolite profiling in toxicology and cancer research. In both projects blood and urine were used as matrices which can be easily obtained with minimally-invasive methods. Based on a high degree of standardization and a large-scale controlled data collection, consistent patterns of metabolite changes have been identified which are associated with different toxicological modes of action, some of which are known to enhance tumor development in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Azmi J, Griffin JL, Shore RF et al (2005) Chemometric analysis of biofluids following toxicant induced hepatotoxicity: a metabonomic approach to distinguish the effects of 1-naphthylisothiocyanate from its products. Xenobiotica 35:839–852

    Article  CAS  PubMed  Google Scholar 

  • Bilello JA (2005) The agony and ecstasy of omic technologies in drug development. Curr Mol Med 5:39–52

    Article  CAS  PubMed  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O et al (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    Article  CAS  PubMed  Google Scholar 

  • Bollard ME, Holmes E, Lindon JC et al (2001) Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high-resolution 1H-NMR spectroscopy of urine and pattern recognition. Anal Biochem 295:194–202

    Article  CAS  PubMed  Google Scholar 

  • Brennan DJ, Kelly C, Rexhepaj E et al (2007) Contribution of DNA and tissue microarray technology to the identification and validation of biomarkers and personalised medicine in breast cancer. Cancer Genomics Proteomics 4:121–134

    CAS  PubMed  Google Scholar 

  • Burns MA, He W, Wu CL et al (2004) Quantitative pathology in tissue MR spectroscopy based human prostate metabolomics. Technol Cancer Res Treat 3:591–598

    PubMed  Google Scholar 

  • Christians U, Reisdorph N, Klawitter J et al (2005) Biomarkers of immunosuppressive drug toxicity. Curr Opin Organ Transplant 10:284–294

    Article  Google Scholar 

  • Claudino WM, Quattrone A, Biganzoli L et al (2007) Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol 25:2840–2846

    Article  CAS  PubMed  Google Scholar 

  • Clayton TA, Lindon JC, Everett JR et al (2003) An hypothesis for a mechanism underlying hepatotoxin-induced hypercreatinuria. Arch Toxocol 77:208–217

    CAS  Google Scholar 

  • Clarke J, Haselden JN (2008) Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol Pathol 36:140–147

    Article  CAS  PubMed  Google Scholar 

  • Connor SC, Hodson MP, Ringeissen S et al (2004) Development of a multivariate statistical model to predict peroxisome proliferation in the rat, based on urinary 1H-NMR spectral patterns. Biomarkers 9:364–385

    Article  CAS  PubMed  Google Scholar 

  • Costello LC, Franklin RB (2006) The clinical relevance of the metabolism of prostate cancer, zinc and tumor suppression: connecting the dots. Mol Cancer 5:10–16

    Article  Google Scholar 

  • Craig A, Sidaway J, Holmes E et al (2005) Systems toxicology: integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J Proteome Res 5:1586–1601

    Article  Google Scholar 

  • Denkert C, Budczies J, Kind T et al (2006) Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 66:10795–10804

    Article  CAS  PubMed  Google Scholar 

  • Dix DJ, Gallagher K, Benson WH et al (2006) A framework for the use of genomics data at the EPA. Nat Biotechnol 24:1108–1111

    Article  CAS  PubMed  Google Scholar 

  • ECETOC (2008) Workshop on the application of omics technologies in toxicology and ecotoxicology: case studies and risk assessment 6-7 December 2007, Malaga. ECETOC, Brussels, Workshop Report No. 11

    Google Scholar 

  • Farkas D, Tannenbaum SR (2005) In vitro methods to study chemically-induced hepatotoxicity: a literature review. Curr Drug Metab 6:111–125

    Article  CAS  PubMed  Google Scholar 

  • Gamer AO, Jaeckh R, Leibold E et al (2002) Investigations on cell proliferation and enzyme induction in male rat kidney and female mouse liver caused by tetrahydrofurane. Toxicol Sci 70:140–149

    Article  CAS  PubMed  Google Scholar 

  • Garrod S, Bollard ME, Nicholls AW et al (2005) Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. Chem Res Toxicol 18:115–122

    Article  CAS  PubMed  Google Scholar 

  • Gavaghan CL, Holmes E, Lenz E et al (2000) An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett 484:169–174

    Article  CAS  PubMed  Google Scholar 

  • Gavaghan CL, Nicholson JK, Connor SC et al (2001) Directly coupled high-performance liquid chromatography and nuclear magnetic resonance spectroscopic with chemometric studies on metabolic variation in Sprague-Dawley rats. Anal Biochem 291:245–252

    Article  CAS  PubMed  Google Scholar 

  • Gillies RJ, Morse DL (2005) In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 7:287–326

    Article  CAS  PubMed  Google Scholar 

  • Glunde K, Serkova N (2006) Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics 7:1109–1123

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Bollard ME (2004) Metabonomics: its potential as a tool in toxicology for safety assessment and data integration. Curr Drug Metab 5:389–398

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Bonney SA, Mann C et al (2004) An integrated reverse functional genomic and metabolomic approach to understanding orotic acid-induced fatty liver. Physiol Genomics 17:140–149

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Kauppinen RA (2007) Tumor metabolomics in animal models of human cancer. Proteome Res 6:498–505

    Article  CAS  Google Scholar 

  • Gunawan B, Kaplowitz N (2004) Clinical perspectives on xenobiotica hepatotoxicity. Drug Metab Rev 36:301–312

    Article  CAS  PubMed  Google Scholar 

  • Heijne WH, Lambers RJ, van Bladeren PJ et al (2005) Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis. Toxicol Pathol 33:425–433

    Article  CAS  PubMed  Google Scholar 

  • Holmes E, Nicholson JK, Tranter G (2001) Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks. Chem Res Toxicol 14:182–191

    Article  CAS  PubMed  Google Scholar 

  • Ippolito JE, Xu J, Jain S et al (2005) An integrated functional genomics and metabolomics approach for defining poor prognosis in human neuroendocrine cancers. Proc Natl Acad Sci USA 102:9901–9906

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K, Katsutani N, Aoki T et al (2006) A metabonomics study of the hepatotoxicants galactosamine, methylene dianiline and clofibrate in rats. Basic Clin Pharmacol Toxicol 99:251–260

    Article  CAS  PubMed  Google Scholar 

  • Issaq HJ, Nativ O, Waybright T et al (2008) Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry. J Urol 170:2422–2426

    Article  Google Scholar 

  • Jain KK (2007) Cancer biomarkers: current issues and future directions. Curr Opin Mol Ther 9:563–571

    CAS  PubMed  Google Scholar 

  • Jaeschke H (2002) Mechanisms of hepatotoxicity. Toxicol Sci 65:166–176

    Article  CAS  PubMed  Google Scholar 

  • Kleno TG, Kiehr B, Baunsgaard D et al (2004) Combination of omics’ data on investigate the mechanism(s) of hydrazine-induced hepatotoxicity in rats and to identify potential biomarkers. Biomarkers 4:116–138

    Article  Google Scholar 

  • Kota BP, Huang TH, Roufogalis BD (2005) An overview on biological mechanisms of PPARs. Pharmacol Res 51:85–94

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ni Y, Su M et al (2007) Pharmacometabonomic phenotyping reveals different responses to xenobiotic intervention in rats. J Proteome Res 6:1364–1370

    Article  CAS  PubMed  Google Scholar 

  • Lindon JC, Nicholson JK, Holmes E et al (2003) Contemporary issues in toxicology. The role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol Appl Pharmacol 187:137–146

    Article  CAS  PubMed  Google Scholar 

  • Lindon JC, Holmes E, Bollard ME et al (2004a) Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 9:1–31

    Article  CAS  PubMed  Google Scholar 

  • Lindon JC, Holmes E, Nicholson JK (2004b) Toxicological applications of magnetic resonance. Prog Nucl Magn Reson Spectrosc 45:109–143

    Article  CAS  Google Scholar 

  • Lindon JC, Nicholson J (2008) Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu Rev Anal Chem 1:45–69

    Article  CAS  Google Scholar 

  • Looser R, Krotzky AJ, Trethewey RN (2005) Metabolite profiling with GC-MS and LC-MS - a key tool for contemporary biology. In: Vaidyanathan S, Harrigan GG, Goodacre R (eds) Metabolome analyses – strategies for systems biology. Springer, New York, pp 103–118

    Chapter  Google Scholar 

  • Maddox JF, Luyendyk JP, Cosma GN et al (2006) Metabonomic evaluation of idiosyncrasy-like liver injury in rats cotreated with ranitidine and lipopolysaccharide. Toxicol Appl Pharmacol 212:35–44

    Article  CAS  PubMed  Google Scholar 

  • Maguire G, Lee P, Manheim D et al (2006) SiDMAP: a metabolomics approach to assess the effects of drug candidates on the dynamic properties of biochemical pathways. Exp Opin Drug Discov Devel 1:351–359

    Article  CAS  Google Scholar 

  • Mandard S, Muller M, Kersten S (2004) Peroxisome proliferator-activated receptor α target genes. Cell Mol Life Sci 61:393–416

    Article  CAS  PubMed  Google Scholar 

  • Noritaka I, Hidenobu Y, Yasuji A et al (1991) Effects of ethyl 4-chloro-2-methylphenoxyacetate on hepatic peroxisomal enzymes in rats. Tohoku J Exp Med 165:59–61

    Article  Google Scholar 

  • O’Donoghue JL (1986) Subchronic oral toxicology of 4-chloro-3-nitroaniline in the rat. Fundam Appl Toxicol 6:551–558

    Article  PubMed  Google Scholar 

  • Odunsi K, Wollman RM, Ambrosone CB et al (2005) Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer 113:782–788

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Cheung C, Gonzalez FJ (2005) Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand? J Mol Med 83:774–785

    Article  CAS  PubMed  Google Scholar 

  • Plumb RS, Granger JH, Stumpf CL et al (2005) A rapid screening approach to metabonomics using UPLC and oa-TOF mass spectrometry: application to age, gender and diurnal variation in normal/Zucker obese rats and black, white and nude mice. Analyst 130:844–849

    Article  CAS  PubMed  Google Scholar 

  • Pitot HC (1986) Fundamentals of oncology (3rd ed). Marcel Decker, New York

    Google Scholar 

  • Robosky LC, Wells DF, Egnash LA et al (2005) Metabonomic identification of two distinct phenotypes in Sprague-Dawley (Crl:CF(SD)) rats. Toxicol Sci 87:277–284

    Article  CAS  PubMed  Google Scholar 

  • Russel ST, O’Connell TM, Pluta L et al (2007) A comparison of transcriptomic and metabonomic technologies for identifying biomarkers predictive of two-year rodent cancer bioassays 2006. Toxicol Sci 96:40–46

    Google Scholar 

  • Sauter H, Lauer M, Fritsch H et al (1991) Metabolic profiling of plants–A new diagnostic technique. In: Baker DR, Fenyes JG, Moberg WK, (Hrsg.) Synthesis and chemistry of agrochemicals II. ACS Symposium Series 443 American Chemical Society Washington, D.C., 288–299

    Google Scholar 

  • Schoonen WG, Kloks CP, Ploemen JP et al (2007a) Uniform procedure of 1H NMR analysis of rat urine and toxicometabonomics part II: comparison of NMR profiles for classification of hepatotoxicity. Toxicol Sci 98:286–297

    Article  CAS  PubMed  Google Scholar 

  • Schoonen WG, Kloks CP, Ploemen JP et al (2007b) Sensitivity of 1H NMR analysis of rat urine in relation to toxicometabonomics part I: comparison of NMR profiles for classification of hepatotoxicity. Toxicol Sci 98:271–285

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Hermann R (1974) Induction of liver growth by xenobiotic compounds and other stimuli. Crit Rev Toxicol 3:97–158

    Article  CAS  Google Scholar 

  • Shurubor YI, Matson WR, Willett WC et al (2007) Biological variability dominates and influences analytical variance in HPLC-ECD studies of the human plasma metabolome 2007. BMC Clin Pathol 7:9

    Google Scholar 

  • Serkova NJ, Spratlin JL, Eckhardt GS (2007) NMR-based metabolomics: translational application and treatment of cancer. Curr Opin Mol Ther 9:572–585

    CAS  PubMed  Google Scholar 

  • Stanley EG, Bailey NJ, Bollard ME et al (2005) Sexual dimorphism in urinary metabolite profiles of Han Wistar rats revealed by nuclear-magnetic-resonance-based metabonomics. Anal Biochem 343:195–202

    Article  CAS  PubMed  Google Scholar 

  • Tate AR, Foxall PJ, Holmes E et al (2000) Distinction between normal and renal cell carcinomakidney cortical biopsy samples using pattern recognition of (1)H magic angle spinning (MAS) NMR spectra. NMR Biomed:13, 64–71

    Google Scholar 

  • Teague CR, Dhabbar FS, Barton RH et al (2007) Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. J Proteome Res 6:2080–2093

    Article  CAS  PubMed  Google Scholar 

  • Thomas CE, Ganji G (2006) Integration of genomic and metabonomic data in systems biology – Are we “there” yet? Curr Opin Drug Discov Devel 9:92–100

    CAS  PubMed  Google Scholar 

  • Thomas RS, O’Conell TM, Pluta L et al (2007) A comparison of transcriptomic and metabonomic technologies for identifying biomarkers predictive of two-year rodent cancer bioassays. Toxicol Sci 96:40–46

    Google Scholar 

  • Toyoda T, Wada A (2004) Omic space: coordinate-based integration and analysis of genomic phenomic interactions. Bioinformatics 20:1759–1765

    Article  CAS  PubMed  Google Scholar 

  • Trethewey RN, Krotzky A, Willmitzer L et al (1999) Metabolic profiling: a Rosetta Stone for genomics? Curr Opin Plant Biol 2:83–85

    Google Scholar 

  • Vainio H, Linnainmaa K, Kähönen M et al (1983) Hypolipidemia and peroxisome proliferation induced by phenoxyacetic acid herpicides in rats. Biochem Pharmacol 32:2775–2779

    Article  CAS  PubMed  Google Scholar 

  • van Ravenzwaay B, Tennekes HA, Stöhr M et al (1987) The kinetics of nuclear polyploidization and tumor formation in livers of CF-1 mice exposed to dieldrin. Carcinogenesis 8:265–269

    Article  PubMed  Google Scholar 

  • van Ravenzwaay B, Mellert W, Deckardt K et al (2005) The comparative toxicology of 4-chloro-2-methylphenoxyacetic acid and its plant metabolite 4-chloro-2-methylcarboxyphenoxyacetic acid in rats. Reg Toxicol Pharmacol 42:47–54

    Article  Google Scholar 

  • van Ravenzwaay B, Coelho-Palermo CG, Leibold E et al (2007) The use of metabolomics for the discovery of new biomarkers of effect. Toxicol Lett 172:21–28

    Article  PubMed  Google Scholar 

  • Wang Q, Jiang Y, Wu C et al (2006a) Study of a novel indolin-2-ketone compound Z24 induced hepatotoxicity by NMR-spectroscopy-based metabonomics of rat urine, blood plasma, and liver extracts. Toxicol Appl Pharmacol 215:71–82

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Holmes E, Tang H et al (2006b) Experimental metabonomic model of dietary variation and stress interactions. J Proteome Res 5:1535–1542

    Article  CAS  PubMed  Google Scholar 

  • Waters NJ, Waterfield CJ, Farrant RD et al (2006) Integrated metabonomic analysis of bromobenzene-induced hepatotoxicity: novel induction of 5-oxoprolinosis. J Proteome Res 5:1448–1459

    Article  CAS  PubMed  Google Scholar 

  • Watkins SM, Reifsnyder PR, Pan H et al (2002) Lipid metabolome-wide effects of the PPARγ agonist rosiglitazone. J Lipid Res 43:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W, Morgenthal K (2005) Metabolomics: from patter recognition to biological interpretation. Drug Discov Today 10:1551–1558

    Article  CAS  PubMed  Google Scholar 

  • Wheelock CE, Goto S, Hammock BD et al (2007) Clofibrate-induced changes in the liver, heart, brain and white adipose lipid metabolome of Swiss-Webster mice. Metabolomics 3:137–145

    Article  CAS  PubMed  Google Scholar 

  • Wilson ID, Plumb R, Granger J et al (2005) HPLC-MS-based methods for the study of metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci 817:67–76

    Article  CAS  PubMed  Google Scholar 

  • Willard HF, Angrist M, Ginsburg GS (2005) Genomic medicine: genetic variation and its impact on the future of health care. Philos Trans R Soc Lond B Biol Sci 360:1543–1550

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Tomizawa K, Fujikawa M et al (2007) Evaluation of human hepatocyte chimeric mice as a model for toxicological investigation using panomic approaches – effect of acetaminophen on the expression profiles of proteins and endogenous metabolites in liver, plasma and urine. Toxicol Sci 32:205–215

    Article  CAS  Google Scholar 

  • Yang J, Xu G, Zheng Y et al (2004) Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B Analyt Technol Biomed Life Sci 813:59–65

    Article  CAS  PubMed  Google Scholar 

  • Zhen Y, Krausz KW, Chen C et al (2007) Metabolomic and genetic analysis of biomarkers for peroxisome proliferator-activated receptor alpha expression and activation. Mol Endocrinol 21:2136–2151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Gertrud Skawran and Gunter Rank for their skilful technical assistance performing the animal study as well as Irmgard Weber for doing the clinical pathology work and the lab and data analysis teams for performing the extensive metabolite profiling analyses. Meyasse Bugay and Marina Herbst are acknowledged for their assistance in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. van Ravenzwaay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

van Ravenzwaay, B. et al. (2010). The Use of Metabolomics in Cancer Research. In: Cho, W. (eds) An Omics Perspective on Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2675-0_8

Download citation

Publish with us

Policies and ethics